OPTIMIZATION · NUMERICAL METHODS · HIGH PERFORMANCE COM

🛛 (+1) 651-402-0037 | 💌 rdhuff@berkeley.edu | 🏶 reecehuff.com | 🖸 reecehuff | 🛅 reece-huff

Education

University of California, Berkeley

Ph.D. IN COMPUTATIONAL ENGINEERING

- Advisor: Tarek Zohdi and Manolis Vlatakis-Gkaragkounis
- Designated Emphasis in Computational and Data Science and Engineering
- Awards: NSF GRFP, Graduate Division Block Grant

University of California, Berkeley

M.S. IN COMPUTATIONAL ENGINEERING (GPA: 3.97/4.00)

- Advisor: Grace D. O'Connell
- Thesis: Deep learning enables accurate soft tissue deformation estimation in vivo

Boston University

B.S. IN BIOMEDICAL ENGINEERING (GPA: 3.99/4.00)

- Advisors: Elise Morgan & Paul Barbone
- Awards: Goldwater Scholarship, Distinguished Summer Research Fellowship

Skills

Programming Python • C/C++ • Rust • Julia • HTML+CSS • SQL • Bash • LaTeX • Git • Metal • Swift • MATLAB • Mathematica Software PyTorch • TensorFlow • Tensorboard • CUDA • CVXPY • pandas • sklearn • OpenMP • MPI • OpenCL • OpenGL **Techniques** parallel computing • deep learning • computer vision • markerless motion capture • finite element modeling General Google Suite • Adobe Creative Cloud • Microsoft Office

Publications

2024	Mixed Entropy Distributionally Robust Optimization for Routing Problems, in progress	submitting to ICLR 2025
2023	Deep learning enables accurate soft tissue tendon deformation estimation in vivo via	paper - codo - project page
	ultrasound imaging, Sci. Rep.	paper • code • project page
2023	Relating in vivo strain of the FDS tendon with grip force, Proc. Hum. Factors Ergon. Soc.	paper • project page
2022	Comparing intervertebral disc geometry measurement method, JOR Spine	paper • project page
2022	Finite-element modeling of lumbar disc herniation, JBME	paper • project page

Research Experience

University of California, Berkeley

GRADUATE STUDENT RESEARCHER

Advanced Solutions Sampler for NP-complete Problems

- Engaged in a collaborative project under the mentorship of Prof. Manolis Vlatakis and Prof. Michael I. Jordan.
- Focused on developing a solution sampler for NP-complete problems that models a distributional robust uncertainties.
- Utilized techniques such as policy gradient optimization, Langevin dynamics, simulated annealing, and Markov Chain Monte Carlo (MCMC) methods.

WEARABLE TECHNOLOGY DEVELOPMENT FOR STROKE REHABILITATION

- Rotated in Dr. Preeya Khanna's lab to develop a custom printed circuit board for an inertial measurement unit system.
- Future work would focus on e-skins and IMU integration for kinematic measurement.

STRAINNET: DEEP-LEARNING FOR TISSUE DEFORMATION ANALYSIS

- Spearheaded the development of StrainNet, a deep-learning framework for measuring in vivo tissue deformation.
- Achieved significant improvements in measuring deformation, outperforming traditional techniques by 90%.
- Designed a user-friendly website with documentation to make **StrainNet** accessible to the broader research community.

Coursework

Computational	Machine Learning, Parallel Computing, Reinforcement Learning, Computational Linear Algebra & Numerical Methods, Convex	
computationat	Optimization, Natural Language Processing, Randomness and Computation, Combinatorial Algorithms and Data Structures	
Mathematics	High-dimensional Statistics, Applied Mathematics, Linear Algebra, Probability, Statistics, Advanced Calculus, Differential Equation	
Physics	Finite Element Modeling, Continuum Mechanics, Elasticity, Thermodynamics, Statics, Dynamics, Fluids, Statistical Mechanics	
General	Chemistry, Molecular Biology, Engineering Design, Circuits, Physiology, Biomechanics, Biomaterials	

Berkelev, CA May 2023 - May 2026

Berkeley, CA Aug. 2021 - May 2023

Boston, MA Aug. 2018 - May 2021

Berkelev, CA

Aug. 2021 - present