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Abstract

Image-based deformation measurement, a crucial tool in various engineering challenges including

crack propagation, fracture, and fatigue, has also found significant application in biology. Specif-

ically, it has been utilized to monitor tissue deformation within the human body, a critical factor

in evaluating its condition during both health and disease. However, accurately measuring tissue

deformation in vivo is difficult. In this thesis, a novel deep-learning approach for measuring defor-

mation from a sequence images is presented, StrainNet, designed to overcome the limitations of

traditional image-based strain analysis techniques in challenging, in vivo settings. Utilizing a training

set based on real-world clinical observations and image artifacts, StrainNet outperforms tradi-

tional techniques on both synthetic test cases with known deformations and real, experimentally

collected ultrasound images of flexor tendons undergoing contraction in vivo. Findings reveal strong

correlations between tendon deformation and applied forces in vivo, highlighting the potential for

StrainNet to be a valuable tool in the assessment of rehabilitation or disease progression. Addition-

ally, by using real-world data to train our model, StrainNetwas able to generalize and reveal corre-

lations with tendon material properties and effort level, providing a more complete understanding

of the mechanics of tendons under various physiological loads. Overall, StrainNet demonstrates

the effectiveness of using deep learning for image-based strain analysis in vivo.
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1
Introduction

Measuring how things deform is challenging. Image-based deformation measurement

has been employed in a multitude of engineering problems, such as crack propagation28, fracture21,

and fatigue30. In the medical field, these techniques have contributed to cancer diagnosis15,16, in-

jury mechanism assessment19, and cardiovascular pathology evaluation12,18. The demand for non-
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invasive in vivo deformation tracking has grown due to its potential for assessing rehabilitation or

disease progression. However, accurate strain measurement with medical images in vivo is challeng-

ing due to limited image resolution and the presence of artifacts that can affect accuracy43. Conse-

quently, techniques that excel under in vivo conditions have become increasingly important.

Overview

This thesis introduces a novel deep-learning approach, StrainNet, designed to maximize perfor-

mance of image-based deformation estimation in challenging, in vivo settings. To begin, a com-

prehensive background of the biological tissue of investigation, flexor tendons, and image texture

correlation techniques is provided before delving into the details of StrainNet. Robust evalua-

tion and experimental results of our tests and validations, demonstrating StrainNet’s potential in

predicting strains accurately in both synthetic and real datasets of ultrasound images of tendons in

vivo.

Contributions

This thesis greatly benefited from the significant contributions of several researchers.

Frederick Houghton, in particular, was instrumental in conducting all image analysis. His work

involved the utilization of traditional image correlation algorithms—digital image correlation (DIC)

and direct deformation estimation (DDE). These methods are elaborated in Section 2.2.1 and Sec-

tion 2.2.2 respectively. Frederick’s application of DIC and DDE spanned across all synthetic test

2



cases presented inAppendix D, as well as the analysis of images gathered experimentally, as outlined

in Section 3.4. Beyond this, Frederick’s expertise was crucial in both the conception of the experi-

mental protocol and the design of a custom jig, detailed in Section 3.2.

In the realm of data collection,Conner Earl, Elnaz Ghajar-Rahimi, and Gouyang Zhou pro-

vided indispensable assistance. They were responsible for acquiring all experimental images and

undertaking force measurements. Their methods and contributions are further discussed in Section

3.2 andAppendix C.2.
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2
Background

This chapter covers essential background information in tendon mechanics and im-

age texture correlation techniques while setting the stage for the introduction of StrainNet.
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2.1 Tendon mechanics

Tendons play a crucial role in the musculoskeletal system, transmitting force from

muscles to bones to facilitate movement. Understanding tendon mechanics is vital for diagnosing

and treating various tendon-related pathologies and injuries, as well as for designing improved pros-

thetic devices. Both in vivo and in vitro studies can provide valuable insights into tendon properties

and behavior under different loading conditions. In this section, existing literature on in vivo studies

of tendon mechanical behavior was reviewed, highlighting key findings, the experimental design,

and the techniques utilized.

When investigating tendon mechanics, many researchers have focused on examining maximum

tendon strain under various loading conditions. For instance, Sheehan et al.40 reported that the

average maximum strain in the human patellar tendon was 6.6%, with strains reaching up to 11%.

Their study involved flexing the knee to 40◦ flexion at 35 cycles per minute while resisting a 34N

weight, and they used a piece-wise strain calculation to ensure that the strain measurements were

tensile. Gerus et al.14 applied an image texture correlation algorithm to ultrasound images of medial

gastrocnemius tendon under tension and found that strains ranged from 8-11%. O’Brien et al.31

discovered that in vivo strain in human patellar tendons ranged from 4% to 14%, depending on the

loading and gender. Additionally, Lee et al.23 demonstrated that human patellar tendon strain was

dependent on the depth of the strain measurement, with strains deep within the tendon being sig-

nificantly higher than those on the surface. These studies underscore the complexity and variability
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of tendon strain under different conditions, highlighting the importance of accounting for factors

such as measurement depth when investigating tendon mechanics.

In addition to strain, the tendon apparent modulus has been a key area of interest of researchers.

Table 2.1 provides a comparison of the in vivo reported apparent moduli of different human ten-

dons under various loading conditions. The patellar tendon, as investigated by Carroll et al. 7 ,

Reeves et al. 36 , and Hansen et al. 17 , exhibited apparent moduli of 0.9 GPa, 1.3 GPa, and 1.09 GPa,

respectively, under conditions of maximal isometric knee extension, with slight variations in the

testing approach. The Achilles tendon, studied by Lichtwark &Wilson 24 and Coombes et al. 8 ,

showed a slightly lower apparent modulus with values of 0.87 GPa and 0.76 GPa, respectively, under

the conditions of one leg hopping and maximum voluntary isometric plantarflexion contractions.

The tibialis anterior tendon, tested byMaganaris & Paul 27 using 50V applied and maximum isomet-

ric load, showed the most varied modulus, with values of 0.45 GPa and 1.2 GPa. Finally, the tendon

structures in the vastus lateralis muscle, as investigated by Kubo et al. 22 , presented the lowest ap-

parent modulus values of 0.29 GPa and 0.43 GPa under the condition of isometric knee extension

torque from a relaxed state to maximum voluntary contraction within 5 seconds.

These studies offer valuable insights into the mechanical behavior of tendons in vivo. The re-

sults indicate that tendons can experience considerable maximum strains, ranging from 6.6% to

14%14,23,31,40. This highlights the importance of considering the depth of strain measurement, as

strains deep within tendons can be significantly higher than those on the surface. Simultaneously,

the apparent modulus provides insights into the inherent stiffness of the tendon tissue, demonstrat-

ing variability across different tendons and under diverse loading conditions. The apparent modulus

6



of these tendons, as shown in Table 2.1, also exhibits considerable variation7,8,17,22,24,27,36.

Table 2.1: Comparison of in vivo reported mechanical properties of different human tendons under different loading
conditions.

author tendon loading condition apparent
modulus
(GPa)

Carroll et al. patellar maximal 10-s ramp isometric
knee extension

0.9± 0.1

Reeves et al. patellar maximal isometric knee exten-
sion

1.3± 0.3

Hansen et al. patellar maximal 10-s ramp isometric
knee extension

1.09± 0.12

Lichtwark &
Wilson

achilles one leg hopping 0.87± 0.2

Coombes et al. achilles maximum voluntary isometric
plantarflexion contractions

0.76± 0.4

Maganaris & Paul tibialis anterior 50V applied &maximum
isometric load

0.45± 0.06
& 1.2±
0.15

Kubo et al. tendon structures
in the vastus
lateralis muscle

isometric knee extension
torque from zero (relax) to
MVCwithin 5 s

0.29± 0.03
& 0.43±
0.04
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2.2 Image texture correlation

Image texture correlation—or optical flow—is a prevalent image processing technique, orig-

inating in the 1980s20,26,35. This method fundamentally hinges on determining the displacement

field between pixels of a reference (or “undeformed”) image and a “deformed” image (Figure 2.1a).

This is achieved by employing a cost function, which can take the form of either a correlation or a

loss function. The technique presupposes that pixel values, such as intensity, remain constant be-

tween the undeformed and deformed images. Two prominent variants of image texture correlation

are described below.

2.2.1 Digital Image Correlation (DIC)

Digital image correlation (DIC) is an extensively utilized image texture correlation method. It op-

erates by dividing the reference images into a grid of rectangular boxes. The size of the box is often

denoted as the subset size, while the spacing between the subsets is commonly referred to as the step

size (Figure 2.1b). DIC employs the cost function

CDIC[Ui] =

∫

Ωi

[I1(Xi)− I2(Xi + Ui)]
2

where I1 and I2 are the reference and deformed images, respectively, andXi and ui represents the

pixel coordinates and displacement centered in subset Ωi. Cost functions can be applied either
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locally (independently for each subset) or globally (enforcing displacement continuity among neigh-

boring subsets). The discrete displacement field is then numerically differentiated to obtain a dis-

crete strain field (Figure 2.1b). Palanca et al. provides a comprehensive review of DIC applications

in biomechanical engineering.

2.2.2 Direct Deformation Estimation (DDE)

Direct deformation estimation (DDE) is similar to DIC in many aspects, but with a crucial differ-

ence: instead of calculating the displacement field, DDE determines the deformation gradient, F,

which maps the undeformed and deformed images via dx = FdX (Figure 2.1c). The cost function

utilized in DDE is of the form

CDDE[Ui] =

∫

Ωi

[I1(dXi)− I2(dxi + FidXi))]
2

where dXi and dxi denotes the change in pixel coordinates in the reference and deformed image,

respectively, and Fi represents the deformation gradient in subset Ωi. By directly computing the

strain from the deformation gradient without the need for displacement differentiation, DDE has

been shown to provide better accuracy, noise insensitivity, and precision compared to displacement-

based techniques like DIC6.
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2.2.3 Limitations of image texture correlation

Despite the widespread use and success of image texture correlation techniques, such as digital im-

age correlation (DIC)43 and direct deformation estimation (DDE)5,6, they are not without their

limitations. Some of the main drawbacks of these techniques include noise sensitivity, the need for

sufficient texture, and the inability to handle large deformations. These limitations are discussed in

detail below.

Noise Sensitivity: One of the significant limitations of image texture correlation techniques is

their sensitivity to image noise13. The fundamental assumption behind these methods is that the

image intensity, remain constant between the undeformed and deformed images39. However, in

real-world scenarios, images are often affected by various types of noise, such as sensor noise or envi-

ronmental noise3. This noise can lead to errors in the estimation of displacement and strain fields,

ultimately affecting the accuracy of the results49,50. Several strategies have been proposed to mitigate

the effect of noise, such as the use of pre-processing techniques to denoise images29, incorporating

regularization terms in the cost function21, and employing robust optimization algorithms33.

Texture requirement: Adequate image texture is a prerequisite for accurate displacement and

deformation measurements using image texture correlation46. When images present low or uniform

texture, the accuracy of these techniques can be compromised. To mitigate this, researchers have

proposed the use of artificial speckle patterns or markers to increase image texture42. Also, the adop-

tion of advanced image processing algorithms, capable of extracting subtle texture details, has been

recommended2. Ensuring the overall accuracy of image correlation techniques under varied textures
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is pivotal for enhancing their applicability and precision across various fields2,42,46.

Large deformation handling: Traditional image texture correlation techniques often struggle

to handle large deformations or complex motion between the undeformed and deformed images.

This limitation arises due to the linear approximation employed in the cost functions, which may

not accurately capture the non-linear deformations present in the images11. To overcome this issue,

researchers have developed multi-scale and multi-resolution approaches, where the deformation

estimation is performed iteratively at various scales and resolutions, starting from a coarse scale and

gradually refining the estimate at finer scales25.

In conclusion, while image texture correlation techniques have proven to be valuable tools for

deformation and displacement estimation, they have several limitations. Researchers have been con-

tinuously working to address these challenges and develop more advanced and robust techniques for

a wide range of applications.

2.3 Advances in machine learning

In recent years, the development of advanced algorithms and computational methods has

greatly improved the performance of image-based deformation measurement techniques9,45. Deep

learning techniques have been introduced to enhance the pattern matching process, enabling more

accurate and robust displacement estimations even in the presence of noise and other distortions41.

Additionally, real-time processing capabilities are being developed to facilitate faster, more efficient

11



measurements1.

Recent developments in machine learning have shown promise in measuring strains from images

over traditional strain measurement methods. In particular, deep learning techniques, such as con-

volutional neural networks (CNNs), have been applied to predict strain maps between successive

images4,48,51. These methods have been shown to provide more accurate and robust results com-

pared to traditional image texture correlation techniques, such as DIC, in controlled settings51. One

of the key advantages of using deep learning for image-based strain measurement is that the model

can be trained on a large dataset of image pairs with known strains, allowing the model to “learn” to

overcome image artifacts that can negatively impact the accuracy of traditional techniques51.

2.4 StrainNet

Considering the limitations of image texture correlation and recent advancements

in machine learning, we introduce a novel deep-learning approach called StrainNet, specifically

designed to maximize performance in challenging, in vivo settings. In order to test and validate our

approach, we limit ourselves to one biological domain—in vivo flexor tendon undergoing contrac-

tion.

StrainNet leverages the power of CNNs to accurately predict full-field strain maps from im-

age pairs captured during in vivo ultrasound imaging of tendons (Figure 2.1d). Its robustness and

adaptability allow it to overcome challenges such as low image quality and complex tendon move-
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ments, making it a valuable tool for tendon mechanics research. The remainder of this thesis will

present the development, implementation, and validation of StrainNet in the context of tendon

mechanics research, as well as its potential applications in other fields where image-based strain mea-

surement is crucial.

Figure 2.1: Schematic illustrating the process of strain calculation using DIC, DDE, and StrainNet from an image
pair. a. The left image represents a reference image (i.e., I1), and the right image represents a deformed image (i.e., I2)
exhibiting vertical tension in the top left (λyy), pure shear in the top right and lower left (γ), and a combination of shear
with horizontal extension in the lower right corner (λxx and γ). b. DIC solves for displacements of four pixels using
square subset regions (blue boxes) and employs numerical differentiation to estimate strain (dark purple dashed box). δαβ
represents the errors from numerical differentiation. c. DDE solves for the deformation gradient of each subset directly
(orange dashed box). d. StrainNet estimates full‐field strain given a pair of input images (I1 and I2).

13



3
Approach

3.1 StrainNet architecture & training

The StrainNet architecture was specifically designed to handle the unique challenges

present with in vivo image analysis. Specifically, StrainNetwas developed and trained to predict

strain within high-frequency ultrasound images of human flexor digitorum superficialis (FDS) ten-
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Figure 3.1: Architecture of StrainNet. a. StrainNet comprises two stages: the first stage is the Deformation‐
Classifier, and the second stage includes TensionNet, CompressionNet, and RigidNet. b. The architecture
of DeformationClassifier is composed of convolutional layers, max pooling, and ReLU activation functions.
The resulting features are flattened and passed through a fully‐connected neural network to predict the probabil‐
ity of the image pair undergoing tension, compression, or rigid body motions. c. The architecture of TensionNet,
CompressionNet, and RigidNet includes convolutional layers, max pooling, upsampling, skip layers, and ReLU acti‐
vation functions, and predicts the full strain field (εxx, εxy, εyy) between the two input images. d. Blocks in b. and c., all of
which are connected by ReLU activation functions and utilize batch normalization.

dons undergoing contraction, as described in a subsequent section (Section 3.2) The main idea be-

hind the architecture was to first classify the image pair as undergoing tension, compression, or rigid

body motion, and then to apply an appropriate neural network to predict the strain field within the

tendon in the ultrasound image (Figure 3.1a.).
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The first stage of the architecture was the DeformationClassifier, which was a convolu-

tional neural network (CNN) that classifies the image pair based on the type of deformation (Figure

3.1a.). It consisted of a series of convolutional layers, max-pooling layers, and fully connected layers.

The convolutional layers extracted features from the image, while the max-pooling layers reduced

dimensionality. The fully connected layers were used to make the final classification (Figure 3.1b.).

Once the image pair was classified, it was passed to one of three neural networks: TensionNet,

CompressionNet, or RigidNet (Figure 3.1a.). These networks predict the strain field from the in-

put image pair and were based on the UNet architecture, a popular biomedical image segmentation

deep-learning architecture37. The UNet architecture has an encoder-decoder structure, with the en-

coder extracting features and the decoder up-sampling feature maps to the original image size. The

encoder and decoder in TensionNet, CompressionNet, and RigidNetwere composed of con-

volutional layers, max-pooling layers, up-sampling layers, and ReLU activation functions (Figure

3.1c.-d.). Skip connections between the encoder and decoder were included to help improve strain

field prediction quality by reducing vanishing gradients10.

In order to effectively train StrainNet, a diverse training set consisting of 5,000 image pairs that

emulate real-world observations and image artifacts commonly encountered in medical imaging

was developed. The training set, designed to be representative of the challenging in vivo settings, in-

cluded 3,750 synthetically generated image pairs and 1,250 experimental image pairs. The process

of generating the training set involved developing a generalized mathematical model of tendon me-

chanics based on in vivo observations, artificially imposing non-linear strain fields onto collected ul-

trasound images, and adding noise to simulate real-world imaging conditions (Appendix B). These
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images were processed and combined to ensure a robust dataset for learning the strain measurement

task. The detailed process of generating the training set, including the acquisition of experimental

data, image preprocessing, and the combination of synthetic and experimental examples, can be

found inAppendix C.

Following the creation of the training set, the StrainNetmodel was trained using a combina-

tion of loss functions tailored to the specific tasks of each subnetwork. For the DeformationClassifier,

a cross-entropy loss function was utilized and defined as

LCE(p, y) = −
C∑

i=1
yi log(pi), (3.1)

where p represents the predicted class probabilities, y is the true one-hot encoded class label, and C is

the number of classes (tension, rigid, and compression).

For the other three models, TensionNet, CompressionNet, and RigidNet, the mean !2 loss

function was used and expressed as

L!2(εpred, εtrue) =
1
N

N∑

i=1

3∑

j=1

∣∣∣εpredi,j − εpredi,j

∣∣∣
2
, (3.2)

where εpredi,j and εtruei,j denote i-th sample and the j-th component (longitudinal, transverse, and shear

across all image pixels) of the predicted and true strain field, respectively, andN is the number of

examples in the training batch.

The training process was conducted for 100 epochs using the Adam optimizer (PyTorch34
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1.12.1) on a K100 16GBNVIDIA GPUwith a learning rate of 0.001. Different batch sizes were em-

ployed for the sub-models to accommodate their specific training requirements. For the DeformationClassifier,

a batch size of 100 was used to take advantage of parallel processing and to reduce the noise in gradi-

ent updates. In contrast, a smaller batch size of 10 was utilized for the TensionNet, CompressionNet,

and RigidNetmodels, allowing for more frequent weight updates and improved convergence prop-

erties. The combination of these hyperparameters, the GPU, and the optimizer facilitated successful

training of StrainNet, enabling it to learn the relationships between ultrasound images of tendons

and their corresponding strain fields.

3.2 Human flexor tendons undergoing contraction

Figure 3.2: Experimental protocol and measured forces and images. a. The custom mount with the participant isometric
contractions while the dynamometer measured forces and high‐frequency ultrasound images were collected. A zoomed
view of the participant’s forearm with the dynamometer and the ultrasound probe to facilitate visualization. b. Mea‐
sured effort level over time for 10%, 30%, and 50% MVC, and representative ultrasound images of the flexor tendon
throughout the experimental procedure.
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To evaluate StrainNet’s capability of accurately predicting tissue deformation

in vivo, a participant performed isometric contractions while high-frequency ultrasound images

were collected, and a digital dynamometer was utilized to measure the applied forces (Vevo3100

Ultrasound Imaging System, FUJIFILMVisualSonics Inc., Toronto, Ontario, Canada; 21MHz

center frequency linear array ultrasound transducer; 15-30MHz bandwidth; MX250 andMicro-

FET, Hoggan Scientific, Salt Lake City, UT, USA). Throughout the trial, the participant’s forearm

was secured in a custom-designed apparatus to minimize out-of-plane tendon displacement (Fig-

ure 3.2a.). The participant’s maximum voluntary contraction (MVC) was measured as 289.8N (n

= 3 trials). From there, the participant was asked to contract their forearms to their different effort

levels—10%, 30%, and 50% of their MVC—in three seconds, hold the contraction for five seconds,

and relax in three seconds (Figure 3.2a.). Each effort level was repeated five times for a total of fif-

teen trials (n = 15), all of which were performed with Purdue Institutional Review Board approval

(IRB-2020-497). The measured effort levels during testing agreed well with the requestedMVC lev-

els; the mean difference between desired and measuredMVCwas 16% (Figure 3.2b.;Appendix A).

However, two trials were discarded due to corruption of the data file of measured forces (n=13).

3.3 Strain analysis method tuning and validation

In addition to the in vivo images, five synthetic test cases were created by artificially impos-

ing a non-linear strain field onto a subset of the collected ultrasound images, in order to quantify
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the accuracy of our strain analysis method in a controlled environment where the applied strain was

known. These test cases were designed to emulate the process of contraction and relaxation in the

experimental procedure described above. Additionally, the prescribed non-linear strain field was de-

signed to reflect reported observations for in vivo tendon mechanics (Section 2.1). Specifically, the

strain in the superficial layer was set to 75% of the deep layer23, and the tendon was modeled as an

incompressible material44,47. The five test cases differed in their maximum longitudinal strain, εmax
long ,

which was set to 4%, 7%, 10%, 13%, and 16% to cover the range of strains observed in vivo23,31,40,47.

Additive Gaussian white noise was added to all synthetic test cases to simulate the level of noise

present in the experimental dataset. A complete description of the synthetic test cases is provided in

Appendix D).

The performance and accuracy of StrainNetwas then benchmarked against to two existing

texture correlation algorithms—digital image correlation (DIC)43 and direct deformation estima-

tion (DDE)5—by applying each technique to all of the synthetic test cases. Given the applied strain

tensor, the spatial strain error was calculated as

spatial strain error =

√√√√
2∑

i=1

2∑

j=1

(
εpredij − εtrueij

)2
(3.3)

where εpredij and εtrueij represent the true and predicted strain tensor at a particular pixel within one

ultrasound image. To robustly evaluate the performance throughout the test cases, the strain error
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and median strain error were calculated as

strain error = median
x

spatial strain error (3.4)

median strain error = median
x,t

spatial strain error (3.5)

where the underset x and x, t denote that the median was obtained across the entire ultrasound im-

age or all ultrasound images throughout the full contraction-relaxation cycle, respectively. To com-

pare the strain error for each synthetic test case between StrainNet and DIC, as well as between

StrainNet and DDE, permutation tests of the strain errors were conducted for each test case with

a significance level set at 0.05.

3.4 Experimental strain analysis and mechanical property estimation

StrainNet, DIC, and DDEwere then applied to the experimental images. To quantify

the bulk tendon mechanical behaviour, the bulk longitudinal strain during the hold period (3-8

seconds) was calculated as the median longitudinal strain over the tendon region:

bulk longitudinal strain = median
xtendon,t

εpredlong

∣∣∣∣3 sec≤ t ≤8 sec
(3.6)

Next, linear regression analysis was performed to examine the relationship between the effort level

and the corresponding bulk longitudinal strain for each of the three strain analysis methods (StrainNet,
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DIC, and DDE). The Pearson correlation coefficient (r) and its corresponding p-value were com-

puted to assess the strength and significance of the linear relationship, respectively.

The bulk longitudinal strains were used to estimate the mechanical properties of the tendon.

First, the longitudinal tendon stress was calculated by divided the measured force by the tendon’s

cross-sectional area, which was manually segmented from ultrasound images. Subsequently, the ten-

don’s apparent modulus was calculated as the slope of the linear region of each trial’s stress-strain

curve. Finally, linear regression on the measured apparent modulus and the effort level was per-

formed with a significance level set at 0.05.
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4
Findings

4.1 StrainNet outperforms traditional techniques in controlled environ-

ments

StrainNet significantly outperformed the traditional texture correlation algorithms, DIC and

DDE, in all synthetic test cases; the median strain error from StrainNetwas 48-84% lower than the

strain error from both DIC and DDE (Figure 4.1a.; p<0.001 in all strain cases). In addition to the
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Figure 4.1: Quantitative evaluation of performance of DIC, DDE, and StrainNet on synthetic test cases. a. A bar plot
with the median strain error calculated over all ultrasound frames and error bars indicating the first and third quartiles
of the strain error. The asterisks denote a statistically significant difference with p < 0.001. b. Temporal strain error
for each of the synthetic test cases. The solid line indicates the median strain error for each ultrasound frame and the
filled‐in area shows the first and third quartiles of the spatial strain error.

overall performance comparison, temporal analysis of strain error further highlights the advantages

of StrainNet (Figure 4.1b.). The accuracy of StrainNetwas as much as 88% better than DIC

and DDE across all test cases (solid lines in Figure 4.1b.). StrainNetwas also 90%more precise

than DDE. However, DIC was the most precise of the three, outperforming StrainNet by nearly

fourfold (filled-in area in Figure 4.1b.).

StrainNet achieved pixel-wise strain estimation while DIC and DDE were limited to the central

area of interest (Figure 4.2a.). DDE and StrainNet capture the non-linear nature of the applied

24



Figure 4.2: Qualitative evaluation of performance of DIC, DDE, and StrainNet on the synthetic test case with max‐
imum longitudinal strain of 10% (εmax

long = 10%). a. From left to right: the true prescribed and the DIC‐, DDE‐, and
StrainNet‐predicted longitudinal strain field during the hold period. b. From left to right: the DIC‐, DDE‐, and
StrainNet‐predicted spatial strain error distribution during the hold period.

strain, whereas the DIC-predicted strain field was homogeneous (Figure 4.2a.). All algorithms

exhibit low spatial strain error throughout the region of the tendon during contraction (Figure

4.2b.). The DIC analysis area was limited to within the boundaries of the tendon whereas DDE and
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StrainNet cover both the tendon and the surrounding soft tissue, revealing large (∼10%) spatial

strain error at the boundary (Figure 4.2b.).

4.2 StrainNet enables accurate in vivo deformation estimation

For the in vivo experimental images, both DIC and DDE underperformed and many pixels were

lost during image analysis. StrainNet, on the other hand, was able to learn around much of the

noise and accurately predict the longitudinal strain in the tendon, which increased as effort level

increased (Figure 4.3a.). There was a strong linear relationship between the StrainNet-predicted

longitudinal strain and effort level (Figure 4.3b.; r = 0.784, p = 0.002). There was also a strong lin-

ear relationship between the StrainNet-predicted apparent modulus and effort level (Figure 4.3c.;

r = 0.879, p < 0.001).
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Figure 4.3: Quantitative and qualitative analysis of StrainNet applied to in vivo images. a. StrainNet‐measured
spatial distribution of longitudinal strain throughout the tendon during an isometric contraction of 10%, 30%, and 50%
MVC. b. Linear regression between the bulk longitudinal strain along the tendon and the effort exerted by the partici‐
pant (n=13 trials). c. Linear regression between the measured apparent modulus and the effort level (n=13 trials).
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5
Discussion

StrainNetwas able to accurately measure different strain levels using ultrasound

images of the flexor tendon. For synthetic datasets, StrainNet detected subtle differences in defor-

mations with a high degree of accuracy (< 3% error), outperforming existing approaches (e.g., DIC

and DDE), which had median strain errors as high as 10%. Additionally, when applied to in vivo im-
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ages, StrainNet predicted a strong linear correlation between the measured strain and effort level

(percentage of the MVC), further validating the performance of the model. Finally, full-field defor-

mation prediction were able to unveil stress-strain curves, and measure mechanical properties within

biological tissue under physiologically relevant boundary conditions. Taken together, these findings

suggest that deep learning models have the potential to significantly advance the accuracy of in vivo

biomechanics studies.

There are several limitations to our model that will be addressed in future work. First, the model

was evaluated on a single tissue type and location, so it is not clear whether it can be applied to a

wider range of tissue types. Additionally, the current architecture is specialized to handle only three

types of deformation, and it would be useful to explore expanding its capabilities to a wider range

of deformations (e.g., shear). Lastly, improvements to the architecture or training the model on a

larger dataset may also allow us to remove the need for the first stage of the model, which currently

classifies the type of deformation present in the image pair.

The potential applications of StrainNet are vast and promising. Our findings show that StrainNet

significantly surpasses traditional image texture correlation methods in controlled environments,

such as synthetic test cases (Figure 4.1). Moreover, in more complex settings where image texture

correlation is susceptible to errors caused by image artifacts, such as real-time in vivomeasurements

of tendon mechanics, StrainNet consistently delivers accurate and expected tissue deformation

levels (Figure 4.3), in line with previous reports7,31,40. Furthermore, the measured tissue mechan-

ical properties align with those previously reported for human patellar and Achilles tendons in

vivo7,17,24,27,36 (Table 2.1). These results imply that StrainNet can be employed in a broad array
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of biomedical applications, such as in vivo studies of muscle function, blood flow, and tissue via-

bility. In summary, the design and capabilities of StrainNet hold immense potential for further

research and development, leading to substantial progress in these fields.
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6
Conclusion

In this thesis, StrainNet, a deep learning-based approach for the estimation of tissue deforma-

tion using ultrasound imaging was developed and presented. StrainNet demonstrated superior

performance compared to traditional texture correlation techniques in both synthetic and in vivo

images. The model was able to accurately measure and quantify strain levels in the flexor tendon,
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highlighting its potential for advancing the accuracy of in vivo biomechanics studies.

Despite its current limitations, including the evaluation on a single tissue type and a specialized

architecture for handling only three types of deformation, StrainNet has shown promise in its

potential applications. With further development and expansion of its capabilities, StrainNet

could be applied to a wide range of biomedical contexts, such as muscle function, blood flow, and

tissue viability studies.

In conclusion, StrainNet presents an exciting and novel approach to tissue deformation esti-

mation using ultrasound imaging. The results of this thesis demonstrate the model’s effectiveness

and provide a strong foundation for future research and development in the field of in vivo biome-

chanics and medical imaging. As the scientific community continues to explore the capabilities and

applications of deep learning models, the availability of our data and code is crucial to enable further

advancements in the field and facilitate the replication and extension of our findings.

Data availability

All experimental data and pre-trained models are available on reecehuff.com/StrainNet.

Code availability

The code is publically available at github.com/reecehuff/StrainNet. The project page, reecehuff.com/StrainNet,

also includes a detailed tutorial for implementing StrainNet in any experimental setup. All data

and code questions and requests should be addressed to rdhuff@berkeley.edu.
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A
Measured error of effort level

To evaluate the discrepancy between the desired and measured effort levels during the experiments,

we computed the percent root-mean-square error (RMSE) of the effort levels for 10%, 30%, and

50%MVC trials. This quantifies the deviation of the measured effort from the desired percentage of
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MVC. The percent error was defined as

%RMSE =



 1
3

∑

X∈[10,30,50]

RMSE(X%MVC)



× 100

where

RMSE(X%MVC) =

√√√√ 1
NX%MVC

∑

i∈X%MVC

(
ydesiredi − ymeasured

i
ydesiredi

)2

where ydesiredi represents the desired effort level for the i-th trial at X%MVC, ymeasured
i denotes the

measured effort level for the same trial, and NX%MVC indicates the number of trials at X%MVC.

The results of this analysis are presented in Figure A.1. The red bars depict the error between the

measured effort and the desired percentage of MVC for each trial. The mean RMSE over all effort

levels was found to be 16%, indicating that the measured effort levels were in close agreement with

the requestedMVC levels.

Figure A.1: Measured effort level in a participant average over trials. The error between the measured effort and the
desired percentage of the MVC is shown in red to facilitate visualization.
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B
Tendon deformation model and image

processing workflow

Inorder to train, benchmark, and tune StrainNet, an image-processing workflow was

developed to induce known deformation within ultrasound images of tendons. This workflow was
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designed for broad applicability and to emulate observed in vivo tendon strain.

B.1 Generalized mathematical model

Prior research has shown that deep tendon layers exhibit less strain than superficial layers23. Thus, a

generalized strain field was specified along the tendon’s length as

εmax
long (y) =

4(εsuperficiallong − εdeeplong)(y− yc)2

hBBtendon
+ εdeeplong (B.1)

where hBBtendon denotes the tendon’s width (Figure B.1a.), ε
superficial
long represents the longitudinal strain

applied at the superficial layer, and εdeeplong signifies the longitudinal strain applied at the deep layer

(Figure B.1b.).

While the strain distribution in Equation (B.1) characterizes tendon spatial variation, the magni-

tude remains uncertain. Previous studies demonstrate that tendon longitudinal strain magnitudes

range between 4% and 14% during contraction14,23,31,40 under various loading conditions. How-

ever, both the load applied and the time allowed reach the load dictate the strain magnitudes within

sequential images. Consequently, the time-dependence in the prescribed strain was expressed as

εtruelong(y, t) = αtεmax
long (y, t) (B.2)

where t represents time in seconds and α is a parameter dictating the time taken for the deforma-

tion to attain its maximum. For instance, if a loading scenario reached the maximum strain in three
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seconds, then αwould be set to 1
3seconds to account for time dependence.

To elucidate the relationships between the longitudinal strain εtruelong defined in Equation (B.2) and

the transverse strain εtruetrans, the shear strain εtrueshear, and the displacement field"u = [ux, uy], a constant k

is defined as

k =
4(εsuperficiallong − εdeeplong)

hBBtendon
. (B.3)

Hence, Equation (B.1) can be rewritten as

εmax
long (y) = k(y− yc)2 + εdeeplong. (B.4)

By applying basic elasticity principles, the transverse strain field, εtruetrans, can be rewritten as

εmax
trans(y) = −νεmax

long = −ν
[
k(y− yc)2 + εdeeplong

]
(B.5)

The displacement field,"u = (ux, uy), can be obtained by integrating Equation (B.4) and (B.5) with

respect to x and y, respectively.

umax
x (x, y) = kx(y− yc)2 + εdeeplongx+ C1 = kx(y− yc)2 + εdeeplongx (B.6)

umax
y (y) = −ν

[
k(y− yc)3

3
+ εdeeplongy

]
+ C2 = −ν

[
k(y− yc)3

3
+ εdeeplong(y− yc)

]
(B.7)
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It should be noted that C1 = 0 is set such that the displacements are small near the distal end of the

tendon where x is small, and C2 = −εdeeplongyc is set such that uy = 0 when y = yc. The shear strain in

the tendon then becomes

εmax
shear(x, y) =

1
2
[ux,y + uy,x] = kx(y− yc). (B.8)

Therefore, the maximum applied strain field applied to the tendon is defined as

εmax
long (y) = k(y− yc)2 + εdeeplong, (B.9)

εmax
trans(y) = −ν

[
k(y− yc)2 + εdeeplong

]
, (B.10)

εmax
shear(x, y) = kx(y− yc) (B.11)

where k = 4(εsuperficiallong − εdeeplong)/h
BB
tendon. The corresponding maximum displacement field for this

strain field is

umax
x (x, y) = kx(y− yc)2 + εdeeplongx (B.12)

umax
y (y) = −ν

[
k(y− yc)3

3
+ εdeeplong(y− yc)

]
(B.13)
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The generalized time-dependent strain and displacement field can be expressed as

εtruelong(y, t) = αt
[
k(y− yc)2 + εdeeplong

]
(B.14)

εtruetrans(y, t) = αt
[
−ν

[
k(y− yc)2 + εdeeplong

]]
(B.15)

εtrueshear(x, y, t) = αt [kx(y− yc)] (B.16)

utruex (x, y, t) = αt
[
kx(y− yc)2 + εdeeplongx

]
(B.17)

utruey (y, t) = αt
[
−ν

[
k(y− yc)3

3
+ εdeeplong(y− yc)

]]
(B.18)

The strain field and displacement field were only defined over the region of the image contain-

ing the tendon (Figure B.1b.). Regions containing tendon were defined semi-automatically with

ImageJ38 (U.S. National Institutes of Health, Bethesda, Maryland, USA).

B.2 Prescribed image deformation and noise addition

Images were artificially deformed by the prescribed displacement field (Equation (B.17) and (B.18))

over the region of the tendon usingMATLAB’s imwarp function with linear interpolation settings

(MATLAB version R2021b; Figure B.1c.).

The level of noise added to the image was defined by analyzing a series of frames with a stationary

participant’s arm. The differences between the image intensities of the frames were analyzed, and

the mean and standard deviation of the intensity differences were calculated. Across all frames ana-

lyzed (n = 2000), it was found that the noise levels remain approximately normally distributed with

39



a mean of 0 and a standard deviation of 10. Therefore, MATLAB’s randn function was used to add

a random distribution of noisy pixel intensities to the frames of the synthetic test case. To match the

noise levels measured experimentally, μ = 0 and σ = 10 were set in randn (Figure B.1c.).

Figure B.1: Diagram of tendon deformation model and ultrasound image processing workflow. a. A representative
ultrasound image containing a flexor tendon, shaded in blue, with a height, hBBtendon, green dashed box used in Equation
B.1. b. A strain distribution resulting from the generalized mathematical model, εmax

long , εmax
shear, and εmax

trans, values defined
by Equation B.9, Equation B.11, and Equation B.10 respectively, illustrating the regions where these equations were
applied. c. The general workflow of the image processing pipeline. A reference tendon image, I1, was warped by the
generalized mathematical model, noise was introduced, resulting in a deformed image, I2.
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C
Training set generation

C.1 Overview

To train StrainNet, we created a training set containing ultrasound images of tendon deformation

with corresponding strain fields. The training set was composed of both synthetically generated

images and experimental data, which were processed and combined to ensure a diverse and represen-

tative dataset for learning the strain measurement task. Here, we describe the process of generating
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the training set, including the acquisition of experimental data, image preprocessing, and the combi-

nation of synthetic and experimental cases.

C.2 Experimental data acquisition

We conducted an addition, independent ultrasound imaging session using the same protocol de-

scribed in Section 3.2. In short, the participant performed a series of contractions, holding each

contraction for 5 seconds, followed by a 3-second relaxation period. This protocol allowed us to

capture a range of tendon strains during both contraction and relaxation phases. The captured ultra-

sound images were then used to generate a dataset for the training set creation.

C.3 Image preprocessing

Before incorporating the experimental data into the training set, we performed several preprocessing

steps to ensure the images were suitable for training. The preprocessing steps included:

• Region of Interest (ROI) selection: The flexor digitorum superficialis (FDS) tendon was
manually identified and segmented in each ultrasound image. This step focused the training
on the relevant tendon deformation while ignoring motion and strain in the surrounding
soft tissue.

• Image normalization: The pixel intensities of each image were normalized to have a mean
of zero and a standard deviation of one. This normalization step facilitated the training pro-
cess by ensuring consistent image intensity values across the dataset.

• Augmentation: To increase the diversity and size of the dataset, we applied various aug-
mentation techniques, including rotations and translations. These augmentations helped
the neural network learn to recognize tendon deformation patterns in various contexts and
improved the generalization capability of the trained model.
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C.4 Application of the generalized mathematical model

The workflow described inAppendix Bwas combined with the preprocessed experimental data

to create a comprehensive training set for StrainNet. Specifically, the mathematical model de-

scribed in Equations (B.14) - (B.18) was employed, where the mechanics properties were selected

at random. Noise was added to each of the images to emulate real image artifacts, as detailed in Sec-

tion B.2. The synthetic cases provided known strain fields, enabling the neural network to learn the

relationships between the ultrasound images and the corresponding strain fields. Meanwhile, the

experimental data ensured that the neural networks were exposed to real-world tendon deformation

patterns.

Table C.1: Randomly selected mechanical properties for training set generation.

model n εsuplong & εdeeplong αt ν hBBtendon & yc exp.
aug.γ

noise
(μ± σ)

TensionNet 1,250 [2,20] |
[ 1
15 ,

1
5 ]

|

|
[0.25,1.5]

|

measured
from
imageβ

N |
0± 10

|

RigidNet 1,250 [-20,20]α N
CompressionNet 1,250 [-20,-2] N
Deformation
Classifier

3,750
+1,250γ —pool examples from above— Y

αWhile the images were warped by these largest parameters, the warped image was used for the reference and deformed image.
βFigure D.1a. highlights the measurement of hBBtendon & yc.
γ Experimental augmentation whereby experimental images with tensile deformation (during contraction), compressive deformation

(during relaxation), and rigid-body motions (during static periods) are included in the training of the DeformationClassifier.

In total, the training set consisted of 5,000 ultrasound image pairs with known strain fields and

added noise—1,250 examples of tensile deformation, compressive deformation, and rigid-body

motions for TensionNet, CompressionNet, and RigidNet, respectively (Table C.1). All 3,750 ex-
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amples were used to train the DeformationClassifier. Additionally, 1,250 experimental images

were included, where the tendon was assumed to undergo tensile deformation, rigid-body motions,

and compressive deformation during the contraction, the hold period, and the relaxation, respec-

tively (Table C.1). The strain fields corresponding to each image were included into the training set,

serving as the ground truth during the training process.

44



D
Synthetic test cases

To benchmark and tune the strain measurement techniques, a series of idealized test

cases were created where the applied strain was known. To mimic the experimental procedure de-

tailed in Section 3.2, the mathematical model outlined inAppendix Bwas modified to reach its

peak after a contraction period of three seconds. This peak was then maintained for five seconds,
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Figure D.1: An overview of synthetic test cases for assessing tendon deformation using ultrasound imaging. a. Longitu‐
dinal strain distribution, εtruelong, at t = 1.5, 5.5, and 9.5 seconds. b. The time‐dependent change in the maximum prescribed
longitudinal strain, εmax

long , over the course of the synthetic test cases. Blue, red, and yellow represent periods of contrac‐
tion, holding, and relaxation, respectively.

followed by a relaxation period of three seconds (Figure D.1). As a result, the true time-dependent
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strain field was defined as

εtruelong(y, t) =






( t3)ε
max
long (y) for 0 sec ≤ t ≤ 3 sec

εmax
long (y) for 3 sec < t ≤ 8 sec

(1− t−8
3 )εmax

long (y) for 8 sec < t ≤ 11 sec

(D.1)

εtruetrans(y, t) =






( t3)ε
max
trans(y) for 0 sec ≤ t ≤ 3 sec

εmax
trans(y) for 3 sec < t ≤ 8 sec

(1− t−8
3 )εmax

trans(y) for 8 sec < t ≤ 11 sec

(D.2)

εtrueshear(x, y, t) =






( t3)ε
max
shear(y) for 0 sec ≤ t ≤ 3 sec

εmax
shear(x, y) for 3 sec < t ≤ 8 sec

(1− t−8
3 )εmax

shear(x, y) for 8 sec < t ≤ 11 sec

(D.3)
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and the full time-dependent prescribed displacement field was

utruex (x, y, t) =






( t3)u
max
x (x, y) for 0 sec ≤ t ≤ 3 sec

umax
x (x, y) for 3 sec < t ≤ 8 sec

(1− t−8
3 )umax

x (x, y) for 8 sec < t ≤ 11 sec

(D.4)

utruey (y, t) =






( t3)u
max
y (y) for 0 sec ≤ t ≤ 3 sec

umax
y (y) for 3 sec < t ≤ 8 sec

(1− t−8
3 )umax

y (y) for 8 sec < t ≤ 11 sec

(D.5)

Additionally, studies have shown that tendons exhibit longitudinal strain magnitudes between

4% and 14% under contraction, and therefore the maximum applied strain, which occurs where

y = yc, was varied between 4% and 16%14,23,31,40 over five different synthetic test cases (Table D.1).

We assumed that the tendon was incompressible; therefore, the Poisson’s ratio was 0.5 throughout

the tendon (Table D.1)47.
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Table D.1: Summary of the five synthetic test cases used to evaluate, tune, and validate the three strain measurement
techniques: DIC, DDE, StrainNet.

Test Case εmax
long εsuperficiallong ν Contraction time Hold time Relaxation time

1 4% 3% 0.5 3 sec 5 sec 3 sec
2 7% 5.25% 0.5 3 sec 5 sec 3 sec
3 10% 7.5% 0.5 3 sec 5 sec 3 sec
4 13% 9.75% 0.5 3 sec 5 sec 3 sec
5 16% 12% 0.5 3 sec 5 sec 3 sec
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