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STAT201A: Introduction to Probability at an Advanced Level September 13th, 2024

Homework # 1: Basics, Independence, Conditioning, & Exchangeability
Reece D. Huff

Problems (Solutions)
1. (Basic probability) Assume that ℙ(𝐴) = 0.6, ℙ(𝐵) = 0.7 and ℙ(𝐶) = 0.8.

(a) Show that 0.3 ≤ 𝑃(𝐴 ∩ 𝐵) ≤ 0.6.
(b) Show that 0.1 ≤ ℙ(𝐴 ∩ 𝐵 ∩ 𝐶) ≤ 0.6.

(a) From the inclusion-exclusion principle, we have that

ℙ[𝐴 ∪ 𝐵] = ℙ[𝐴] + ℙ[𝐵] − ℙ[𝐴 ∩ 𝐵] =⇒ 0 ≤ ℙ[𝐴] + ℙ[𝐵] − ℙ[𝐴 ∩ 𝐵] ≤ 1.

Starting with the right inequality, we have

ℙ[𝐴 ∩ 𝐵] ≥ ℙ[𝐴] + ℙ[𝐵] − 1 = 1.3 − 1 = 0.3

thus establishing our lower bound. From the left inequality, we have

ℙ[𝐴 ∩ 𝐵] ≤ ℙ[𝐴] + ℙ[𝐵] =⇒ ℙ[𝐴 ∩ 𝐵] ≤ min {ℙ[𝐴],ℙ[𝐵]} ,

which directly shows the upper bound. Therefore, we have

0.3 ≤ 𝑃(𝐴 ∩ 𝐵) ≤ 0.6.

(b) To prove this inequality, we will use the Bonferroni Inequality (sometimes referred to as Boole’s inequality). It states
that for events 𝐴1 , . . . , 𝐴𝑛 in a probability space (Ω, ℱ ,ℙ), we have

ℙ

[
𝑛⋂
𝑖=1

𝐴𝑖

]
≥

𝑛∑
𝑖=1

ℙ[𝐴𝑖] − (𝑛 − 1).

We will use it to solve for the lower bound, i.e.,

ℙ[𝐴 ∩ 𝐵 ∩ 𝐶] ≥ ℙ[𝐴] + ℙ[𝐵] + ℙ[𝐶] − (3 − 1) =⇒ ℙ[𝐴 ∩ 𝐵 ∩ 𝐶] ≥ 0.6 + 0.7 + 0.8 − 2 =⇒ ℙ[𝐴 ∩ 𝐵 ∩ 𝐶] ≥ 0.1.

Next, we note that the intersection is upper bounded when 𝐴 ⊆ 𝐵 ⊆ 𝐶 leading to

ℙ[𝐴 ∩ 𝐵 ∩ 𝐶] ≤ min {ℙ[𝐴],ℙ[𝐵],ℙ[𝐶]} =⇒ ℙ[𝐴 ∩ 𝐵 ∩ 𝐶] ≤ ℙ[𝐴] = 0.6.

Thus, we have shown the desired result

0.1 ≤ ℙ(𝐴 ∩ 𝐵 ∩ 𝐶) ≤ 0.6.

2. (Independence) Suppose we roll an unbiased six-sided die 𝑛 ≥ 3 times. Let 𝐸𝑖 𝑗 denote the event that the 𝑖th and the 𝑗th
rolls produce the same number. Show that the events {𝐸𝑖 𝑗 | 1 ≤ 𝑖 < 𝑗 ≤ 𝑛} are pairwise independent but not independent
as a family.

In this problem, we are asked to show that events 𝐸𝑖 𝑗 are pairwise independent but not independent as a family. For
simplicity, let us consider 𝑛 = 3. In this setting, the events are pairwise independent if

ℙ(𝐸12 ∩ 𝐸13) = ℙ(𝐸12) × ℙ(𝐸13), ℙ(𝐸13 ∩ 𝐸23) = ℙ(𝐸13) × ℙ(𝐸23), and ℙ(𝐸12 ∩ 𝐸23) = ℙ(𝐸12) × ℙ(𝐸23).

Starting with the first, we have

ℙ(𝐸12 ∩ 𝐸13) = ℙ(𝐸12
��𝐸13) × ℙ(𝐸13) =

1
6 × 1

6 =⇒ ℙ(𝐸12 ∩ 𝐸13) = ℙ(𝐸12) × ℙ(𝐸13) ✓

1

https://mathmonks.com/inequalities/bonferroni-inequality


It is easy to verify that the same holds for the other two showing that events {𝐸𝑖 𝑗 | 1 ≤ 𝑖 < 𝑗 ≤ 𝑛} are pairwise
independent.
Moving onto showing that the events are not independent as a family, we again begin with 𝑛 = 3. Independence would
imply that

ℙ(𝐸12 ∩ 𝐸13 ∩ 𝐸23) = ℙ(𝐸12) × ℙ(𝐸13) × ℙ(𝐸23).

However, starting with the left hand side, we have

ℙ(𝐸12 ∩ 𝐸13 ∩ 𝐸23) = ℙ(𝐸12 ∩ 𝐸13
��𝐸23) × ℙ(𝐸23) =

1
6 × 1

6 ≠
1
63 =⇒ ℙ(𝐸12 ∩ 𝐸13 ∩ 𝐸23) ≠ ℙ(𝐸12) × ℙ(𝐸13) × ℙ(𝐸23).

Thus, we have shown that the events are not independent as a family.

3. (Expectation, joint distribution, uniform distribution) Let 𝑋 be a random variable with values {1, 2} and 𝑌 a random
variable with values {0, 1, 2}. Initially we have the following partial information about their joint probability mass function.

𝑌 = 0 𝑌 = 1 𝑌 = 2
𝑋 = 1 1/8
𝑋 = 2 0

Subsequently we learn that 𝐸[𝑋𝑌] = 13
9 and that 𝑌 has uniform distribution. Use this information to fill in the missing

values of the joint probability mass function table.

To begin, we will leverage the uniformity of 𝑌. We have that

ℙ(𝑌 = 𝑦) =
2∑
𝑥=1

ℙ(𝑌 = 𝑦 ∩ 𝑋 = 𝑥) = 1
3 for all 𝑦 ∈ {0, 1, 2} .

From the above expression, we have immediately infer

ℙ(𝑌 = 0) = ℙ(𝑌 = 0 ∩ 𝑋 = 1) + ℙ(𝑌 = 0 ∩ 𝑋 = 2) =⇒ 1
3 =

1
8 + ℙ(𝑌 = 0 ∩ 𝑋 = 2) =⇒ ℙ(𝑌 = 0 ∩ 𝑋 = 2) = 5

24 ,

ℙ(𝑌 = 1) = ℙ(𝑌 = 1 ∩ 𝑋 = 1) + ℙ(𝑌 = 1 ∩ 𝑋 = 2) =⇒ 1
3 = ℙ(𝑌 = 1 ∩ 𝑋 = 1) + 0 =⇒ ℙ(𝑌 = 1 ∩ 𝑋 = 1) = 1

3 .

From the uniformity of 𝑌, we also have the relationship,

ℙ(𝑌 = 2) = ℙ(𝑌 = 2 ∩ 𝑋 = 1) + ℙ(𝑌 = 2 ∩ 𝑋 = 2) = 1
3 . (1)

Next, we will leverage the expectation 𝔼[𝑋𝑌] = 13/9. We have that

𝔼[𝑋𝑌] =
2∑
𝑥=1

2∑
𝑦=0

ℙ(𝑋 = 𝑥 ∩ 𝑌 = 𝑦) · 𝑥 · 𝑦 =
13
9

=

2∑
𝑥=1

2∑
𝑦=1

ℙ(𝑋 = 𝑥 ∩ 𝑌 = 𝑦)

= ℙ(𝑋 = 1 ∩ 𝑌 = 1) · 1 · 1 + ℙ(𝑋 = 1 ∩ 𝑌 = 2) · 1 · 2 + ℙ(𝑋 = 2 ∩ 𝑌 = 1) · 2 · 1 + ℙ(𝑋 = 2 ∩ 𝑌 = 2) · 2 · 2
= ℙ(𝑋 = 1 ∩ 𝑌 = 1) + 2ℙ(𝑋 = 1 ∩ 𝑌 = 2) + 2ℙ(𝑋 = 2 ∩ 𝑌 = 1) + 4ℙ(𝑋 = 2 ∩ 𝑌 = 2)

=
1
3 + 2ℙ(𝑋 = 1 ∩ 𝑌 = 2) + 2(0) + 4ℙ(𝑋 = 2 ∩ 𝑌 = 2)

13
9 − 1

3 = 2ℙ(𝑋 = 1 ∩ 𝑌 = 2) + 4ℙ(𝑋 = 2 ∩ 𝑌 = 2) = 10
9 (2)

Combining Equation (1) and Equation (2), we have that

2ℙ(𝑋 = 1 ∩ 𝑌 = 2) + 4ℙ(𝑋 = 2 ∩ 𝑌 = 2) = 10
9 and ℙ(𝑋 = 1 ∩ 𝑌 = 2) + ℙ(𝑋 = 2 ∩ 𝑌 = 2) = 1

3

from which we have ℙ(𝑋 = 1 ∩ 𝑌 = 2) = 1/9 and ℙ(𝑋 = 2 ∩ 𝑌 = 2) = 2/9. Thus our table becomes

2



𝑌 = 0 𝑌 = 1 𝑌 = 2
𝑋 = 1 1/8 1/3 1/9
𝑋 = 2 5/24 0 2/9

4. (Conditioning, cumulative distribution function) You flip a fair coin. If you get tails, you choose a uniformly random
number on the interval [0, 2]. If you get heads, you choose the number 1. Let 𝑋 be the random variable describing the
outcome of that experiment.

(a) Using the law of total probabilities, calculate ℙ(𝑋 ≤ 1/2) and ℙ(𝑋 ≤ 3/2).
(b) Find the cumulative distribution function 𝐹𝑋 of 𝑋.
(c) Is 𝑋 a discrete random variable? Is 𝑋 a continuous random variable?

(a) From the law of total probability, we have that

ℙ(𝑋 ≤ 𝑥) = ℙ(𝑋 ≤ 𝑥
��𝐻)ℙ(𝐻) + ℙ(𝑋 ≤ 𝑥

��𝑇)ℙ(𝑇).
We can apply this to both ℙ(𝑋 ≤ 1/2) and ℙ(𝑋 ≤ 3/2) to get

ℙ(𝑋 ≤ 1/2) = ℙ(𝑋 ≤ 1/2
��𝐻)ℙ(𝐻) + ℙ(𝑋 ≤ 1/2

��𝑇)ℙ(𝑇) = 0 · 1
2 + 1

4 · 1
2 =⇒ ℙ(𝑋 ≤ 1/2) = 1

8

ℙ(𝑋 ≤ 3/2) = ℙ(𝑋 ≤ 3/2
��𝐻)ℙ(𝐻) + ℙ(𝑋 ≤ 3/2

��𝑇)ℙ(𝑇) = 1 · 1
2 + 3

4 · 1
2 =⇒ ℙ(𝑋 ≤ 3/2) = 7

8

(b) From our solution to part (a.), we know ℙ(𝑋 ≤ 1/2) = 1/8 and ℙ(𝑋 ≤ 3/2) = 7/8. Next, we calculate ℙ(𝑋 ≤ 1) as

ℙ(𝑋 ≤ 1) = ℙ(𝑋 ≤ 1
��𝐻)ℙ(𝐻) + ℙ(𝑋 ≤ 1

��𝑇)ℙ(𝑇) = 1 · 1
2 + 1

2 · 1
2 =⇒ ℙ(𝑋 ≤ 1) = 3

4

Stitching our results together it is clear that we have

𝐹𝑋(𝑥) =


0 when 𝑥 < 0
𝑥
4 when 0 ≤ 𝑥 < 1
𝑥
4 + 1

2 when 1 ≤ 𝑥 < 2
1 when 𝑥 ≥ 2

A plot of 𝐹𝑋(𝑥) is below:

𝑥

𝐹𝑋(𝑥)

Figure 1: Plot of 𝐹𝑋(𝑥) for 0 ≤ 𝑥 ≤ 2.

(c) 𝑋 is clearly a discrete random variable as its cumulative distribution function is not continuous.

5. (Bounding even moments) Let 𝑋 be a random variable. Show that 𝔼[𝑋2𝑘] ≥ (𝔼[𝑋])2𝑘 for all positive integers 𝑘.

This result follows directly from Jensen’s inequality. Let 𝑋 be a ℝ-values random variable and 𝑔 be a convex function
𝑔 : 𝑋 ↦→ ℝ, then we have

𝑔(𝔼[𝑋]) ≤ 𝔼[𝑔(𝑋)].

We note that 𝑋2𝑘 is convex for all positive integers 𝑘. Then from Jensen’s inequality, we have

𝔼[𝑋2𝑘] ≥ (𝔼[𝑋])2𝑘 for all positive integers 𝑘.
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6. (Continuous distributions, probability density function, independence) Pick a uniformly chosen random point (𝑋,𝑌)
inside the sector delimited by the x-axis, the y-axis and the parabola given by the equation 𝑦 = 1 − 𝑥2.

(a) Verify that the area of that sector is 2/3.
(b) What is the probability that the distance of this point to the y-axis is less than 1/2?
(c) What is the probability that the distance of this point to the origin is more than 1/2?
(d) Find the p.d.f. of 𝑋.
(e) Find the p.d.f. of 𝑌.
(f) Are 𝑋 and 𝑌 independent?

Figure 2: Graph of 𝑦 = 1 − 𝑥2

(a) The area of the sector is given by the integral,∫ 1

0
1 − 𝑥2𝑑𝑥 =

[
𝑥 − 1

3 𝑥
3
] ����𝑥=1

𝑥=0
= 1 − 1

3 =
2
3 . ✓

(b) The probability that the distance of this point to the y-axis is less than 1/2 is equal to ℙ(𝑋 < 1/2), which we write as

ℙ(𝑋 < 1/2) = (Area of sector for 0 ≤ 𝑥 < 1/2) ÷ (Area of sector)

=

∫ 1/2

0
1 − 𝑥2𝑑𝑥 ÷ 2

3 =

[
𝑥 − 1

3𝑥
3
] ����𝑥=1/2

𝑥=0
÷ 2

3 =

(
1
2 − 1

3 · 1
8

)
÷ 2

3

ℙ(𝑋 < 1/2) = 11
16 .

(c) Similar to the previous part, we can write the probability that the distance of this point to the origin is more than 1/2

ℙ(
√
𝑋2 + 𝑌2 > 1/2) = 1 − ℙ(

√
𝑋2 + 𝑌2 ≤ 1/2) = 1 − 1

4 ·
(
Area of circle with radius 𝑟 = 1

2

)
÷ (Area of sector)

= 1 − 1
4 · 𝜋

(
1
2

)2
÷ 2

3 = 1 − 𝜋
16 · 3

2

ℙ(
√
𝑋2 + 𝑌2 > 1/2) = 1 − 3𝜋

32 .

(d) The pdf is the derivative of the cdf. Based on the result from part (b), we have that

ℙ(𝑋 ≤ 𝑥) = 3
2

∫ 𝑥

0
1 − 𝑥2𝑑𝑥 = 𝐹𝑋(𝑥)

4



From inspectition, it is clear that the pdf of 𝑋 is

𝑓𝑋(𝑥) =
3
2 (1 − 𝑥2)

We verify that the area under this curve is equal to 1, i.e.,

3
2

∫ 1

0
1 − 𝑥2𝑑𝑥 =

3
2 · 2

3 = 1 ✓

(e) Next, we rearrange the expression 𝑦 = 1 − 𝑥2 to be in terms of 𝑥, i.e, 𝑥 =
√

1 − 𝑦. It follows that

𝐹𝑌(𝑦) = ℙ(𝑌 ≤ 𝑦) = 3
2

∫ 𝑦

0

√
1 − 𝑦𝑑𝑦

implying the pdf for 𝑌 is

𝑓𝑌(𝑦) =
3
2
√

1 − 𝑦

Again, we verify that the area under this curve is equal to 1, i.e.,

3
2

∫ 1

0

√
1 − 𝑦𝑑𝑦 =

3
2 ·

[
−2

3 (1 − 𝑦)3/2
] ����𝑦=1

𝑦=0
= 1 ✓

(f) No, 𝑋 and 𝑌 are not independent. Let’s say we picked 𝑋 u.a.r from 𝑥 ∈ [0, 1]. And then we pick 𝑌. We are not free to
pick𝑌 u.a.r. 𝑦 ∈ [0, 1] because𝑌 must satisfy the constraint 𝑦 ≤ 1−𝑥2. Because of this constraint, there is a dependence
between 𝑋 and 𝑌.

7. (Events, indicators and basic probability inequalities) Recall that for an event 𝐴, we denote the corresponding indicator
random variable by 𝟙 {𝐴} (i.e., 𝟙 {𝐴} takes value 1 when 𝐴 occurs and the value 0 when 𝐴 does not occur). Also recall
that the probability ℙ(𝐴) of 𝐴 equals the expectation of the random variable 𝔼[𝟙 {𝐴}].

(a) Given events 𝐴1 , . . . , 𝐴𝑛 , show that 𝟙
{
∪𝑛
𝑖=1𝐴𝑖

}
= max1≤𝑖≤𝑛 𝟙 {𝐴𝑖}.

(b) Using the fact observed above (and the following ordering property of expectation: 𝑋 ≤ 𝑌 implies that 𝔼[𝑋] ≤ 𝔼[𝑌]),
show that

ℙ(∪𝑛𝑖=1𝐴𝑖) ≤
𝑛∑
𝑖=1

ℙ(𝐴𝑖).

Note: This is known as the union bound and used quite frequently.
(c) For every event 𝐴, show that 𝟙 {𝐴𝑐} = 1 − 𝟙 {𝐴} where 𝐴𝑐 denotes the event that 𝐴 does not occur.
(d) For events 𝐴1 , . . . , 𝐴𝑛 , show that 𝟙

{
∩𝑛
𝑖=1𝐴𝑖

}
=

∏𝑛
𝑖=1 𝟙 {𝐴𝑖}.

(e) Using the above two facts, prove the inclusion-exclusion formula: For events 𝐴1 , . . . , 𝐴𝑛 ,

ℙ(∪𝑛𝑖=1𝐴𝑖) = Σ1 − Σ2 + Σ3 − Σ4 + · · · + (−1)𝑛−1Σ𝑛

where
Σ𝑘 :=

∑
1≤𝑖1<𝑖2<···<𝑖𝑘≤𝑛

ℙ(𝐴𝑖1𝐴𝑖2 · · ·𝐴𝑖𝑘 ).

(a) Given events 𝐴1 , . . . , 𝐴𝑛 , we have

𝟙
{
∪𝑛𝑖=1𝐴𝑖

}
=

{
1 when in ∪𝑛

𝑖=1 𝐴𝑖 ,

0 when not in ∪𝑛
𝑖=1 𝐴𝑖 .

Clearly, the max
{
∪𝑛
𝑖=1𝐴𝑖

}
= 1. Thus, so long as the event is in one of the 𝐴𝑖 for all 𝑖 ∈ [1, 𝑛], we have 𝟙

{
∪𝑛
𝑖=1𝐴𝑖

}
= 1.

Thus, we have

𝟙
{
∪𝑛𝑖=1𝐴𝑖

}
= max

1≤𝑖≤𝑛
𝟙 {𝐴𝑖} .
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(b) For this proof, we begin by noting that the max function is convex, i.e., for events 𝐴1 , . . . , 𝐴𝑛 and events 𝐵1 , . . . , 𝐵𝑛

𝐴𝑖 ≤ max
1≤𝑖≤𝑛

𝐴𝑖 and (1 − 𝜆)𝐵𝑖 ≤ (1 − 𝜆) max
1≤𝑖≤𝑛

𝐵𝑖 =⇒ max
1≤𝑖≤𝑛

{𝜆𝐴𝑖 + (1 − 𝜆)𝐵𝑖} ≤ 𝜆 max
1≤𝑖≤𝑛

𝐴𝑖 + (1 − 𝜆) max
1≤𝑖≤𝑛

𝐵𝑖 .

From this fact, we have that

ℙ

(
𝑛⋃
𝑖=1

𝐴𝑖

)
= 𝔼

[
𝟙
{
∪𝑛𝑖=1𝐴𝑖

}]
= 𝔼

[
max
1≤𝑖≤𝑛

𝟙 {𝐴𝑖}
]
≤ max

1≤𝑖≤𝑛
𝔼 [𝟙 {𝐴𝑖}] = max

1≤𝑖≤𝑛
ℙ(𝐴𝑖) ≤

𝑛∑
𝑖=1

ℙ(𝐴𝑖)

=⇒ ℙ

(
𝑛⋃
𝑖=1

𝐴𝑖

)
≤

𝑛∑
𝑖=1

ℙ(𝐴𝑖)

where the first inequality comes from Jensen’s inequality and the second inequality is because the sum includes the
max and all of the other probabilities.

(c) To prove that for every event 𝐴, we have 𝟙 {𝐴𝑐} = 1 − 𝟙 {𝐴} where 𝐴𝑐 denotes the event that 𝐴 does not occur, we will
use the definition of the indicator function, i.e.,

𝟙 {𝐴} =
{

1 when ∈ 𝐴
0 when ∉ 𝐴

=

{
1 when ∉ 𝐴𝑐

0 when ∈ 𝐴𝑐

From the expression on the right, we see that taking 1 − 𝟙 {𝐴} will result in 𝟙 {𝐴𝑐}, i.e.,

1 − 𝟙 {𝐴} = 1 −
{

1 when ∉ 𝐴𝑐

0 when ∈ 𝐴𝑐
=

{
1 when ∈ 𝐴𝑐
0 when ∉ 𝐴𝑐

= 𝟙 {𝐴𝑐} . ✓

(d) For events 𝐴1 , . . . , 𝐴𝑛 , we have that

𝟙
{
∩𝑛𝑖=1𝐴𝑖

}
=

{
1 when ∈ ∩𝑛

𝑖=1𝐴𝑖

0 when ∉ ∩𝑛
𝑖=1𝐴𝑖

=⇒ 𝟙
{
∩𝑛𝑖=1𝐴𝑖

}
=

{
1 when ∈ 𝐴1 and ∈ 𝐴2 . . . and ∈ 𝐴𝑛
0 otherwise

Clearly from our definition above, 𝟙
{
∩𝑛
𝑖=1𝐴𝑖

}
= 1 only when the event is in 𝐴1 , . . . , 𝐴𝑛 , which can be written as

𝟙
{
∩𝑛𝑖=1𝐴𝑖

}
=

𝑛∏
𝑖=1

𝟙 {𝐴𝑖} .

(e) From the two facts above and de Morgan’s law, we have that for events 𝐴1 , . . . , 𝐴𝑛 ,

ℙ(∪𝑛𝑖=1𝐴𝑖) = 𝔼
[
𝟙
{
∪𝑛𝑖=1𝐴𝑖

}]
= 𝔼

[
1 − 𝟙

{
∪𝑛
𝑖=1𝐴𝑖

}]
= 𝔼

[
1 − 𝟙

{
∩𝑛𝑖=1𝐴

𝑐
𝑖

}]
= 𝔼

[
1 −

𝑛∏
𝑖=1

𝟙
{
𝐴𝑐𝑖

}]
= 𝔼

[
1 −

𝑛∏
𝑖=1

(1 − 𝟙 {𝐴𝑖})
]
.

We next to evaluate
∏𝑛

𝑖=1(1 − 𝟙 {𝐴𝑖}). It follows that
𝑛∏
𝑖=1

(1 − 𝟙 {𝐴𝑖}) = (1 − 𝟙 {𝐴1} − 𝟙 {𝐴2} + 𝟙 {𝐴1 ∩ 𝐴2})
𝑛∏
𝑖=3

(1 − 𝟙 {𝐴𝑖})

= (1 − 𝟙 {𝐴1} − 𝟙 {𝐴2} − 𝟙 {𝐴3} + 𝟙 {𝐴1 ∩ 𝐴2} + 𝟙 {𝐴2 ∩ 𝐴3} + 𝟙 {𝐴1 ∩ 𝐴3}

− 𝟙 {𝐴1 ∩ 𝐴2 ∩ 𝐴3})
𝑛∏
𝑖=4

(1 − 𝟙 {𝐴𝑖})

=
...

𝑛∏
𝑖=1

(1 − 𝟙 {𝐴𝑖}) = 1 −
𝑛∑
𝑘=1

(−1)𝑘−1
∑

1≤𝑖1<𝑖2<···<𝑖𝑘≤𝑛
𝟙
{
𝐴𝑖1 ∩ ... ∩ 𝐴𝑖𝑘

}
.

Plugging our result back into our original expression results in

ℙ(∪𝑛𝑖=1𝐴𝑖) = 𝔼

[
1 −

𝑛∏
𝑖=1

(1 − 𝟙 {𝐴𝑖})
]
= 𝔼

[
𝑛∑
𝑘=1

(−1)𝑘−1
∑

1≤𝑖1<𝑖2<···<𝑖𝑘≤𝑛
𝟙
{
𝐴𝑖1 ∩ ... ∩ 𝐴𝑖𝑘

}]
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and by linearity of expectation, we have

ℙ(∪𝑛𝑖=1𝐴𝑖) =
𝑛∑
𝑘=1

(−1)𝑘−1
∑

1≤𝑖1<𝑖2<···<𝑖𝑘≤𝑛
ℙ(𝐴𝑖1 ∩ ... ∩ 𝐴𝑖𝑘 ) = Σ1 − Σ2 + Σ3 − Σ4 + · · · + (−1)𝑛−1Σ𝑛

where
Σ𝑘 :=

∑
1≤𝑖1<𝑖2<···<𝑖𝑘≤𝑛

ℙ(𝐴𝑖1𝐴𝑖2 · · ·𝐴𝑖𝑘 ).

8. (Hypergeometric and exchangeability) We have an urn with 𝑅 red balls and 𝑁 − 𝑅 white balls, where 0 < 𝑅 < 𝑁 . We
draw 𝑛 balls in sequence from the urn without replacement. Let 𝑅𝑖 denote the proposition that the 𝑖𝑡ℎ draw results in a
red ball.

(a) Calculate ℙ(𝑅𝑖) for each 𝑖 = 1, . . . , 𝑛.
(b) Show that ℙ(𝑅 𝑗 | 𝑅𝑘) = ℙ(𝑅𝑘 | 𝑅 𝑗) for every 1 ≤ 𝑗 , 𝑘 ≤ 𝑛.
(c) Calculate ℙ(𝑅𝑘 |

⋃𝑛
𝑖=𝑘+1 𝑅𝑖) for a fixed 1 ≤ 𝑘 < 𝑛.

(d) Let 𝑋 be the random variable representing the minimum number of draws required to get at least one red ball.
Calculate 𝐸[𝑋], the expected value of 𝑋. (Hint: Use exchangeability to simplify the calculation.)

(e) Suppose that instead of only two colors, the urn has balls of 𝑘 different colors: 𝑁1 of color 1, 𝑁2 of color 2, . . . , 𝑁𝑘 of
color 𝑘. Let 𝑁 = 𝑁1 + · · · + 𝑁𝑘 . Argue that the probability of drawing 𝑟1 balls of color 1, 𝑟2 balls of color 2, . . . , 𝑟𝑘
balls of color 𝑘 in 𝑛 = 𝑟1 + · · · + 𝑟𝑘 draws without replacement is given by(𝑁1

𝑟1

)
· · ·

(𝑁𝑘
𝑟𝑘

)(𝑁
𝑛

) .

(a) We can think of this as a sequence of random variables, i.e.,

𝜔 = 𝟙 {1} , 𝟙 {2} , . . . , 𝟙 {𝑛} where 𝟙 {𝑖} =
{

1 when 𝑖 is a 𝑅 ball
0 otherwise

We are interested in whether 𝟙 {𝑖} is 1. Then by exchangeability, we have that probability of the 𝑖𝑡ℎ draw being a red
ball does not depend on 𝑖. Thus we have

ℙ(𝑅𝑖) = ℙ(𝑅1) =
𝑅

𝑁
for all 𝑖 = 1, . . . , 𝑛.

(b) This result follows directly from Bayes’ rule and part (a),

ℙ(𝑅 𝑗 | 𝑅𝑘) = ℙ(𝑅𝑘 | 𝑅 𝑗)
(Bayes’)
=⇒

ℙ(𝑅 𝑗 ∩ 𝑅𝑘)
ℙ(𝑅𝑘)

=
ℙ(𝑅𝑘 ∩ 𝑅 𝑗)

ℙ(𝑅 𝑗)

where ℙ(𝑅 𝑗 ∩ 𝑅𝑘) = ℙ(𝑅𝑘 ∩ 𝑅 𝑗) holds by commutative of the intersection, and ℙ(𝑅 𝑗) = ℙ(𝑅𝑘) from part (a). Thus we
have

ℙ(𝑅 𝑗 | 𝑅𝑘) = ℙ(𝑅𝑘 | 𝑅 𝑗) for every 1 ≤ 𝑗 , 𝑘 ≤ 𝑛.

(c) We are asked to compute ℙ(𝑅𝑘 | ⋃𝑛
𝑖=𝑘+1 𝑅𝑖) for a fixed 1 ≤ 𝑘 < 𝑛. This is the probability that the 𝑘𝑡ℎ draw results in a

red ball, given that at least one red ball is drawn in the remaining draws (𝑘 + 1)𝑡ℎ , . . . , 𝑛𝑡ℎ . To begin, we write

ℙ

(
𝑅𝑘 |

𝑛⋃
𝑖=𝑘+1

𝑅𝑖

)
=

ℙ(𝑅𝑘 ∩
⋃𝑛
𝑖=𝑘+1 𝑅𝑖)

ℙ(⋃𝑛
𝑖=𝑘+1 𝑅𝑖)

.

Starting with the denominator, we note that by de Morgan’s law, we have

ℙ

(
𝑛⋃

𝑖=𝑘+1
𝑅

)
= 1 − ℙ

(
𝑛⋂

𝑖=𝑘+1
𝑅𝑐𝑖

)
.
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. . . . . .

𝑁−𝑅
𝑁

𝑁−𝑅−1
𝑁−1

𝑁−𝑅−(𝑛−𝑘)+2
𝑁−(𝑛−𝑘)+2

𝑁−𝑅−(𝑛−𝑘)+1
𝑁−(𝑛−𝑘)+1

𝑅
𝑁−(𝑛−𝑘)

By exchangeability, we have that ℙ
(⋂𝑛

𝑖=𝑘+1 𝑅
𝑐
𝑖

)
is equal to the probability of the first 𝑛 − 𝑘 balls drawn being white.

From the diagram, we have

ℙ

(
𝑛⋂

𝑖=𝑘+1
𝑅𝑐𝑖

)
=

(𝑁 − 𝑅)!
(𝑁 − 𝑅 − (𝑛 − 𝑘))!

(𝑁 − (𝑛 − 𝑘))!
𝑁 ! =

(𝑁−𝑅
𝑛−𝑘

)( 𝑁
𝑛−𝑘

) .
Now we focus on the numerator. We have

ℙ

(
𝑅𝑘 ∩

𝑛⋃
𝑖=𝑘+1

𝑅𝑖

)
= ℙ

(
𝑛⋃

𝑖=𝑘+1
𝑅𝑖 | 𝑅𝑘

)
ℙ (𝑅𝑘) =

(
1 − ℙ

(
𝑛⋂

𝑖=𝑘+1
𝑅𝑐𝑖 | 𝑅𝑘

))
ℙ (𝑅𝑘) =

(
1 −

ℙ
(⋂𝑛

𝑖=𝑘+1 𝑅
𝑐
𝑖
∩ 𝑅𝑘

)
ℙ (𝑅𝑘)

)
ℙ (𝑅𝑘)

ℙ

(
𝑅𝑘 ∩

𝑛⋃
𝑖=𝑘+1

𝑅𝑖

)
=

(
ℙ (𝑅𝑘) − ℙ

(
𝑛⋂

𝑖=𝑘+1
𝑅𝑐𝑖 ∩ 𝑅𝑘

))
.

Referring to our diagram, it clear that

ℙ

(
𝑛⋂

𝑖=𝑘+1
𝑅𝑐𝑖 ∩ 𝑅𝑘

)
=

(𝑁 − 𝑅)!
(𝑁 − 𝑅 − (𝑛 − 𝑘))!

(𝑁 − (𝑛 − 𝑘))!
𝑁 !

𝑅

𝑁 − (𝑛 − 𝑘) =
𝑅

𝑁

(𝑁 − 𝑅)!
(𝑁 − 𝑅 − (𝑛 − 𝑘))!

(𝑁 − 1 − (𝑛 − 𝑘))!
(𝑁 − 1)!

ℙ

(
𝑛⋂

𝑖=𝑘+1
𝑅𝑐𝑖 ∩ 𝑅𝑘

)
=
𝑅

𝑁

(𝑁−𝑅
𝑛−𝑘

)(𝑁−1
𝑛−𝑘

)
Put our results together, we have

ℙ

(
𝑅𝑘 |

𝑛⋃
𝑖=𝑘+1

𝑅𝑖

)
=

𝑅
𝑁

(
1 − (𝑁−𝑅

𝑛−𝑘 )
(𝑁−1
𝑛−𝑘)

)
1 − (𝑁−𝑅

𝑛−𝑘 )
( 𝑁
𝑛−𝑘)

(d) Let 𝑋 be the random variable representing the minimum number of draws required to get at least one red ball. We are
asked to calculate the expected value 𝐸[𝑋]. Let us define an indicator variable that the 𝑗-th white ball will be drawn
before any of the red balls, i.e.,

𝟙 { 𝑗} (𝜔) =
{

1 when the 𝑗-th white ball will be drawn before any of the red balls
0 otherwise

Then we can write 𝑋 as

𝑋 = 1 +
𝑊∑
𝑗=1

𝟙 { 𝑗}

By exchangeability, we have that the probability that the 𝑗-th white ball is drawn before any of the red balls as

ℙ(𝟙 { 𝑗} = 1) = 𝔼[𝟙 { 𝑗}] = 1
𝑅 + 1 .

It then follows that

𝔼[𝑋] = 1 +
𝑊∑
𝑗=1

𝔼[𝟙 { 𝑗}] = 1 + 𝑊

𝑅 + 1 =⇒ 𝔼[𝑋] = 𝑁 + 1
𝑅 + 1 .
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. . . . . . . . .

𝑁1
𝑁

𝑁1−1
𝑁−1

𝑁1−𝑟1+2
𝑁−𝑟1+2

𝑁1−𝑟1+1
𝑁−𝑟1+1

𝑁2
𝑁−𝑟1

𝑁2−1
𝑁−𝑟1−1

𝑁2−𝑟2+2
𝑁−𝑟1−𝑟2+2

𝑁2−𝑟2+1
𝑁−𝑟1−𝑟2+1

𝑁3
𝑁−𝑟1−𝑟2

𝑁3−1
𝑁−𝑟1−𝑟2−1

𝑁𝑘−𝑟𝑘+2
𝑁−𝑛+2

𝑁𝑘−𝑟𝑘+1
𝑁−𝑛+1

(e) Consider the diagram below
It is clear we have

ℙ(𝑋 = 𝜔) =

(
𝑁1

(𝑁1−𝑟1)!

) (
𝑁2

(𝑁2−𝑟2)!

)
. . .

(
𝑁𝑘

(𝑁𝑘−𝑟𝑘 )!

)
𝑁 !

(𝑁−𝑛)!
,

and this can be arranged in 𝑛!
𝑟1!𝑟2!...𝑟𝑘 ! ways leading to

ℙ(𝑟1 balls of color 1, 𝑟2 balls of color 2, . . . , 𝑟𝑘 balls of color 𝑘) =
(𝑁1
𝑟1

)
· · ·

(𝑁𝑘
𝑟𝑘

)(𝑁
𝑛

)
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STAT201A: Introduction to Probability at an Advanced Level September 27th, 2024

Homework # 2: Concentration Inequalities & Moment Generating Functions
Reece D. Huff

Problems (Solutions)
1. (Binomial tail bounds) Let 𝑆𝑛 have the Binomial(𝑛, 𝑝) distribution of the number of successes in 𝑛 independent

Bernoulli(𝑝) trials. Use a suitable computational environment to evaluate the right tail probabilities

ℙ

(
𝑆𝑛

𝑛
≥ 𝑝𝑖 + 𝜖

)
for 𝑛 = 100 and 𝑝𝑖 = 𝑖

10 for 𝑖 = 1, 2, . . . , 9, and 𝜖 = 1
10 , together with various approximations and upper bounds as

indicated. In each case:

• Give an exact mathematical formula for the function of 𝑖 you are computing;
• Indicate suitable code for evaluating the formula in your preferred environment and attach the code at the end of

the homework;
Code is written in Python and is attached at the end of the document.

• Give the numerical values correct to two significant decimal places.

(a) The exact probabilities.
We begin by plugging in our values of 𝑛, 𝑝𝑖 , and 𝜖, i.e.,

ℙ

(
𝑆𝑛

𝑛
≥ 𝑝𝑖 + 𝜖

)
= ℙ

(
𝑆100
100 ≥ 𝑖

10 + 1
10

)
= ℙ (𝑆100 ≥ 10(𝑖 + 1)) .

From the definition of the Binomial distribution, we have

ℙ (𝑆100 ≥ 10(𝑖 + 1)) =
100∑

𝑘=10(𝑖+1)

(
100
𝑘

)
𝑝𝑘𝑖 (1 − 𝑝𝑖)100−𝑘 = 1 −

10(𝑖+1)−1∑
𝑘=0

(
100
𝑘

)
𝑝𝑘𝑖 (1 − 𝑝𝑖)100−𝑘 .

𝑝𝑖 𝑝1 = 0.1 𝑝2 = 0.2 𝑝3 = 0.3 𝑝4 = 0.4 𝑝5 = 0.5 𝑝6 = 0.6 𝑝7 = 0.7 𝑝8 = 0.8 𝑝9 = 0.9
ℙ (𝑆𝑛 − 𝑛𝑝𝑖 ≥ 𝑛𝜖) = 0.002 0.011 0.021 0.027 0.028 0.025 0.016 0.0057 2.7e-05

(b) Markov’s upper bounds for these probabilities.
Recall Markov’s inequality,

ℙ(𝑋 ≥ 𝑐) ≤ 𝔼[𝑋]
𝑐

for any arbitrary r.v. 𝑋 : Ω → ℝ and constant 𝑐 > 0.

Additionally, recall the expectation of the Binomial distribution is 𝔼[𝑆𝑛] = 𝑛𝑝, which is simply 100(𝑖/10) = 10𝑖 for all
𝑖 ∈ {1, . . . , 9}. Thus, we have

ℙ (𝑆𝑛 − 𝑛𝑝𝑖 ≥ 𝑛𝜖) ≤ 𝔼[𝑆100]
10(𝑖 + 1) =

𝑖

𝑖 + 1 for all 𝑖 ∈ {1, . . . , 9}

𝑝𝑖 𝑝1 = 0.1 𝑝2 = 0.2 𝑝3 = 0.3 𝑝4 = 0.4 𝑝5 = 0.5 𝑝6 = 0.6 𝑝7 = 0.7 𝑝8 = 0.8 𝑝9 = 0.9
ℙ (𝑆𝑛 − 𝑛𝑝𝑖 ≥ 𝑛𝜖) ≤ 0.50 0.67 0.75 0.8 0.83 0.86 0.88 0.89 0.90
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(c) Chebyshev’s upper bounds for these probabilities (which can be halved for 𝑖 = 5 only: explain why).
Recall Chebyshev’s inequality,

ℙ(|𝑋 − 𝜇| ≥ 𝑐) ≤ Var(𝑋)
𝑐2 for an r.v. 𝑋 : Ω → ℝ with 𝔼[𝑋] = 𝜇 < ∞ and constant 𝑐 > 0.

Additionally, recall the variance of the Binomial distribution is Var(𝑆𝑛) = 𝑛𝑝(1 − 𝑝), which is simply 100(𝑖/10)(1 −
𝑖/10) = 100(𝑖/10 − 𝑖2/100) = 10𝑖 − 𝑖2. Thus, we have

ℙ(|𝑆100 − 𝔼[𝑆100]| ≥ 𝑛𝜖) ≤ 10𝑖 − 𝑖2
(𝑛𝜖)2 =

10𝑖 − 𝑖2
100 for all 𝑖 ∈ {1, . . . , 9} ̸ 5

Note that for 𝑖 = 5, we can halve the probability by symmetry, i.e.,

ℙ(𝑆100 − 𝔼[𝑆100] ≥ 𝑛𝜖) = ℙ(𝑆100 − 𝔼[𝑆100] ≤ −𝑛𝜖) = 1
2 ℙ(𝑆100 − 𝔼[𝑆100] ≥ 𝑛𝜖)

=⇒ ℙ(|𝑆100 − 𝔼[𝑆100]| ≥ 𝑛𝜖) ≤ 10𝑖 − 𝑖2
200 for 𝑖 = 5

𝑝𝑖 𝑝1 = 0.1 𝑝2 = 0.2 𝑝3 = 0.3 𝑝4 = 0.4 𝑝5 = 0.5 𝑝6 = 0.6 𝑝7 = 0.7 𝑝8 = 0.8 𝑝9 = 0.9
ℙ (|𝑆𝑛 − 𝑛𝑝𝑖 | ≥ 𝑛𝜖) ≤ 0.090 0.16 0.21 0.24 0.25 0.24 0.21 0.16 0.090

(d) Hoeffding’s upper bounds.
Recall Hoeffding’s inequality: Let 𝑋1 , . . . , 𝑋𝑛 be independent r.v.’s with 𝔼[𝑋𝑖] = 𝜇𝑖 < ∞ and ℙ(𝑎𝑖 ≤ 𝑋𝑖 ≤ 𝑏𝑖) = 1 for
constants 𝑎𝑖 , 𝑏𝑖 ∈ ℝ. Let 𝑆𝑛 = 𝑋1 + · · · + 𝑋𝑛 . Then,

ℙ(𝑆𝑛 − 𝔼[𝑆𝑛] ≥ 𝜖) ≤ exp
(

−2𝜖2∑𝑛
𝑖=1(𝑏𝑖 − 𝑎𝑖)2

)
for any 𝜖 > 0.

Note that in our case, 𝑋𝑖 ∈ {0, 1} for all 𝑖 ∈ {1, . . . , 𝑛}. Then we have 𝑎𝑖 = 0 and 𝑏𝑖 = 1 for all 𝑖 ∈ {1, . . . , 𝑛}. Then our
Hoeffding bounds are

ℙ(𝑆𝑛 − 𝔼[𝑆𝑛] ≥ 𝑛𝜖) ≤ exp
(
−2𝑛2𝜖2

𝑛

)
= exp

(
−2𝑛𝜖2

)
= exp(−2)

𝑝𝑖 𝑝1 = 0.1 𝑝2 = 0.2 𝑝3 = 0.3 𝑝4 = 0.4 𝑝5 = 0.5 𝑝6 = 0.6 𝑝7 = 0.7 𝑝8 = 0.8 𝑝9 = 0.9
ℙ (𝑆𝑛 − 𝑛𝑝𝑖 ≥ 𝑛𝜖) ≤ 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14

(e) Chernoff’s upper bounds.
Recall Chernoff’s inequality,

ℙ(𝑋 ≥ 𝑐) ≤ min
𝑡>0

{
𝑀𝑋(𝑡)
𝑒 𝑡𝑐

}
for any 𝑡 > 0 and 𝑐 ∈ ℝ.

Recall that we derived in called the Chernoff bound of a Binomial random variable as

ℙ(𝑋 ≥ 𝑎𝑛) ≤
(
1 − 𝑝
1 − 𝑎

) (1−𝑎)𝑛 ( 𝑝
𝑎

) 𝑎𝑛
for any 𝑡 > 0 and any constant 𝑎 ∈ ℝ.

We set 𝑎 = (𝑝𝑖 + 𝜖) to arrive at

ℙ(𝑆𝑛 ≥ (𝑝𝑖 + 𝜖)𝑛) = ℙ(𝑆𝑛 − 𝑛𝑝𝑖 ≥ 𝑛𝜖) ≤
(

1 − 𝑝𝑖
1 − 𝑝𝑖 − 𝜖

) (1−𝑝𝑖−𝜖)𝑛 (
𝑝𝑖

𝑝𝑖 + 𝜖

) (𝑝𝑖+𝜖)/𝑛
=⇒ ℙ(𝑆100 ≥ 10(𝑖 + 1)) ≤

(
10 − 𝑖
9 − 𝑖

)90−10𝑖 (
𝑖

𝑖 + 1

)10(𝑖+1)
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𝑝𝑖 𝑝1 = 0.1 𝑝2 = 0.2 𝑝3 = 0.3 𝑝4 = 0.4 𝑝5 = 0.5 𝑝6 = 0.6 𝑝7 = 0.7 𝑝8 = 0.8 𝑝9 = 0.9
ℙ (𝑆𝑛 − 𝑛𝑝𝑖 ≥ 𝑛𝜖) ≤ 0.012 0.06 0.10 0.13 0.13 0.12 0.076 0.026 2.7e-05

2. (LLN) Suppose that 𝑋1 , 𝑋2 , . . . form an i.i.d. sequence of random variables with 𝔼[𝑋𝑖] = 𝜇 < ∞ and Var[𝑋𝑖] = 𝜎2 < ∞.
Evaluate

lim
𝑛→∞

1(𝑛
2
) ∑
𝑖 , 𝑗:1≤𝑖< 𝑗≤𝑛

(𝑋𝑖 − 𝑋𝑗)2.

We apply the law of large numbers to the random varible 𝑍 := 1
(𝑛2)

∑
𝑖 , 𝑗:1≤𝑖< 𝑗≤𝑛(𝑋𝑖 − 𝑋𝑗)2 to arrive at

lim
𝑛→∞

1(𝑛
2
) ∑
𝑖 , 𝑗:1≤𝑖< 𝑗≤𝑛

(𝑋𝑖 − 𝑋𝑗)2 = 𝔼

 1(𝑛
2
) ∑
𝑖 , 𝑗:1≤𝑖< 𝑗≤𝑛

(𝑋𝑖 − 𝑋𝑗)2
 =

1(𝑛
2
) ∑
𝑖 , 𝑗:1≤𝑖< 𝑗≤𝑛

𝔼
[
𝑋2
𝑖 − 2𝑋𝑖𝑋𝑗 + 𝑋2

𝑗

]
=

1(𝑛
2
) ∑
𝑖 , 𝑗:1≤𝑖< 𝑗≤𝑛

𝜎2 + 𝜇2 − 2𝜇2 + 𝜎2 + 𝜇2 =
1(𝑛
2
) 𝑛(𝑛 + 1)

2 2𝜎2

lim
𝑛→∞

1(𝑛
2
) ∑
𝑖 , 𝑗:1≤𝑖< 𝑗≤𝑛

(𝑋𝑖 − 𝑋𝑗)2 = 2𝜎2.

3. (Chebyshev & CLT) Let 𝑋1 , 𝑋2 , 𝑋3 , . . . be i.i.d. random variables with mean zero and finite variance 𝜎2. Let 𝑆𝑛 =

𝑋1 + · · · + 𝑋𝑛 . Determine the limits below, with precise justifications.

(a) lim𝑛→∞ ℙ(𝑆𝑛 ≥ 0.01𝑛).
(b) lim𝑛→∞ ℙ(𝑆𝑛 ≥ 0).
(c) lim𝑛→∞ ℙ(𝑆𝑛 ≥ −0.01𝑛).

To begin, we note that we can rewrite the expression lim𝑛→∞ ℙ(𝑆𝑛 ≥ 𝑥) as

lim
𝑛→∞

ℙ(𝑆𝑛 ≥ 𝑥) = 1 − lim
𝑛→∞

ℙ(𝑆𝑛 ≤ 𝑥).

This follows from our discrete r.v. 𝑆𝑛 becoming continuous as 𝑛 → ∞, i.e.,

ℙ(𝑆𝑛 ≥ 𝑥) + ℙ(𝑆𝑛 ≤ 𝑥) − ℙ(𝑆𝑛 = 𝑥) = 1 =⇒ lim
𝑛→∞

{ℙ(𝑆𝑛 ≥ 𝑥) + ℙ(𝑆𝑛 ≤ 𝑥) − ℙ(𝑆𝑛 = 𝑥)} = 1

=⇒ lim
𝑛→∞

ℙ(𝑆𝑛 ≥ 𝑥) + lim
𝑛→∞

ℙ(𝑆𝑛 ≤ 𝑥) −
�������:0
lim
𝑛→∞

ℙ(𝑆𝑛 = 𝑥) = 1

=⇒ lim
𝑛→∞

ℙ(𝑆𝑛 ≥ 𝑥) = 1 − lim
𝑛→∞

ℙ(𝑆𝑛 ≤ 𝑥)

Next, we recall the Central Limit Theorem.
Theorem 1 (Central Limit Theorem). Let 𝑋𝑖 , . . . , 𝑋𝑛 be a sequence of i.i.d. r.v.’s with finite mean 𝜇 and finite variance
𝜎2. Let 𝑆𝑛 := 𝑋𝑖 + · · · + 𝑋𝑛 . Then,

lim
𝑛→∞

ℙ

[√
𝑛

𝜎

(
𝑆𝑛

𝑛
− 𝜇

)
≤ 𝑥

]
= Φ(𝑥), for all 𝑥 ∈ ℝ where Φ(𝑥) :=

∫ 𝑥

−∞

1√
2𝜋

exp
(
− 𝑡

2

2

)
𝑑𝑡 (the c.d.f. of 𝒩(0, 1)).

Then for 𝑋1 , 𝑋2 , 𝑋3 , . . . i.i.d. random variables with mean zero and finite variance 𝜎2, and 𝑆𝑛 = 𝑋1 + · · · +𝑋𝑛 , we have

lim
𝑛→∞

ℙ

[
𝑆𝑛

𝜎
√
𝑛

≤ 𝑥

]
=

∫ 𝑥

−∞

1√
2𝜋

exp
(
− 𝑡

2

2

)
𝑑𝑡

It then follows for part (a), (b), and (c):
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(a) lim𝑛→∞ ℙ(𝑆𝑛 ≥ 0.01𝑛).

lim
𝑛→∞

ℙ(𝑆𝑛 ≥ 0.01𝑛) = 1 − lim
𝑛→∞

ℙ(𝑆𝑛 ≤ 0.01𝑛) = 1 − lim
𝑛→∞

ℙ

[
𝑆𝑛

𝜎
√
𝑛

≤ 0.01
√
𝑛

𝜎

]
= 1 − lim

𝑛→∞

∫ 0.01
√
𝑛

𝜎

−∞

1√
2𝜋

exp
(
− 𝑡

2

2

)
𝑑𝑡

lim
𝑛→∞

ℙ(𝑆𝑛 ≥ 0.01𝑛) = 1 −
∫ ∞

−∞

1√
2𝜋

exp
(
− 𝑡

2

2

)
𝑑𝑡 = 1 − 1

lim
𝑛→∞

ℙ(𝑆𝑛 ≥ 0.01𝑛) = 0.

(b) lim𝑛→∞ ℙ(𝑆𝑛 ≥ 0).

lim
𝑛→∞

ℙ(𝑆𝑛 ≥ 0) = 1 − lim
𝑛→∞

ℙ(𝑆𝑛 ≤ 0) = 1 − lim
𝑛→∞

ℙ

[
𝑆𝑛

𝜎
√
𝑛

≤ 0
]
= 1 −

∫ 0

−∞

1√
2𝜋

exp
(
− 𝑡

2

2

)
𝑑𝑡

lim
𝑛→∞

ℙ(𝑆𝑛 ≥ 0) = 1 − 1
2

lim
𝑛→∞

ℙ(𝑆𝑛 ≥ 0) = 1
2 .

(c) lim𝑛→∞ ℙ(𝑆𝑛 ≥ −0.01𝑛).

lim
𝑛→∞

ℙ(𝑆𝑛 ≥ −0.01𝑛) = 1 − lim
𝑛→∞

ℙ(𝑆𝑛 ≤ −0.01𝑛) = 1 − lim
𝑛→∞

ℙ

[
𝑆𝑛

𝜎
√
𝑛

≤ −0.01
√
𝑛

𝜎

]
lim
𝑛→∞

ℙ(𝑆𝑛 ≥ −0.01𝑛) = 1 − lim
𝑛→∞

∫ − 0.01
√
𝑛

𝜎

−∞

1√
2𝜋

exp
(
− 𝑡

2

2

)
𝑑𝑡

lim
𝑛→∞

ℙ(𝑆𝑛 ≥ −0.01𝑛) = 1 −
∫ −∞

−∞

1√
2𝜋

exp
(
− 𝑡

2

2

)
𝑑𝑡 = 1 − 0

lim
𝑛→∞

ℙ(𝑆𝑛 ≥ −0.01𝑛) = 1.

4. (Convolution & MGF) The Laplace distribution has density 𝑓𝑍(𝑧) = 𝜆
2 exp(−𝜆|𝑧 |) and MGF 𝑀𝑍(𝑡) = 𝜆2

𝜆2−𝑡2 , where 𝜆 > 0.

Let 𝑋,𝑌 𝑖𝑖𝑑∼ Exp(𝜆). Prove that 𝑍 = 𝑋 − 𝑌 follows a Laplace distribution by using:

(a) Moment generating functions.
Recall the MGF of the exponential distribution,

𝑀𝑋(𝑡) = 𝔼
[
exp(𝑡𝑋)

]
=

𝜆
𝜆 − 𝑡 for a r.v. 𝑋 ∼ Exp(𝑋) and 𝜆 > 0, 𝑡 ∈ ℝ.

Now we simply apply the MGF to the random variable 𝑍 = 𝑋 − 𝑌, i.e.,

𝑀𝑍(𝑡) = 𝔼
[
exp(𝑡𝑍)

]
= 𝔼

[
exp(𝑡(𝑋 − 𝑌))

]
= 𝔼

[
exp(𝑡𝑋) exp(−𝑡𝑌)

]
= 𝔼

[
exp(𝑡𝑋)

]
𝔼

[
exp(−𝑡𝑌)

]
(by independence of 𝑋 and 𝑌)

=

(
𝜆

𝜆 − 𝑡

) (
𝜆

𝜆 + 𝑡

)
(MGF of 𝑋,𝑌 𝑖𝑖𝑑∼ Exp(𝜆))

𝑀𝑍(𝑡) =
𝜆2

𝜆2 − 𝑡2

(b) The convolution formula.
Recall the density of the exponential distribution,

𝑓𝑋(𝑥) =
{
𝜆 exp(−𝜆𝑥) if 𝑥 ≥ 0,
0 otherwise.

for a r.v. 𝑋 ∼ Exp(𝑋) and 𝜆 > 0.
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Additionally, recall the convolution formula,

𝑓𝑋+𝑌(𝑧) =
∫ ∞

−∞
𝑓𝑋(𝑥) 𝑓𝑌(𝑧 − 𝑥)𝑑𝑥 ⇔ 𝑓𝑋−𝑌(𝑧) =

∫ ∞

−∞
𝑓𝑋(𝑥) 𝑓𝑌(𝑥 − 𝑧)𝑑𝑥 for continuous r.v.’s 𝑋,𝑌.

Using these formulae, we have that for a r.v. 𝑍 = 𝑋 − 𝑌,

𝑓𝑍(𝑧) = 𝑓𝑋−𝑌(𝑧) =
∫ ∞

−∞
𝑓𝑋(𝑥) 𝑓𝑌(𝑥 − 𝑧)𝑑𝑥 =

∫ ∞

−∞
𝜆 exp(−𝜆𝑥) · 𝜆 exp(−𝜆(𝑥 − 𝑧))𝑑𝑥

Note from our integral is non-zero only when 𝑥 − 𝑧 ≥ 0. Therefore, we consider two cases: when 𝑧 ≥ 0 and when
𝑧 < 0. For each case we will changes the bounds of integration. As such, we solve the integral above for general
bounds of integration, 𝑎 and 𝑏:

𝑓𝑍(𝑧) =
∫ 𝑏

𝑎

𝜆 exp(−𝜆𝑥) · 𝜆 exp(−𝜆(𝑥 − 𝑧))𝑑𝑥 = 𝜆2
∫ 𝑏

𝑎

exp(−𝜆𝑥) exp(−𝜆𝑥) exp(𝜆𝑧)𝑑𝑥 = 𝜆2 exp(𝜆𝑧)
∫ 𝑏

𝑎

exp(−2𝜆𝑥)𝑑𝑥

𝑓𝑍(𝑧) = 𝜆2 exp(𝜆𝑧)
[
−1
2𝜆 exp(−2𝜆𝑥)

] 𝑏
𝑎

=
−𝜆
2 exp(𝜆𝑧)

[
exp(−2𝜆𝑥)

] 𝑏
𝑎

(i) 𝑓𝑍(𝑧) when 𝑧 ≥ 0:
When 𝑧 ≥ 0, we have that density is nonzero for 𝑥 ≥ 𝑧, so we evaluate our integral from 𝑥 = 𝑧 to 𝑥 = ∞, i.e.,

𝑓𝑍(𝑧) =
−𝜆
2 exp(𝜆𝑧)

[
exp(−2𝜆𝑥)

]∞
𝑧
=

−𝜆
2 exp(𝜆𝑧)

[
0 − exp(−2𝜆𝑧)

]
=

𝜆
2 exp(𝜆𝑧) exp(−2𝜆𝑧) = 𝜆

2 exp(−𝜆𝑧)

(ii) 𝑓𝑍(𝑧) when 𝑧 < 0:
When 𝑧 < 0, we have that density is nonzero for 𝑥 ≥ 0 as 𝑥 − 𝑧 ≥ 0 for 𝑥 ≥ 0, so we evaluate our integral from
𝑥 = 0 to 𝑥 = ∞, i.e.,

𝑓𝑍(𝑧) =
−𝜆
2 exp(𝜆𝑧)

[
exp(−2𝜆𝑥)

]∞
0 =

−𝜆
2 exp(𝜆𝑧)

[
0 − exp(−2𝜆0)

]
=

𝜆
2 exp(𝜆𝑧)

Taken together, we have that the density of 𝑍 = 𝑋 − 𝑌 is

𝑓𝑍(𝑧) =
{
𝜆
2 exp(−𝜆𝑧) if 𝑧 ≥ 0,
𝜆
2 exp(𝜆𝑧) otherwise

⇔ 𝑓𝑍(𝑧) =
𝜆
2 exp(−𝜆|𝑧 |)

5. (Moments & MGF) Let 𝑋 be a random variable with p.d.f. given by

𝑓𝑋(𝑥) =


2
9 , 0 ≤ 𝑥 ≤ 1,
4−|4−2𝑥 |

9 , 1 < 𝑥 ≤ 4,
0, otherwise.

(a) Verify that this is actually a p.d.f.
We verify that 𝑓𝑋(𝑥) is actually a p.d.f. by checking

∫ ∞
−∞ 𝑓𝑋(𝑥)𝑑𝑥 = 1, i.e.,∫ ∞

−∞
𝑓𝑋(𝑥)𝑑𝑥 =

∫ 1

0

2
9 𝑑𝑥 +

∫ 4

1

4 − |4 − 2𝑥 |
9 𝑑𝑥 =

2
9 + 4

9

∫ 4

1
1𝑑𝑥 − 2

9

∫ 4

1
|2 − 𝑥 |𝑑𝑥∫ ∞

−∞
𝑓𝑋(𝑥)𝑑𝑥 =

2
9 + 12

9 − 2
9

[
−|2 − 𝑥 |(2 − 𝑥)

2

]4

1
=

14
9 − 2

9

[
−|2 − 4|(2 − 4)

2 + |2 − 1|(2 − 1)
2

]
=

14
9 − 2

9

[
5
2

]
=

14
9 − 5

9∫ ∞

−∞
𝑓𝑋(𝑥)𝑑𝑥 = 1 ✓

(b) Find the moment generating function of 𝑋.
The MGF for 𝑋 is

𝑀𝑋(𝑡) = 𝔼[𝑒 𝑡𝑋] =
∫ ∞

−∞
𝑒 𝑡𝑥 𝑓𝑋(𝑥)𝑑𝑥 =

∫ 1

0
𝑒 𝑡𝑥

2
9 𝑑𝑥 +

∫ 4

1
𝑒 𝑡𝑥

4 − |4 − 2𝑥 |
9 𝑑𝑥
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𝑀𝑋(𝑡) =
2
9

∫ 1

0
𝑒 𝑡𝑥𝑑𝑥 + 4

9

∫ 4

1
𝑒 𝑡𝑥𝑑𝑥 − 2

9

∫ 4

1
𝑒 𝑡𝑥 |𝑥 − 2|𝑑𝑥

𝑀𝑋(𝑡) =
2
9𝑡

[
𝑒 𝑡𝑥

]1
0 +

4
9𝑡

[
𝑒 𝑡𝑥

]4
1 −

2
9

∫ 4

1
𝑒 𝑡𝑥 |𝑥 − 2|𝑑𝑥

𝑀𝑋(𝑡) =
2
9𝑡

[
𝑒 𝑡 − 1

]
+ 4

9𝑡
[
𝑒4𝑡 − 𝑒 𝑡

]
+ 2

9

∫ 2

1
𝑒 𝑡𝑥(𝑥 − 2)𝑑𝑥 − 2

9

∫ 4

2
𝑒 𝑡𝑥(𝑥 − 2)𝑑𝑥

By integration by parts with 𝑢 = 𝑥 − 2 and 𝑑𝑣 = 𝑒 𝑡𝑥𝑑𝑥, we have∫ 𝑏

𝑎

𝑢𝑑𝑣 = [𝑢𝑣]𝑏𝑎 −
∫ 𝑏

𝑎

𝑣𝑑𝑢 =⇒
∫ 𝑏

𝑎

𝑒 𝑡𝑥(𝑥 − 2)𝑑𝑥 =
1
𝑡

[
𝑒 𝑡𝑥(𝑥 − 2)

] 𝑏
𝑎
− 1
𝑡

∫ 𝑏

𝑎

𝑒 𝑡𝑥𝑑𝑥 =
1
𝑡

[
𝑒 𝑡𝑥(𝑥 − 2)

] 𝑏
𝑎
− 1
𝑡2

[
𝑒 𝑡𝑥

] 𝑏
𝑎

Then we have

𝑀𝑋(𝑡) =
2
9𝑡

[
𝑒 𝑡 − 1

]
+ 4

9𝑡
[
𝑒4𝑡 − 𝑒 𝑡

]
+ 2

9
1
𝑡

[
𝑒 𝑡𝑥(𝑥 − 2)

]2
1 −

2
9

1
𝑡2

[
𝑒 𝑡𝑥

]2
1 −

2
9

1
𝑡

[
𝑒 𝑡𝑥(𝑥 − 2)

]4
2 +

2
9

1
𝑡2

[
𝑒 𝑡𝑥

]4
2

𝑀𝑋(𝑡) =
2𝑒 𝑡 − 2

9𝑡 + 4𝑒4𝑡 − 4𝑒 𝑡
9𝑡 + 2

9𝑡
[
0 − 𝑒 𝑡(1 − 2)

]
− 2

9𝑡2
[
𝑒2𝑡 − 𝑒 𝑡

]
− 2

9𝑡
[
𝑒4𝑡(4 − 2) − 0

]
+ 2

9𝑡2
[
𝑒4𝑡 − 𝑒2𝑡 ]

𝑀𝑋(𝑡) =
2𝑒 𝑡 − 2

9𝑡 +��4𝑒4𝑡 − 4𝑒 𝑡
9𝑡 + 2𝑒 𝑡

9𝑡 + 2𝑒 𝑡 − 2𝑒2𝑡

9𝑡2
−��4𝑒4𝑡

9𝑡 + 2𝑒4𝑡 − 2𝑒2𝑡

9𝑡2

𝑀𝑋(𝑡) = ��2𝑒 𝑡 − 2 −��4𝑒 𝑡 +��2𝑒 𝑡
9𝑡 + 2𝑒 𝑡 − 4𝑒2𝑡 + 2𝑒4𝑡

9𝑡2

𝑀𝑋(𝑡) =
2𝑒 𝑡 − 4𝑒2𝑡 + 2𝑒4𝑡 − 2𝑡

9𝑡2

𝑀𝑋(𝑡) =
2(𝑒 𝑡 − 2𝑒2𝑡 + 𝑒4𝑡 − 𝑡)

9𝑡2
.

(c) Find 𝔼[𝑋] and Var[𝑋].
The expectation of 𝑋 is

𝔼[𝑋] =
∫ ∞

−∞
𝑥 𝑓𝑋(𝑥)𝑑𝑥 =

∫ 1

0
𝑥

2
9 𝑑𝑥 +

∫ 4

1
𝑥

4 − |4 − 2𝑥 |
9 𝑑𝑥 =

2
9

∫ 1

0
𝑥𝑑𝑥 + 4

9

∫ 4

1
𝑥𝑑𝑥 − 2

9

∫ 4

1
𝑥 |𝑥 − 2|𝑑𝑥

𝔼[𝑋] = 2
9

1
2

[
𝑥2]1

0 +
4
9

1
2

[
𝑥2]4

1 +
2
9

∫ 2

1
𝑥(𝑥 − 2)𝑑𝑥 − 2

9

∫ 4

2
𝑥(𝑥 − 2)𝑑𝑥

𝔼[𝑋] = 1
9 + 2

9 [16 − 1] + 2
9

∫ 2

1
𝑥2 − 2𝑥𝑑𝑥 − 2

9

∫ 4

2
𝑥2 − 2𝑥𝑑𝑥

𝔼[𝑋] = 1
9 + 30

9 + 2
9

[
𝑥3

3 − 𝑥2
]2

1
− 2

9

[
𝑥3

3 − 𝑥2
]4

2

𝔼[𝑋] = 31
9 + 2

9

[
8
3 − 4 − 1

3 + 1
]
− 2

9

[
64
3 − 16 − 8

3 + 4
]

𝔼[𝑋] = 31
9 + 2

9

[
8
3 − 12

3 − 1
3 + 3

3

]
− 2

9

[
64
3 − 48

3 − 8
3 + 12

3

]
𝔼[𝑋] = 31

9 + 2
9

[
−2

3

]
− 2

9

[
20
3

]
=

93
27 − 4

27 − 40
27

𝔼[𝑋] = 49
27

In order to calculate the variance, we first calculate 𝔼[𝑋2] as Var(𝑋) = 𝔼[𝑋2] − 𝔼[𝑋]2. Then we have

𝔼[𝑋2] =
∫ ∞

−∞
𝑥2 𝑓𝑋(𝑥)𝑑𝑥 =

∫ 1

0
𝑥2 2

9 𝑑𝑥 +
∫ 4

1
𝑥2 4 − |4 − 2𝑥 |

9 𝑑𝑥 =
2
9

∫ 1

0
𝑥2𝑑𝑥 + 4

9

∫ 4

1
𝑥2𝑑𝑥 − 2

9

∫ 4

1
𝑥2 |𝑥 − 2|𝑑𝑥

𝔼[𝑋2] = 2
9

1
3

[
𝑥3]1

0 +
4
9

1
3

[
𝑥3]4

1 +
2
9

∫ 2

1
𝑥2(𝑥 − 2)𝑑𝑥 − 2

9

∫ 4

2
𝑥2(𝑥 − 2)𝑑𝑥
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𝔼[𝑋2] = 2
27 + 4

27 [64 − 1] + 2
9

∫ 2

1
𝑥3 − 2𝑥2𝑑𝑥 − 2

9

∫ 4

2
𝑥3 − 2𝑥2𝑑𝑥

𝔼[𝑋2] = 2
27 + 252

27 + 2
9

[
𝑥4

4 − 2𝑥3

3

]2

1
− 2

9

[
𝑥4

4 − 2𝑥3

3

]4

2

𝔼[𝑋2] = 254
27 + 2

9

[
16
4 − 16

3 − 1
4 + 2

3

]
− 2

9

[
256
4 − 128

3 − 16
4 + 16

3

]
𝔼[𝑋2] = 254

27 + 2
9

[
48
12 − 64

12 − 3
12 + 8

12

]
− 2

9

[
768
12 − 512

12 − 48
12 + 64

12

]
𝔼[𝑋2] = 254

27 + 2
9

[
−11

12

]
− 2

9

[
272
12

]
=

1016
108 − 22

108 − 544
108 =

450
108 =

25
6

Now that we have solved for 𝔼[𝑋2], we can solve for the variance of 𝑋, i.e.,

Var(𝑋) = 𝔼[𝑋2] − 𝔼[𝑋]2 =
25
6 −

(
49
27

)2
=

25
6 − 2401

729 =⇒ Var(𝑋) = 1273
1458 ≈ 0.873

(d) Find a formula for the moments of 𝑋.
We define the 𝑘-th moment of 𝑋 as

𝔼[𝑋 𝑘] =
∫ ∞

−∞
𝑥𝑘 𝑓𝑋(𝑥)𝑑𝑥 =

∫ 1

0
𝑥𝑘

2
9 𝑑𝑥 +

∫ 4

1
𝑥𝑘

4 − |4 − 2𝑥 |
9 𝑑𝑥 =

2
9

∫ 1

0
𝑥𝑘𝑑𝑥 + 4

9

∫ 4

1
𝑥𝑘𝑑𝑥 − 2

9

∫ 4

1
𝑥𝑘 |𝑥 − 2|𝑑𝑥

𝔼[𝑋 𝑘] = 2
9

[
𝑥𝑘+1

𝑘 + 1

]1

0
+ 4

9

[
𝑥𝑘+1

𝑘 + 1

]4

1
+ 2

9

∫ 2

1
𝑥𝑘(𝑥 − 2)𝑑𝑥 − 2

9

∫ 4

2
𝑥𝑘(𝑥 − 2)𝑑𝑥

𝔼[𝑋 𝑘] = 2
9(𝑘 + 1) +

4
9(𝑘 + 1)

[
4𝑘+1 − 1

]
+ 2

9

∫ 2

1
𝑥𝑘(𝑥 − 2)𝑑𝑥 − 2

9

∫ 4

2
𝑥𝑘(𝑥 − 2)𝑑𝑥

Again, we apply integration by parts with 𝑢 = 𝑥 − 2 and 𝑑𝑣 = 𝑥𝑘𝑑𝑥, i.e.,∫ 𝑏

𝑎

𝑥𝑘(𝑥 − 2)𝑑𝑥 =

[
(𝑥 − 2) 𝑥

𝑘+1

𝑘 + 1

] 𝑏
𝑎

−
∫ 𝑏

𝑎

𝑥𝑘+1

𝑘 + 1𝑑𝑥 =

[
(𝑥 − 2) 𝑥

𝑘+1

𝑘 + 1

] 𝑏
𝑎

−
[

𝑥𝑘+2

(𝑘 + 1)(𝑘 + 2)

] 𝑏
𝑎

.

Then we have

𝔼[𝑋 𝑘] = 2 + 4(4𝑘+1 − 1)
9(𝑘 + 1) + 2

9

([
(𝑥 − 2) 𝑥

𝑘+1

𝑘 + 1

]2

1
−

[
𝑥𝑘+2

(𝑘 + 1)(𝑘 + 2)

]2

1

)
− 2

9

([
(𝑥 − 2) 𝑥

𝑘+1

𝑘 + 1

]4

2
−

[
𝑥𝑘+2

(𝑘 + 1)(𝑘 + 2)

]4

2

)
𝔼[𝑋 𝑘] = 2 + 4𝑘+2 − 4

9(𝑘 + 1) + 2
9

( [
0 − (1 − 2) 1

𝑘 + 1

]
−

[
2𝑘+2

(𝑘 + 1)(𝑘 + 2) −
1

(𝑘 + 1)(𝑘 + 2)

] )
− 2

9

( [
(4 − 2) 4𝑘+1

𝑘 + 1 − 0
]
−

[
4𝑘+2

(𝑘 + 1)(𝑘 + 2) −
2𝑘+2

(𝑘 + 1)(𝑘 + 2)

] )
𝔼[𝑋 𝑘] = 4𝑘+2 − 2

9(𝑘 + 1) +
2
9

(
1

𝑘 + 1 + 1 − 2𝑘+2

(𝑘 + 1)(𝑘 + 2)

)
− 2

9

(
2 · 4𝑘+1

𝑘 + 1 + 2𝑘+2 − 4𝑘+2

(𝑘 + 1)(𝑘 + 2)

)
𝔼[𝑋 𝑘] = 4𝑘+2 − 2

9(𝑘 + 1) +
2

9(𝑘 + 1) +
2(1 − 2𝑘+2)

9(𝑘 + 1)(𝑘 + 2) −
2 · 2 · 4𝑘+1

9(𝑘 + 1) − 2(2𝑘+2 − 4𝑘+2)
9(𝑘 + 1)(𝑘 + 2)

𝔼[𝑋 𝑘] = 4𝑘+2 − 2
9(𝑘 + 1) +

2
9(𝑘 + 1) −

4𝑘+2

9(𝑘 + 1) +
2 − 2𝑘+3

9(𝑘 + 1)(𝑘 + 2) −
2𝑘+3 − 2 · 4𝑘+2

9(𝑘 + 1)(𝑘 + 2)

𝔼[𝑋 𝑘] = �
��4𝑘+2 − �2 + �2 −���4𝑘+2

9(𝑘 + 1) + 2 − 2𝑘+3 − 2𝑘+3 + 2 · 4𝑘+2

9(𝑘 + 1)(𝑘 + 2)

𝔼[𝑋 𝑘] = 2(1 − 2𝑘+3 + 4𝑘+2)
9(𝑘 + 1)(𝑘 + 2)

We can verify that it holds for the first and second moments:

𝔼[𝑋] = 2(1 − 24 + 43)
9(2)(3) =

2(1 − 24 + 43)
54 =

98
54 =

49
27 ✓
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𝔼[𝑋2] = 2(1 − 25 + 44)
9(4)(5) =

450
108 =

25
6 ✓

6. (Distribution of sums using MGFs) Let 𝑆𝑛 := 𝑋1+· · ·+𝑋𝑛 for independent𝑋1 , . . . , 𝑋𝑛 . Use MGFs to find the distribution
of 𝑆𝑛 :

(a) For 𝑋𝑖 with Normal (𝜇𝑖 , 𝜎2
𝑖
) distribution.

Recall the MGF of the Normal distribution with mean 𝜇𝑖 and variance 𝜎2
𝑖
,

𝑀𝑋𝑖 (𝑡) = exp
(
𝑡𝜇𝑖 +

1
2𝜎

2
𝑖 𝑡

2
)

for a r.v. 𝑋𝑖 ∼ 𝒩(𝜇𝑖 , 𝜎2
𝑖 ).

Then the MGF of 𝑆𝑛 = 𝑋1 + · · · + 𝑋𝑛 for for independent 𝑋1 , . . . , 𝑋𝑛 is

𝑀𝑆𝑛 (𝑡) =
𝑛∏
𝑖=1

exp
(
𝑡𝜇𝑖 +

1
2𝜎

2
𝑖 𝑡

2
)
= exp

(
𝑛∑
𝑖=1

𝑡𝜇𝑖 +
1
2𝜎

2
𝑖 𝑡

2

)
= exp

(
𝑡

𝑛∑
𝑖=1

𝜇𝑖 +
𝑡2

2

𝑛∑
𝑖=1

𝜎2
𝑖

)
Therefore, 𝑆𝑛 follows the Normal distribution with mean

∑𝑛
𝑖=1 𝜇𝑖 and variance

∑𝑛
𝑖=1 𝜎

2
𝑖
, i.e.,

𝑆𝑛 ∼ 𝒩
(
𝑛∑
𝑖=1

𝜇𝑖 ,
𝑛∑
𝑖=1

𝜎2
𝑖

)
with density 𝑓𝑆𝑛 (𝑥) =

1√
2𝜋

∑𝑛
𝑖=1 𝜎

2
𝑖

exp

(
−
(𝑥 −∑𝑛

𝑖=1 𝜇𝑖)2

2
∑𝑛
𝑖=1 𝜎

2
𝑖

)

(b) For 𝑋𝑖 with Gamma (𝑟𝑖 ,𝜆) distribution.
Recall the MGF of a Gamma distribution with shape parameter 𝑟𝑖 and rate parameter 𝜆 is given by:

𝑀𝑋𝑖 (𝑡) =
(
1 − 𝑡

𝜆

)−𝑟𝑖
, for 𝑡 < 𝜆.

Since 𝑆𝑛 = 𝑋1 + 𝑋2 + · · · + 𝑋𝑛 is the sum of independent Gamma random variables with the same rate parameter 𝜆,
we have:

𝑀𝑆𝑛 (𝑡) =
𝑛∏
𝑖=1

(
1 − 𝑡

𝜆

)−𝑟𝑖
=

(
1 − 𝑡

𝜆

)−∑𝑛
𝑖=1 𝑟𝑖

.

This is the MGF of a Gamma distribution with shape parameter
∑𝑛
𝑖=1 𝑟𝑖 and rate parameter 𝜆. Hence, 𝑆𝑛 follows the

Gamma distribution:

𝑆𝑛 ∼ Gamma

(
𝑛∑
𝑖=1

𝑟𝑖 ,𝜆

)
with density 𝑓𝑆𝑛 (𝑥) =

𝜆
∑𝑛
𝑖=1 𝑟𝑖 𝑥

∑𝑛
𝑖=1 𝑟𝑖−1𝑒−𝜆𝑥

Γ
(∑𝑛

𝑖=1 𝑟𝑖
) , 𝑥 > 0..

(c) For 𝑋𝑖 = 𝑍2
𝑖

with 𝑍𝑖 ∼ Normal(0, 1).
The MGF and density of a standard normal random variable 𝑍𝑖 ∼ Normal(0, 1) is:

𝑀𝑍𝑖 (𝑡) = exp
(
𝑡2

2

)
and 𝑓𝑍𝑖 (𝑧) =

1√
2𝜋

exp
(
− 𝑧

2

2

)
We note that the MGF of 𝑍2

𝑖
is not as simple as 𝑀𝑍𝑖 (𝑡)2. The MGF of 𝑋𝑖 = 𝑍2

𝑖
is as follows,

𝑀𝑋𝑖 (𝑡) = 𝔼
[
𝑒 𝑡𝑍

2
𝑖

]
=

∫ ∞

−∞
exp

(
𝑡𝑧2

) 1√
2𝜋

exp
(
− 𝑧

2

2

)
𝑑𝑧 =

1√
2𝜋

∫ ∞

−∞
exp

(
𝑡𝑧2 − 𝑧2

2

)
𝑑𝑧 =

1√
2𝜋

∫ ∞

−∞
exp

(
𝑧2

2 (1 − 2𝑡)
)
𝑑𝑧

In order for the integral to be convergent, we require that 1 − 2𝑡 > 0 or equivalently 𝑡 < 1
2 . Then we have

𝑀𝑋𝑖 (𝑡) =
1√

1 − 2𝑡
, for 𝑡 < 1

2 .
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Now we can derive 𝑀𝑆𝑛 (𝑡). Since 𝑋1 , 𝑋2 , . . . , 𝑋𝑛 are independent, we have:

𝑀𝑆𝑛 (𝑡) =
(

1√
1 − 2𝑡

)𝑛
= (1 − 2𝑡)− 𝑛

2 , for 𝑡 < 1
2 .

This is the MGF of a chi-squared distribution with 𝑛 degrees of freedom. Therefore, 𝑆𝑛 follows a chi-squared
distribution with 𝑛 degrees of freedom:

𝑆𝑛 ∼ 𝜒2(𝑛) with density 𝑓𝑆𝑛 (𝑥) =
1

2𝑛/2Γ(𝑛/2)
𝑥
𝑛
2 −1𝑒−𝑥/2 , 𝑥 > 0.
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STAT201A: Introduction to Probability at an Advanced Level October 11th, 2024

Homework # 3: PDF’s, CDF’s, PGF’s, and Transformations
Reece D. Huff

Problems (Solutions)
1. (Approximating Binomial Distributions)

The goal of this question is to empirically verify three approximations to the exact Binomial probability ℙ(𝑋 = 𝑘), where
𝑋 ∼ Binomial(𝑛, 𝑝):

• ℙ(𝑌 = 𝑘), where 𝑌 ∼ Poisson(𝑛𝑝), the Poisson approximation with rate parameter 𝑛𝑝;
• The normal approximation

𝜙(𝑘; 𝑛𝑝, 𝑛𝑝(1 − 𝑝)) := 1√
2𝜋𝑛𝑝(1 − 𝑝)

exp
{
−

(𝑘 − 𝑛𝑝)2
2𝑛𝑝(1 − 𝑝)

}
;

• The entropic approximation

Ent(𝑘; 𝑛, 𝑝) := 1√
2𝜋𝑛 𝑓 (1 − 𝑓 )

exp (−𝑛KL( 𝑓 ∥ 𝑝)) ,

where 𝑓 = 𝑘
𝑛 and KL( 𝑓 ∥ 𝑝) = 𝑓 log

(
𝑓

𝑝

)
+ (1 − 𝑓 ) log

(
1− 𝑓
1−𝑝

)
.

For this problem, I elected to plot the absolute and relative errors for each distribution making it easier to understand the
Binomial approximation accuracy of the Poisson, the Normal, and the Entropic distribution. For completeness, I attach
the tables corresponding to part (a), (b), (c), (d) as well as the code for generating the plots and tables to the end of this
document.
In the analysis that follows, recall these properties about each approximation:

• Poisson Approximation: The absolute error is bounded by 2𝑛𝑝2. This is because when 𝑝 = 𝜆/𝑛, we have 𝑛𝑝2 = 𝜆2/𝑛
which will be small when 𝑛 is large.

• Normal Approximation: Only accurate when 𝑓 = 𝑘/𝑛 is close to 𝑝.
• Entropic Approximation: Accurate as long as the Stirling Approximation is accurate for 𝑛 − 𝑘 and 𝑘 (and the Stirling

approximation is quite accurate even for small integers).

(a) Take 𝑛 = 30 and 𝑝 = 0.05. Create a table (31 rows and 3 columns) containing the absolute errors for each approxima-
tion:

|ℙ(𝑋 = 𝑘) − ℙ(𝑌 = 𝑘)|, |ℙ(𝑋 = 𝑘) − 𝜙(𝑘; 𝑛𝑝, 𝑛𝑝(1 − 𝑝))|, and |ℙ(𝑋 = 𝑘) − Ent(𝑘; 𝑛, 𝑝)|
for 𝑘 = 0, 1, . . . , 30. (Note: The entropic approximation does not exist for 𝑘 = 0 and 𝑘 = 30, so only list it for
𝑘 = 1, . . . , 29). Based on the table, comment on the accuracy of each of the three approximations for the Binomial
distribution.

(b) Create a similar table for the relative errors:

|ℙ(𝑋 = 𝑘) − ℙ(𝑌 = 𝑘)|
ℙ(𝑋 = 𝑘) ,

|ℙ(𝑋 = 𝑘) − 𝜙(𝑘; 𝑛𝑝, 𝑛𝑝(1 − 𝑝))|
ℙ(𝑋 = 𝑘) , and

|ℙ(𝑋 = 𝑘) − Ent(𝑘; 𝑛, 𝑝)|
ℙ(𝑋 = 𝑘)

for 𝑘 = 0, 1, . . . , 30. Based on this table, comment on the accuracy of each of the three approximations for the
Binomial.
The absolute and relative errors for 𝑘 = 0, 1, . . . , 30 are listed in Table 1 and Table 2. The errors have also been plotted
in Figure 3.
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Figure 3: Probabilities (left) and absolute errors and relative errors (right) for the between the Binomial distribution and the
Poisson, Normal, and Entropic distribution for 𝑛 = 30 and 𝑝 = 0.05.

Commentary for part (a) & (b):
• Poisson Approximation: We would expect the Poisson approximation only to work when 𝑘 is near the mean

(𝑛𝑝). We see the absolute errors increase as 𝑘 moves away from the mean.
• Normal Approximation: The normal approximation is only accurate when 𝑓 = 𝑘/𝑛 is close to 𝑝 (i.e., 𝑘 = 𝑛𝑝 =

1.5). As 𝑘 increases, the error blows up. This follows from the approximation going to zero much faster with
such a small 𝑝 value.

• Entropic Approximation: The Entropic approximation is clearly the best approximation in both absolute and
relative error compares to the other approximations. Interestingly, the absolute error is smallest when 𝑘 = 1 and
the relative error is minimized when 𝑘 = 𝑛/2.
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(c) Repeat exercises (a) and (b) for 𝑛 = 30 and 𝑝 = 0.25.
The absolute and relative errors for 𝑘 = 0, 1, . . . , 30 are listed in Table 3 and Table 4. The errors have also been plotted
in Figure 4.

Figure 4: Probabilities (left) and absolute errors and relative errors (right) for the between the Binomial distribution and the
Poisson, Normal, and Entropic distribution for 𝑛 = 30 and 𝑝 = 0.25.

Commentary for part (c):
• Poisson Approximation: Again, the Poisson approximation works well when 𝑛𝑝2 is small, and now 𝑝 is 5 times

larger. The approximation is still able to do well when 𝑘 is near the mean. However, as 𝑘 increases, the absolute
errors blows up even though the absolute errors become quite small.

• Normal Approximation: Much like before, the Normal approximation performs well when 𝑘 is close to the mean
(𝑛𝑝 = 7.5). The approximation hangs on for larger values of 𝑘 and interestingly, it does very poorly for small
values of 𝑘. This is becomes the exponential has had a chance to decay such that the absolute error is greater
than the probability of the Binomial.

• Entropic Approximation: The Entropic approximation once again proves to be the most accurate across the
entire range of 𝑘. It consistently provides smaller absolute and relative errors compared to the other two
approximations. We now notice that the absolute errors are smallest when 𝑘 is close to the mean.
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(d) Repeat exercises (a) and (b) for 𝑛 = 30 and 𝑝 = 0.5.
The absolute and relative errors for 𝑘 = 0, 1, . . . , 30 are listed in Table 5 and Table 6. The errors have also been plotted
in Figure 5.

Figure 5: Probabilities (left) and absolute errors and relative errors (right) for the between the Binomial distribution and the
Poisson, Normal, and Entropic distribution for 𝑛 = 30 and 𝑝 = 0.25.

Commentary for part (d):
• Poisson Approximation: As expected, the Poisson approximation becomes even worse now that 𝑝 = 0.50. The

approximation significantly overestimates probabilities when 𝑘 is away from the mean. It still does reasonably
well when 𝑘 is close to the mean but not as well as before.

• Normal Approximation: The Normal approximation performs better when 𝑝 = 0.50 compared to the earlier
cases simply because there are more values of 𝑘 that are near the mean. Still when 𝑘 is small or large, the Normal
approximation falls apart resulting large absolute errors (much larger than 1 in some cases).

• Entropic Approximation: The Entropic approximation (to no surprise) provides the best accuracy. It shows
small absolute and relative errors across the entire range of 𝑘, especially when 𝑘 is near the mean. It is striking
that the absolute error is minimized at 𝑘 = 𝑛/2 regardless of the 𝑝.
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2. (KL-Divergence, Multinomial)
Let𝑋 and𝑌 be discrete random variables with distributions 𝑝 and 𝑞, respectively. So 𝑝(𝑘) = ℙ(𝑋 = 𝑘) and 𝑞(𝑘) = ℙ(𝑌 = 𝑘).
Recall that the Kullback-Leibler divergence is defined by

KL(𝑝 ∥ 𝑞) := 𝔼𝑝

[
ln

(
𝑝(𝑋)
𝑞(𝑋)

)]
=

∑
𝑘

𝑝(𝑘) ln
(
𝑝(𝑘)
𝑞(𝑘)

)
.

(a) Show that when 𝑞(𝑘) is a Poisson distribution with parameter 𝜆 > 0, the KL-divergence is minimized by setting 𝜆 to
be the mean of 𝑝(𝑘).
Let 𝑞(𝑘) follow a Poisson distribution, i.e., 𝑞(𝑘) = ℙ(𝑌 = 𝑘) = 𝑒−𝜆𝜆𝑘/𝑘! for 𝑘 ∈ {0, 1, ..., 𝑛}, 𝜆 > 0. Then the KL
divergence can be written as

KL(𝑝 ∥ 𝑞) =
∑

𝑘∈{0,...,𝑛}
𝑝(𝑘) log

(
𝑝(𝑘)
𝑞(𝑘)

)
=

∑
𝑘∈{0,...,𝑛}

𝑝(𝑘) log
(
𝑝(𝑘)𝑘!
𝑒−𝜆𝜆𝑘

)
=

𝜕

𝜕𝜆

∑
𝑘∈{0,...,𝑛}

𝑝(𝑘) log
(
𝑝(𝑘)𝑘!𝑒𝜆𝜆−𝑘

)
Setting the derivate of the KL divergence with respect to 𝜆 equal to 0 results in

𝜕

𝜕𝜆
KL(𝑝 ∥ 𝑞) = 𝜕

𝜕𝜆

∑
𝑘∈{0,...,𝑛}

𝑝(𝑘) log
(
𝑝(𝑘)𝑘!
𝑒−𝜆𝜆𝑘

)
=

∑
𝑘∈{0,...,𝑛}

𝑝(𝑘)
(

1
𝑝(𝑘)𝑘!𝑒𝜆𝜆−𝑘

)
𝜕

𝜕𝜆

(
𝑝(𝑘)𝑘!𝑒𝜆𝜆−𝑘

)
𝜕

𝜕𝜆
KL(𝑝 ∥ 𝑞) =

∑
𝑘∈{0,...,𝑛}

𝑝(𝑘)
(

1
𝑒𝜆𝜆−𝑘

) (
𝑒𝜆𝜆−𝑘 − 𝑘𝑒𝜆𝜆−𝑘−1

)
=

∑
𝑘∈{0,...,𝑛}

𝑝(𝑘)
(
1 − 𝑘𝑒𝜆𝜆−𝑘−1

𝑒𝜆𝜆−𝑘

)
𝜕

𝜕𝜆
KL(𝑝 ∥ 𝑞) =

∑
𝑘∈{0,...,𝑛}

𝑝(𝑘)
(
1 − 𝑘𝜆−𝑘𝜆−1

𝜆−𝑘

)
=

∑
𝑘∈{0,...,𝑛}

𝑝(𝑘)
(
1 − 𝑘

𝜆

)
= 0

=⇒ 𝜆

���
���*1∑

𝑘∈{0,...,𝑛}
𝑝(𝑘) =

∑
𝑘∈{0,...,𝑛}

𝑝(𝑘)𝑘

=⇒ 𝜆★ = 𝔼[𝑋]

(b) Remember that the entropy 𝐻(𝑝) is defined to be 𝐻(𝑝 |𝑞) := −𝔼𝑝[ln(𝑝(𝑋))]. Assume that we need to place 𝑛 balls
into 𝑑 bins. The number of ways to place the balls, resulting in 𝑘𝑖 total balls in bin 𝑖, for 𝑖 = 1, . . . , 𝑑, is given by the
combinatorial expression (

𝑛

𝑘1 , 𝑘2 , . . . , 𝑘𝑑

)
.

Now, consider the empirical distribution of the balls. Its probability mass function is 𝑝(𝑖) = 𝑘𝑖/𝑛. Let 𝑁𝑝 denote the
number of configurations with empirical distribution 𝑝. Show that

ln
(
𝑁𝑝

)
= 𝑛𝐻(𝑝) + 𝒪(ln(𝑛)),

where 𝐻(𝑝) is the entropy of 𝑝.
In other words, there are many more high-entropy configurations than low-entropy configurations. This suggests
the intuition that, if we consider a physical system at a “macro level” (such as the distribution of gas particles in a
container) then we should expect it to drift toward high-entropy configurations.
Hint: Recall Stirling’s approximation

ln(𝑛!) = 𝑛 ln(𝑛) − 𝑛 + 𝒪(ln(𝑛)).

We begin by taking the log of combinatorial expression
( 𝑛
𝑘1 ,𝑘2 ,...,𝑘𝑑

)
. We have that

log
(
𝑁𝑝

)
= log

(
𝑛

𝑘1 , 𝑘2 , . . . , 𝑘𝑑

)
= log

(
𝑛!

𝑘1!𝑘2! . . . 𝑘𝑑!

)
= log(𝑛!) − log(𝑘1!𝑘2! . . . 𝑘𝑑!) = log(𝑛!) −

𝑑∑
𝑖=1

log(𝑘𝑖 !)

Next, we apply Stirling’s approximation to log(𝑛!) and log(𝑘𝑖 !) to arrive at

log
(
𝑁𝑝

)
= 𝑛 log(𝑛) − 𝑛 + 𝒪(log(𝑛)) −

𝑑∑
𝑖=1

(
𝑘𝑖 log(𝑘𝑖) − 𝑘𝑖 + 𝒪(log(𝑘𝑖))

)
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log
(
𝑁𝑝

)
= 𝑛 log(𝑛) − 𝑛 −

𝑑∑
𝑖=1

(
𝑛𝑝(𝑖) log(𝑛𝑝(𝑖)) − 𝑛𝑝(𝑖)

)
+ 𝒪(log(𝑛)) −

𝑑∑
𝑖=1

𝒪(log(𝑘𝑖))

log
(
𝑁𝑝

)
= 𝑛 log(𝑛) − 𝑛 −

𝑑∑
𝑖=1

𝑛𝑝(𝑖) log(𝑛𝑝(𝑖)) + 𝑛
𝑑∑
𝑖=1

𝑝(𝑖) + 𝒪(log(𝑛)) −
𝑑∑
𝑖=1

𝒪(log(𝑘𝑖))

log
(
𝑁𝑝

)
= 𝑛 log(𝑛) − 𝑛 − 𝑛 log(𝑛)

𝑑∑
𝑖=1

𝑝(𝑖)︸  ︷︷  ︸
1

−𝑛
𝑑∑
𝑖=1

𝑝(𝑖) log(𝑝(𝑖))︸               ︷︷               ︸
−𝐻(𝑝)

+𝑛
𝑑∑
𝑖=1

𝑝(𝑖)︸  ︷︷  ︸
1

+𝒪(log(𝑛)) −
𝑑∑
𝑖=1

𝒪(log(𝑘𝑖))

log
(
𝑁𝑝

)
= 𝑛 log(𝑛) − 𝑛 − 𝑛 log(𝑛) + 𝑛𝐻(𝑝) + 𝑛 + 𝒪(log(𝑛)) −

𝑑∑
𝑖=1

𝒪(log(𝑘𝑖))

log
(
𝑁𝑝

)
= 𝑛𝐻(𝑝) + 𝒪(log(𝑛))

3. (Poisson)
Let 𝐾 = 𝑋1 + 𝑋2 + · · · + 𝑋𝑁 , where 𝑁 ∼ Poisson(𝜆) and 𝑋1 , 𝑋2 , . . . are independent Bernoulli(𝑝) random variables.
Assuming that 𝑁 and {𝑋𝑖}𝑖∈ℕ are mutually independent, find the distribution of 𝐾.
To solve this problem, we utilize probability generating functions (p.g.f.’s). Recall that the p.g.f. of the Poisson distribution

𝐺𝑁 (𝑡) = 𝔼[𝑡𝑁 ] =
∞∑
𝑛=0

𝑡𝑛 ℙ[𝑁 = 𝑛] =
∞∑
𝑛=0

𝑡𝑛
(
𝑒−𝜆𝜆𝑛

𝑛!

)
= 𝑒−𝜆

∞∑
𝑛=0

(
(𝑡𝜆)𝑛
𝑛!

)
1
= 𝑒−𝜆𝑒 𝑡𝜆 = 𝑒𝜆(𝑡−1) for all |𝑡 | ≤ 1,𝜆 > 0.

Additionally, recall the p.g.f. for Bernoulli random variables

𝐺𝑋𝑖 (𝑡) = 𝔼[𝑡𝑋𝑖 ] =
∞∑
𝑛=0

𝑡𝑛 ℙ[𝑋𝑖 = 𝑛] = 1 − 𝑝 + 𝑡𝑝 for all |𝑡 | ≤ 1, 𝑝 ∈ [0, 1].

Then by the Compunding theorem from Lecture 11, we have that

𝐺𝐾(𝑡) = 𝐺𝑁 (𝐺𝑋(𝑡)) =
∞∑
𝑛=0

(𝐺𝑋(𝑡))𝑛 ℙ[𝑁 = 𝑛] =
∞∑
𝑛=0

(1 − 𝑝 + 𝑝𝑡)𝑛 𝑒
−𝜆𝜆𝑛

𝑛! = 𝑒−𝜆
∞∑
𝑛=0

[(1 − 𝑝 + 𝑝𝑡)𝜆]𝑛
𝑛! = 𝑒−𝜆𝑒(1−𝑝+𝑝𝑡)𝜆

𝐺𝐾(𝑡) = 𝑒𝜆−𝜆𝑝+𝜆𝑝𝑡−𝜆 = 𝑒𝜆𝑝(𝑡−1)

We notice the p.g.f. of 𝐾 has the same form as the Poisson distribution with parameter 𝜆𝑝. Thus we conclude

𝐾 ∼ Poisson(𝜆𝑝)

4. (Joint densities)
Let the joint density function of (𝑋,𝑌) be

𝑓 (𝑥, 𝑦) =
{

3𝑥𝑦(𝑥 + 𝑦), if (𝑥, 𝑦) ∈ [0, 1]2 ,
0, else.

Calculate the covariance Cov(𝑋,𝑌).
Recall the covariance can be written as Cov(𝑋,𝑌) = 𝔼[𝑋𝑌] − 𝔼[𝑋]𝔼[𝑌]. We calculate each of these terms starting with
𝔼[𝑋],

𝔼[𝑋] =
∫ 1

0

∫ 1

0
𝑥 𝑓 (𝑥, 𝑦)𝑑𝑥𝑑𝑦 =

∫ 1

0

∫ 1

0
3𝑥2𝑦(𝑥 + 𝑦)𝑑𝑥𝑑𝑦 = 3

∫ 1

0

∫ 1

0
𝑥3𝑦𝑑𝑥𝑑𝑦 + 3

∫ 1

0

∫ 1

0
𝑥2𝑦2𝑑𝑥𝑑𝑦

1Recall the power series expansion of the exponential function, exp(𝑥) = ∑∞
𝑛=0

𝑥𝑛

𝑛! .
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𝔼[𝑋] = 3
∫ 1

0

𝑦

4 𝑑𝑦 + 3
∫ 1

0

𝑦2

3 𝑑𝑦 =
3
8 + 3

9 =
17
24 .

By symmetry, we have that 𝔼[𝑋] = 𝔼[𝑌] = 17
24 . We then calculate 𝔼[𝑋𝑌] as

𝔼[𝑋𝑌] =
∫ 1

0

∫ 1

0
𝑥𝑦 𝑓 (𝑥, 𝑦)𝑑𝑥𝑑𝑦 =

∫ 1

0

∫ 1

0
3𝑥2𝑦2(𝑥 + 𝑦)𝑑𝑥𝑑𝑦 = 3

∫ 1

0

∫ 1

0
𝑥3𝑦2𝑑𝑥𝑑𝑦 + 3

∫ 1

0

∫ 1

0
𝑥2𝑦3𝑑𝑥𝑑𝑦

𝔼[𝑋𝑌] = 3
12 + 3

12 =
1
2 .

Taken together, we have the Cov(𝑋,𝑌) is

Cov(𝑋,𝑌) = 𝔼[𝑋𝑌] − 𝔼[𝑋]𝔼[𝑌] = 1
2 −

(
17
24

)2
=⇒ Cov(𝑋,𝑌) = − 1

576 .

5. (Transformation of random variables)

(a) Suppose 𝑋 has the Cauchy distribution with density:

𝑓𝑋(𝑥) := 1
𝜋(1 + 𝑥2) .

Show that 1/𝑋 has the same distribution as 𝑋.
Let 𝑌 = 𝑇(𝑋) = 1/𝑋 and 𝑋 = 𝑇−1(𝑌) = 1/𝑌. Then we have

𝑓𝑌(𝑦) = 𝑓𝑋
(
𝑇−1(𝑦)

) ����d𝑇−1(𝑦)
d𝑦

���� = 𝑓𝑋 (1/𝑦)
����− 1
𝑦2

���� = 1

𝜋

(
1 +

(
1
𝑦

)2
) (

1
𝑦2

)
=

𝑦2

𝜋(𝑦2 + 1)

(
1
𝑦2

)
=

1
𝜋(1 + 𝑦2)

Since 𝑓𝑋(𝑥) = 𝑓1/𝑋(𝑥), we have that 𝑋
𝑑
= 1/𝑋 where 𝑑

= is that the random variables are equal in distribution.

(b) Suppose 𝑌 ∼ Exp(1). Find a function 𝑔 : (0,∞) → (−∞,∞) such that 𝑔(𝑌) has the Cauchy distribution with density
given by (a).

Note that any r.v. 𝐴 with c.d.f. 𝐹𝐴 has the following property: 𝐹𝐴(𝐴)
𝑑
= 𝑈 where 𝑈 ∼ Uniform(0, 1). Let 𝑋 = 𝑔(𝑌)

for a function 𝑔 : (0,∞) → (−∞,∞). Recall that 𝑋 ∼ Cauchy(0, 1) has a p.d.f. of 𝑓𝑋(𝑥) = 1
𝜋(1+𝑥2) and c.d.f. of

𝐹𝑋(𝑥) = 1
𝜋 tan−1(𝑥) + 1

2 for all 𝑥 ∈ (−∞,∞). Additionally, recall 𝑌 ∼ Exp(1) has a p.d.f. of 𝑓𝑌(𝑦) = 𝑒−𝑦 and c.d.f. of
𝐹𝑌(𝑦) = 1 − 𝑒−𝑦 for all 𝑦 ≥ 0. It then follows that

𝐹𝑌(𝑌)
𝑑
= 𝑈

𝑑
= 𝐹𝑋(𝑋) 𝑑

= 𝐹𝑋(𝑔(𝑌)) =⇒ 𝐹𝑌(𝑌)
𝑑
= 𝐹𝑋(𝑔(𝑌)) =⇒ 1 − 𝑒−𝑌 𝑑

=
1
𝜋

tan−1(𝑔(𝑌)) + 1
2

Solving for 𝑔(𝑌) results in

𝑔(𝑌) = tan
(𝜋

2 − 𝜋𝑒−𝑌
)
=

sin
(𝜋

2 − 𝜋𝑒−𝑌
)

cos
(𝜋

2 − 𝜋𝑒−𝑌
) =

cos
(
𝜋𝑒−𝑌

)
sin

(
𝜋𝑒−𝑌

) = cot
(
𝜋𝑒−𝑌

)
=⇒ 𝑔(𝑌) = cot

(
𝜋𝑒−𝑌

)
(c) Suppose 𝑍 ∼ Exp(𝜆), where 𝜆 > 0. Show that the distribution of 𝑊 := ⌈𝑍⌉ (here ⌈𝑧⌉ is the smallest integer that is

larger than or equal to 𝑧) is Geometric. Explicitly express the parameter of the Geometric distribution in terms of 𝜆.
To begin, we recall that 𝑍 ∼ Exp(𝜆) has a p.d.f. of 𝑓𝑍(𝑧) = 𝜆𝑒−𝜆𝑧 and c.d.f. of 𝐹𝑍(𝑧) = 1 − 𝑒−𝜆𝑧 for all 𝑧 ≥ 0.
Additionally, recall that𝑊 ∼ Geometric has ℙ[𝑊 = 𝑘] = (1 − 𝑝)𝑘−1𝑝 for all 𝑘 = 1, 2, 3, .... It then follows that

ℙ[𝑊 = 𝑘] = ℙ[𝑘 − 1 < 𝑍 ≤ 𝑘] = 𝐹𝑍(𝑘) − 𝐹𝑍(𝑘 − 1) = 1 − 𝑒−𝜆𝑘 −
(
1 − 𝑒−𝜆(𝑘−1)

)
= 𝑒−𝜆(𝑘−1) − 𝑒−𝜆𝑘 = 𝑒−𝜆(𝑘−1) − 𝑒−𝜆𝑘 𝑒𝜆

𝑒𝜆

ℙ[𝑊 = 𝑘] = 𝑒−𝜆(𝑘−1) − 𝑒−𝜆𝑘+𝜆

𝑒𝜆
= 𝑒−𝜆(𝑘−1) − 𝑒−𝜆(𝑘−1)

𝑒𝜆
= 𝑒−𝜆(𝑘−1)

(
1 − 1

𝑒𝜆

)
= (𝑒−𝜆)(𝑘−1)︸     ︷︷     ︸

(1−𝑝)𝑘−1

(
1 − 𝑒−𝜆

)
︸     ︷︷     ︸

𝑝

By inspection, we see that 𝑊 = ⌈𝑍⌉ ∼ Geometric with a parameter 𝑝 = 1 − 𝑒−𝜆.
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6. (Transformation of random variables)
Suppose 𝑋 ∼ Uniform[−𝜋, 2𝜋]. Find the p.d.f. of 𝑌 = sin(𝑋).
This problem involves what we call a many-to-one transformation 𝑇. Therefore, we begin by splitting the domain of 𝑋 into
regions of monotonicity of 𝑌 = sin(𝑋).

−𝜋 −𝜋
2

𝜋
2

𝜋 3𝜋
2

2𝜋

−1

1
𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6

𝑋

𝑌 = sin(𝑋)

We then define the inverse transforms for each partition as

𝑇−1
1 (𝑦) =



sin−1(𝑦) − 𝜋/2 for 𝑥 ∈ 𝐴1 = [−𝜋,−𝜋/2] 𝑦 ∈ [−1, 0]
sin−1(𝑦) for 𝑥 ∈ 𝐴2 = [−𝜋/2, 0] 𝑦 ∈ [−1, 0]
sin−1(𝑦) + 𝜋/2 for 𝑥 ∈ 𝐴3 = (0,𝜋/2] 𝑦 ∈ (0, 1]
sin−1(𝑦) + 𝜋 for 𝑥 ∈ 𝐴4 = [𝜋/2,𝜋) 𝑦 ∈ (0, 1]
sin−1(𝑦) + 3𝜋/2 for 𝑥 ∈ 𝐴5 = [𝜋, 3𝜋/2] 𝑦 ∈ [−1, 0]
sin−1(𝑦) + 2𝜋 for 𝑥 ∈ 𝐴6 = [3𝜋/2, 2𝜋] 𝑦 ∈ [−1, 0]

Then for 𝑦 ∈ [−1, 0], we have

𝑓𝑌(𝑦) =
∑

𝑖∈{1,2,5,6}
𝑓𝑋

(
𝑇−1
𝑖 (𝑦)

) �����𝑑𝑇−1
𝑖

(𝑦)
𝑑𝑦

����� = ∑
𝑖∈{1,2,5,6}

1
3𝜋

1√
1 − 𝑦2

=
4

3𝜋
1√

1 − 𝑦2

Similarly, for 𝑦 ∈ (0, 1], we have

𝑓𝑌(𝑦) =
∑
𝑖∈{3,4}

𝑓𝑋

(
𝑇−1
𝑖 (𝑦)

) �����𝑑𝑇−1
𝑖

(𝑦)
𝑑𝑦

����� = ∑
𝑖∈{3,4}

1
3𝜋

1√
1 − 𝑦2

=
2

3𝜋
1√

1 − 𝑦2

Taken together we have that

𝑓𝑌(𝑦) =


4

3𝜋
√

1−𝑦2
for 𝑦 ∈ [−1, 0],

2
3𝜋
√

1−𝑦2
for 𝑦 ∈ (0, 1],

0 otherwise.
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(a) Take 𝑛 = 30 and 𝑝 = 0.05. Create a table (31 rows and 3 columns) containing the absolute errors for each approximation:

|ℙ(𝑋 = 𝑘) − ℙ(𝑌 = 𝑘)|, |ℙ(𝑋 = 𝑘) − 𝜙(𝑘; 𝑛𝑝, 𝑛𝑝(1 − 𝑝))|, and |ℙ(𝑋 = 𝑘) − Ent(𝑘; 𝑛, 𝑝)|

for 𝑘 = 0, 1, . . . , 30. (Note: The entropic approximation does not exist for 𝑘 = 0 and 𝑘 = 30, so only list it for
𝑘 = 1, . . . , 29). Based on the table, comment on the accuracy of each of the three approximations for the Binomial
distribution.

Table 1: Absolute errors for the between the Binomial distribution and the Poisson, Normal, and Entropic distribution for
𝑛 = 30 and 𝑝 = 0.05.

𝑘 |ℙ(𝑋 = 𝑘) − ℙ(𝑌 = 𝑘)| |ℙ(𝑋 = 𝑘) − 𝜙(𝑘; 𝑛𝑝, 𝑛𝑝(1 − 𝑝))| |ℙ(𝑋 = 𝑘) − Ent(𝑘; 𝑛, 𝑝)|
0 0.0085 0.063
1 0.0042 0.033 0.029
2 0.0076 0.047 0.011
3 0.0015 0.025 0.0036
4 0.0019 0.0078 0.00097
5 0.0018 0.0078 0.00021
6 0.00082 0.0024 4.0 × 10−5

7 0.00027 0.00048 6.3 × 10−6

8 6.8 × 10−5 7.4 × 10−5 8.5 × 10−7

9 1.4 × 10−5 9.5 × 10−6 1.0 × 10−7

10 2.5 × 10−6 1.1 × 10−6 1.0 × 10−8

11 3.8 × 10−7 1.0 × 10−7 9.3 × 10−10

12 5.2 × 10−8 8.4 × 10−9 7.4 × 10−11

13 6.4 × 10−9 6.1 × 10−10 5.2 × 10−12

14 7.1 × 10−10 3.9 × 10−11 3.3 × 10−13

15 7.3 × 10−11 2.2 × 10−12 1.8 × 10−14

16 6.9 × 10−12 1.1 × 10−13 9.1 × 10−16

17 6.1 × 10−13 4.7 × 10−15 4.0 × 10−17

18 5.1 × 10−14 1.8 × 10−16 1.6 × 10−18

19 4.1 × 10−15 5.9 × 10−18 5.5 × 10−20

20 3.0 × 10−16 1.7 × 10−19 1.7 × 10−21

21 2.2 × 10−17 4.3 × 10−21 4.5 × 10−23

22 1.5 × 10−18 9.3 × 10−23 1.1 × 10−24

23 9.7 × 10−20 1.7 × 10−24 2.2 × 10−26

24 6.1 × 10−21 2.6 × 10−26 3.8 × 10−28

25 3.6 × 10−22 3.3 × 10−28 5.7 × 10−30

26 2.1 × 10−23 3.3 × 10−30 7.1 × 10−32

27 1.2 × 10−24 2.6 × 10−32 7.4 × 10−34

28 6.2 × 10−26 1.5 × 10−34 6.2 × 10−36

29 3.2 × 10−27 5.3 × 10−37 4.5 × 10−38

30 1.6 × 10−28 9.3 × 10−40
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(b) Create a similar table for the relative errors:

|ℙ(𝑋 = 𝑘) − ℙ(𝑌 = 𝑘)|
ℙ(𝑋 = 𝑘) ,

|ℙ(𝑋 = 𝑘) − 𝜙(𝑘; 𝑛𝑝, 𝑛𝑝(1 − 𝑝))|
ℙ(𝑋 = 𝑘) , and

|ℙ(𝑋 = 𝑘) − Ent(𝑘; 𝑛, 𝑝)|
ℙ(𝑋 = 𝑘)

for 𝑘 = 0, 1, . . . , 30. Based on this table, comment on the accuracy of each of the three approximations for the Binomial.

Table 2: Relative errors for the between the Binomial distribution and the Poisson, Normal, and Entropic distribution for
𝑛 = 30 and 𝑝 = 0.05.

𝑘
|ℙ(𝑋=𝑘)−ℙ(𝑌=𝑘)|

ℙ(𝑋=𝑘)
|ℙ(𝑋=𝑘)−𝜙(𝑘;𝑛𝑝,𝑛𝑝(1−𝑝))|

ℙ(𝑋=𝑘)
|ℙ(𝑋=𝑘)−Ent(𝑘;𝑛,𝑝)|

ℙ(𝑋=𝑘)

0 0.040 0.29
1 0.012 0.097 0.085
2 0.029 0.18 0.042
3 0.012 0.19 0.028
4 0.043 0.17 0.021
5 0.14 0.63 0.017
6 0.30 0.90 0.015
7 0.55 0.98 0.013
8 0.92 1.0 0.011
9 1.5 1.0 0.011
10 2.4 1.0 0.0098
11 3.8 1.0 0.0092
12 6.2 1.0 0.0088
13 10. 1.0 0.0086
14 18. 1.0 0.0084
15 33. 1.0 0.0084
16 64. 1.0 0.0084
17 1.3 × 10+2 1.0 0.0086
18 2.9 × 10+2 1.0 0.0088
19 6.9 × 10+2 1.0 0.0092
20 1.8 × 10+3 1.0 0.0098
21 5.1 × 10+3 1.0 0.011
22 1.6 × 10+4 1.0 0.011
23 5.7 × 10+4 1.0 0.013
24 2.3 × 10+5 1.0 0.015
25 1.1 × 10+6 1.0 0.017
26 6.3 × 10+6 1.0 0.021
27 4.5 × 10+7 1.0 0.028
28 4.3 × 10+8 1.0 0.042
29 6.1 × 10+9 1.0 0.085
30 1.7 × 10+11 1.0
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(c) Repeat exercises (a) and (b) for 𝑛 = 30 and 𝑝 = 0.25.

Table 3: Absolute errors for the between the Binomial distribution and the Poisson, Normal, and Entropic distribution for
𝑛 = 30 and 𝑝 = 0.25.

𝑘 |ℙ(𝑋 = 𝑘) − ℙ(𝑌 = 𝑘)| |ℙ(𝑋 = 𝑘) − 𝜙(𝑘; 𝑛𝑝, 𝑛𝑝(1 − 𝑝))| |ℙ(𝑋 = 𝑘) − Ent(𝑘; 𝑛, 𝑝)|
0 0.00037 0.00095
1 0.0024 0.0021 0.00015
2 0.0069 0.0028 0.00037
3 0.012 0.00095 0.00076
4 0.012 0.0038 0.0013
5 0.0046 0.0082 0.0018
6 0.0087 0.0077 0.0021
7 0.020 0.0017 0.0021
8 0.022 0.0052 0.0018
9 0.015 0.0079 0.0014
10 0.0050 0.0056 0.00089
11 0.0035 0.0015 0.00051
12 0.0075 0.0013 0.00026
13 0.0077 0.0020 0.00011
14 0.0059 0.0015 4.6 × 10−5

15 0.0037 0.00080 1.6 × 10−5

16 0.0020 0.00033 5.1 × 10−6

17 0.0010 0.00011 1.4 × 10−6

18 0.00045 3.1 × 10−5 3.5 × 10−7

19 0.00018 7.1 × 10−6 7.7 × 10−8

20 7.1 × 10−5 1.4 × 10−6 1.5 × 10−8

21 2.6 × 10−5 2.3 × 10−7 2.6 × 10−9

22 8.7 × 10−6 3.2 × 10−8 3.8 × 10−10

23 2.9 × 10−6 3.8 × 10−9 5.0 × 10−11

24 8.9 × 10−7 3.7 × 10−10 5.5 × 10−12

25 2.7 × 10−7 3.0 × 10−11 5.2 × 10−13

26 7.7 × 10−8 1.9 × 10−12 4.1 × 10−14

27 2.2 × 10−8 9.5 × 10−14 2.7 × 10−15

28 5.8 × 10−9 3.4 × 10−15 1.4 × 10−16

29 1.5 × 10−9 7.8 × 10−17 6.6 × 10−18

30 3.7 × 10−10 8.6 × 10−19
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Table 4: Relative errors for the between the Binomial distribution and the Poisson, Normal, and Entropic distribution for
𝑛 = 30 and 𝑝 = 0.25.

𝑘
|ℙ(𝑋=𝑘)−ℙ(𝑌=𝑘)|

ℙ(𝑋=𝑘)
|ℙ(𝑋=𝑘)−𝜙(𝑘;𝑛𝑝,𝑛𝑝(1−𝑝))|

ℙ(𝑋=𝑘)
|ℙ(𝑋=𝑘)−Ent(𝑘;𝑛,𝑝)|

ℙ(𝑋=𝑘)

0 2.1 5.3
1 1.3 1.2 0.085
2 0.80 0.32 0.042
3 0.45 0.035 0.028
4 0.21 0.063 0.021
5 0.044 0.078 0.017
6 0.060 0.053 0.015
7 0.12 0.010 0.013
8 0.14 0.033 0.011
9 0.12 0.061 0.011
10 0.055 0.062 0.0098
11 0.063 0.028 0.0092
12 0.26 0.043 0.0088
13 0.57 0.15 0.0086
14 1.1 0.28 0.0084
15 1.9 0.41 0.0084
16 3.4 0.55 0.0084
17 6.1 0.67 0.0086
18 11. 0.77 0.0088
19 22. 0.84 0.0092
20 46. 0.90 0.0098
21 1.0 × 10+2 0.94 0.011
22 2.6 × 10+2 0.96 0.011
23 7.4 × 10+2 0.98 0.013
24 2.4 × 10+3 0.99 0.015
25 8.9 × 10+3 0.99 0.017
26 4.0 × 10+4 0.99 0.021
27 2.3 × 10+5 1.0 0.028
28 1.7 × 10+6 1.0 0.042
29 1.9 × 10+7 1.0 0.085
30 4.3 × 10+8 0.99

30



(d) Repeat exercises (a) and (b) for 𝑛 = 30 and 𝑝 = 0.5.

Table 5: Absolute errors for the between the Binomial distribution and the Poisson, Normal, and Entropic distribution for
𝑛 = 30 and 𝑝 = 0.50.

𝑘 |ℙ(𝑋 = 𝑘) − ℙ(𝑌 = 𝑘)| |ℙ(𝑋 = 𝑘) − 𝜙(𝑘; 𝑛𝑝, 𝑛𝑝(1 − 𝑝))| |ℙ(𝑋 = 𝑘) − Ent(𝑘; 𝑛, 𝑝)|
0 3.0 × 10−7 4.4 × 10−8

1 4.6 × 10−6 2.8 × 10−7 2.4 × 10−9

2 3.4 × 10−5 1.5 × 10−6 1.7 × 10−8

3 0.00017 6.1 × 10−6 1.1 × 10−7

4 0.00062 2.0 × 10−5 5.5 × 10−7

5 0.0018 5.3 × 10−5 2.3 × 10−6

6 0.0043 0.00010 8.1 × 10−6

7 0.0085 0.00015 2.4 × 10−5

8 0.014 0.00010 6.3 × 10−5

9 0.019 0.00011 0.00014
10 0.021 0.00047 0.00027
11 0.015 0.00074 0.00047
12 0.0023 0.00061 0.00071
13 0.016 4.0 × 10−5 0.00096
14 0.033 0.00084 0.0011
15 0.042 0.0012 0.0012
16 0.039 0.00084 0.0011
17 0.027 4.0 × 10−5 0.00096
18 0.0099 0.00061 0.00071
19 0.0049 0.00074 0.00047
20 0.014 0.00047 0.00027
21 0.017 0.00011 0.00014
22 0.015 0.00010 6.3 × 10−5

23 0.011 0.00015 2.4 × 10−5

24 0.0077 0.00010 8.1 × 10−6

25 0.0048 5.3 × 10−5 2.3 × 10−6

26 0.0028 2.0 × 10−5 5.5 × 10−7

27 0.0016 6.1 × 10−6 1.1 × 10−7

28 0.00085 1.5 × 10−6 1.7 × 10−8

29 0.00044 2.8 × 10−7 2.4 × 10−9

30 0.00022 4.4 × 10−8
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Table 6: Relative errors for the between the Binomial distribution and the Poisson, Normal, and Entropic distribution for
𝑛 = 30 and 𝑝 = 0.50.

𝑘
|ℙ(𝑋=𝑘)−ℙ(𝑌=𝑘)|

ℙ(𝑋=𝑘)
|ℙ(𝑋=𝑘)−𝜙(𝑘;𝑛𝑝,𝑛𝑝(1−𝑝))|

ℙ(𝑋=𝑘)
|ℙ(𝑋=𝑘)−Ent(𝑘;𝑛,𝑝)|

ℙ(𝑋=𝑘)

0 3.3 × 10+2 47.
1 1.6 × 10+2 10. 0.085
2 84. 3.6 0.042
3 45. 1.6 0.028
4 24. 0.79 0.021
5 14. 0.40 0.017
6 7.8 0.19 0.015
7 4.5 0.078 0.013
8 2.6 0.019 0.011
9 1.4 0.0082 0.011
10 0.74 0.017 0.0098
11 0.30 0.015 0.0092
12 0.029 0.0075 0.0088
13 0.14 0.00036 0.0086
14 0.24 0.0062 0.0084
15 0.29 0.0084 0.0084
16 0.29 0.0062 0.0084
17 0.24 0.00036 0.0086
18 0.12 0.0075 0.0088
19 0.096 0.015 0.0092
20 0.49 0.017 0.0098
21 1.2 0.0082 0.011
22 2.7 0.019 0.011
23 6.0 0.078 0.013
24 14. 0.19 0.015
25 37. 0.40 0.017
26 1.1 × 10+2 0.79 0.021
27 4.2 × 10+2 1.6 0.028
28 2.1 × 10+3 3.6 0.042
29 1.6 × 10+4 10. 0.085
30 2.4 × 10+5 47.

32



Code for Question 1

1 import os
2 from glob import glob
3 import numpy as np
4 from math import factorial , comb, exp, pi, sqrt, log
5 import re
6 from PIL import Image
7 import matplotlib.pyplot as plt
8 import matplotlib as mpl
9 mpl.rcParams[’text.usetex’] = True

10 mpl.rcParams[’text.latex.preamble’] = r’\usepackage{mathpazo}’
11 mpl.rcParams["font.family"] = "Palatino"
12

13 # Create a figure dir if it does not already exists
14 FIG_DIR = os.path.join(os.path.abspath( os.path.dirname( __file__ ) ), "figures")
15 if not os.path.exists(FIG_DIR):
16 os.makedirs(FIG_DIR, exist_ok=True)
17

18 #%% Printing function
19 def replace_sci_notation(input_str):
20 return re.sub(r’(\d\.\d)e([+-])0*([0-9]+)’, r’\1 \\times 10^{\2\3}’, input_str)
21

22 def np_to_content(arr):
23 output = []
24 for k, r in enumerate(arr):
25 l = "\t\t${:d}$ & ${:#.2g}$ & ${:#.2g}$ & ${:#.2g}$ \\\\".format(int(r[0]), float(r[1]),

float(r[2]), float(r[3]))
26 l = replace_sci_notation(l)
27 if k == 0 or k == (arr.shape[0]-1):
28 l = l[:l.rfind("&")] + "& \\\\"
29 output.append(l)
30 return output
31

32 def print_table(data_in, title, caption, table):
33 # \begin{table}[!ht]
34 # \centering
35 # \begin{tabular}{C{1cm} C{5cm} C{5cm} C{5cm}}
36 # \toprule
37 # $k$
38 # & $|\Pr(X = k) - \Pr(Y = k)|$
39 # & $|\Pr(X = k) - \phi(k; np, np(1 - p))|$
40 # & $|\Pr(X = k) - \textnormal{Ent}(k; n, p)|$
41 # \\
42 # \midrule
43 # 0 & 0.01 & 0.01 & 0.01 \\
44 # \bottomrule
45 # \end{tabular}
46 # \end{table}
47 # Update the caption to include a \label
48 error_type = caption[caption.find("{")+1:caption.find("errors")-1]
49 inds = [i for i, c in enumerate(list(caption)) if c == "$"]
50 n_str = caption[inds[0]+1:inds[1]].replace("=","_")
51 p_str = caption[inds[2]+1:inds[3]].replace("=","_")
52 caption += "\n\t\label{%s_%s_%s}" % (error_type , n_str, p_str)
53

54 frontmatter = [
55 "\\begin{table}[!ht]",
56 "\t\centering",
57 "\t\\begin{tabular}{C{1cm} C{5cm} C{5cm} C{5cm}}",
58 "\t\t\\toprule"
59 ]
60 frontmatter.insert(2, caption)
61

62 middlematter = [
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63 "\t\t\\\\",
64 "\t\t\midrule",
65 ]
66 content = np_to_content(data_in)
67 endmatter = [
68 "\t\t\\bottomrule",
69 "\t\end{tabular}",
70 "\end{table}"
71 ]
72 # endmatter.insert(-1, caption)
73

74 print("\n")
75 print("="*50)
76 print(table)
77 print("="*50)
78 for line in frontmatter + title + middlematter + content + endmatter:
79 print(line)
80 print("="*50)
81 print("\n")
82

83 def plot_approximation(approx_probs , abs_errors , rel_errors , ylabels):
84

85 # Plotting the Two-Panel Plot for Approximation
86 # Compute PMFs
87 k_values = np.arange(0, len(abs_errors))
88 binom_probs = [binomial(n,p,k) for k in k_values]
89

90 # Create the Two-Panel Plot
91

92 # Option 1
93 # _, axes = plt.subplots(1, 2, figsize=(12, 6))
94

95 # Option 2
96 _, axes = plt.subplots(2, 1, figsize=(6, 12))
97

98 # --- Left Panel: Binomial vs Poisson ---
99 axes[0].bar(k_values - 0.2, binom_probs , width=0.4, label=’Binomial’, alpha=0.7, color=’blue’,

log=True)
100 axes[0].bar(k_values + 0.2, approx_probs , width=0.4, label=ylabels[0], alpha=0.7,

color=’orange’, log=True)
101 axes[0].set_xlabel(r’Number of Successes ($k$)’, fontsize=14)
102 axes[0].set_ylabel(r’Probability’, fontsize=14)
103 axes[0].set_title(r’Binomial vs. %s ($n=%d$, $p=%0.2f$)’ % (ylabels[0],n,p), fontsize=16)
104 axes[0].legend(fontsize=14, loc=’upper right’)
105 axes[0].grid(True, linestyle=’--’, alpha=0.5, which=’both’, axis=’y’)
106

107 # --- Right Panel: Absolute and Relative Errors --- #
108 ax1 = axes[1]
109 ax2 = ax1.twinx()
110

111 # Plot Absolute Errors
112 ax1.plot(k_values, abs_errors , color=’green’, marker=’o’)
113 ax1.set_xlabel(r’Number of Successes ($k$)’, fontsize=14)
114 ax1.set_ylabel(r’Absolute Error $ = %s$’ % ylabels[1], color=’green’, fontsize=14)
115 ax1.tick_params(axis=’y’, labelcolor=’green’)
116 ax1.set_yscale(’log’)
117 ax1.grid(True, linestyle=’--’, alpha=0.5, which=’both’, axis=’y’)
118

119 # Plot Relative Errors
120 ax2.plot(k_values, rel_errors , color=’red’, marker=’x’)
121 ax2.set_ylabel(r’Relative Error $ = %s$’ % ylabels[2], color=’red’, fontsize=14)
122 ax2.tick_params(axis=’y’, labelcolor=’red’)
123 ax2.set_yscale(’log’)
124

125 # Title
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126 axes[1].set_title(r’Errors of %s Approximation ($n=%d$, $p=%0.2f$)’ % (ylabels[0],n,p),
fontsize=16)

127

128 plt.tight_layout()
129 fig_name = "%s_%d_%0.2f.png" % (ylabels[0],n,p)
130 fig_path = os.path.join(FIG_DIR, fig_name)
131 plt.savefig(fig_path, dpi=600)
132

133 def plot_data(n,p,abs_data,rel_data):
134

135 # Poisson labels and approximate probabilities
136 ylabels = [
137 ’Poisson’,
138 r’|\Pr(X = k) - \Pr(Y = k)|’,
139 r’\frac{|\Pr(X = k) - \Pr(Y = k)|}{\Pr(X = k)}’
140 ]
141 approx_probs = [poisson(n*p, int(k)) for k in abs_data[:,0]]
142 plot_approximation(approx_probs , abs_data[:,1], rel_data[:,1], ylabels)
143

144 # Normal labels and approximate probabilities
145 ylabels = [
146 ’Normal’,
147 r’|\Pr(X = k) - \phi(k; np, np(1 - p))|’,
148 r’\frac{|\Pr(X = k) - \phi(k; np, np(1 - p))|}{\Pr(X = k)}’
149 ]
150 approx_probs = [normal(n,p,int(k)) for k in abs_data[:,0]]
151 plot_approximation(approx_probs , abs_data[:,2], rel_data[:,2], ylabels)
152

153 # Entropic labels and approximate probabilities
154 ylabels = [
155 ’Entropic’,
156 r’|\Pr(X = k) - \textnormal{Ent}(k; n, p)|’,
157 r’\frac{|\Pr(X = k) - \textnormal{Ent}(k; n, p)|}{\Pr(X = k)}’
158 ]
159 approx_probs = [entropic(n,p,int(k)) for k in abs_data[:,0]]
160 plot_approximation(approx_probs , abs_data[:,3], rel_data[:,3], ylabels)
161

162 # Join the figures as one png
163 join_figs(n,p)
164

165 def join_figs(n,p):
166

167 dists = [’Poisson’, ’Normal’, ’Entropic’]
168 search = os.path.join(FIG_DIR, "*%d_%.2f.png" % (n,p))
169 paths = glob(search)
170 images = []
171 for dist in dists:
172 for path in paths:
173 if dist in path:
174 print(path)
175 images.append(Image.open(path))
176 im_size = images[0].size
177

178 # Option 1
179 # new_im = Image.new(’RGB’, (im_size[0],3*im_size[1]), (255,255,255))
180 # new_im.paste(images[0], (0,0))
181 # new_im.paste(images[1], (0,1*im_size[1]))
182 # new_im.paste(images[2], (0,2*im_size[1]))
183 # new_im_path = os.path.join(FIG_DIR, "n%d_p%.2f.png" % (n,p))
184 # new_im.save(new_im_path , "PNG")
185

186 # Option 2
187 new_im = Image.new(’RGB’, (3*im_size[0],im_size[1]), (255,255,255))
188 new_im.paste(images[0], (0,0))
189 new_im.paste(images[1], (1*im_size[0], 0))
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190 new_im.paste(images[2], (2*im_size[0], 0))
191 new_im_path = os.path.join(FIG_DIR, "n%d_p%.2f.png" % (n,p))
192 new_im.save(new_im_path , "PNG")
193

194

195 #%% Distributions
196 def binomial(n,p,k):
197 return comb(n,k) * (p**k) * ((1-p)**(n-k))
198

199 def poisson(lambda_, k):
200 return ( exp(-lambda_) * (lambda_**k) ) / (factorial(k))
201

202 def normal(n,p,k):
203 return ( 1/sqrt(2*pi*n*p*(1-p)) ) * ( exp( - ((k-n*p)**2) / (2*n*p*(1-p)) ) )
204

205 def entropic(n,p,k):
206 if k == 0 or k == n:
207 return np.nan
208 else:
209 f = k/n
210 KL = f*log(f/p) + (1-f)*log((1-f)/(1-p))
211 return ( 1/sqrt(2*pi*n*f*(1-f)) ) * ( exp(-n*KL) )
212

213 #%% Error functions
214 def absolute_error(n,p,k_min,k_max):
215 out = np.zeros((k_max-k_min+1, 4))
216 for i, k in enumerate(range(k_min, k_max+1)):
217 out[i,0] = k
218 binom_k = binomial(n,p,k)
219 poisson_k = poisson(n*p,k)
220 normal_k = normal(n,p,k)
221 entropic_k = entropic(n,p,k)
222 out[i,1] = abs(binom_k-poisson_k)
223 out[i,2] = abs(binom_k-normal_k)
224 out[i,3] = abs(binom_k-entropic_k)
225 title_out = [
226 "\t\t$k$",
227 "\t\t& $|\Pr(X = k) - \Pr(Y = k)|$",
228 "\t\t& $|\Pr(X = k) - \phi(k; np, np(1 - p))|$",
229 "\t\t& $|\Pr(X = k) - \\textnormal{Ent}(k; n, p)|$"
230 ]
231 caption_out = "\t\caption{Absolute errors for the between the Binomial distribution and the

Poisson, Normal, and Entropic distribution for $n=%d$ and $p=%.2f$.}" % (n,p)
232 table_out = "Absolute errors for $n=%d$ and $p=%.2f$" % (n,p)
233 return out, title_out , caption_out , table_out
234

235 def relative_error(n,p,k_min,k_max):
236 out = np.zeros((k_max-k_min+1, 4))
237 for i, k in enumerate(range(k_min, k_max+1)):
238 out[i,0] = k
239 binom_k = binomial(n,p,k)
240 poisson_k = poisson(n*p,k)
241 normal_k = normal(n,p,k)
242 entropic_k = entropic(n,p,k)
243 out[i,1] = abs(binom_k-poisson_k)/binom_k
244 out[i,2] = abs(binom_k-normal_k)/binom_k
245 out[i,3] = abs(binom_k-entropic_k)/binom_k
246 title_out = [
247 "\t\t$k$",
248 "\t\t& $\\frac{|\Pr(X = k) - \Pr(Y = k)|}{\Pr(X = k)}$",
249 "\t\t& $\\frac{|\Pr(X = k) - \phi(k; np, np(1 - p))|}{\Pr(X = k)}$",
250 "\t\t& $\\frac{|\Pr(X = k) - \\textnormal{Ent}(k; n, p)|}{\Pr(X = k)}$"
251 ]
252 caption_out = "\t\caption{Relative errors for the between the Binomial distribution and the

Poisson, Normal, and Entropic distribution for $n=%d$ and $p=%.2f$.}" % (n,p)
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253 table_out = "Relative errors for $n=%d$ and $p=%.2f$" % (n,p)
254 return out, title_out , caption_out , table_out
255

256 #%% Part (a) and (b)
257 n = 30
258 p = 0.05
259 abs_error , title, caption, table = absolute_error(n,p,0,30)
260 print_table(abs_error , title, caption, table)
261 rel_error , title, caption, table = relative_error(n,p,0,30)
262 print_table(rel_error , title, caption, table)
263 plot_data(n,p,abs_error ,rel_error)
264

265 #%% Part (c)
266 n = 30
267 p = 0.25
268 abs_error , title, caption, table = absolute_error(n,p,0,30)
269 print_table(abs_error , title, caption, table)
270 rel_error , title, caption, table = relative_error(n,p,0,30)
271 print_table(rel_error , title, caption, table)
272 plot_data(n,p,abs_error ,rel_error)
273

274 #%% Part (d)
275 n = 30
276 p = 0.5
277 abs_error , title, caption, table = absolute_error(n,p,0,30)
278 print_table(abs_error , title, caption, table)
279 rel_error , title, caption, table = relative_error(n,p,0,30)
280 print_table(rel_error , title, caption, table)
281 plot_data(n,p,abs_error ,rel_error)
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STAT201A: Introduction to Probability at an Advanced Level November 5th, 2024

Homework # 4: Ordered Statistics and Conditional Expectations & Variances
Reece D. Huff

Problems (Solutions)
1. (Order statistics) Let 𝑋1 , . . . , 𝑋𝑛 be i.i.d. random variables with Exp(𝜆) distribution, where 𝜆 > 0, and let 𝑋(𝑖) be the

order statistics for 𝑖 = 1, . . . , 𝑛.

(a) Find the distribution of 𝑋(1).
Recall the density of 𝑗-th order statistic is

𝑓𝑋(𝑗)(𝑥) = 𝑛

(
𝑛 − 1
𝑗 − 1

)
𝑓𝑋(𝑥) [𝐹𝑋(𝑥)]𝑗−1 [1 − 𝐹𝑋(𝑥)]𝑛−𝑗

Then the density of the 1st order statistic is

𝑓𝑋(1)(𝑥) = 𝑛 𝑓𝑋(𝑥) [1 − 𝐹𝑋(𝑥)]𝑛−1

and since 𝑓𝑋(𝑥) = 𝜆𝑒−𝜆𝑥 and 𝐹𝑋(𝑥) = 1 − 𝑒−𝜆𝑥 , we have

𝑓𝑋(1)(𝑥) = 𝑛𝜆𝑒−𝜆𝑥
[
1 − (1 − 𝑒−𝜆𝑥)

]𝑛−1
= 𝑛𝜆𝑒−𝜆𝑥

[
𝑒−𝜆𝑥

]𝑛−1
= 𝑛𝜆𝑒−𝑛𝜆𝑥

which shows that distribution of 𝑋(1) is exponential with parameter 𝑛𝜆, i.e.,

𝑋(1) ∼ Exp(𝑛𝜆)

(b) Using the memoryless property, find the distribution of 𝑋(𝑖+1) − 𝑋(𝑖) for 𝑖 = 1, . . . , 𝑛 − 1.
Recall that the memoryless property of the exponential distribution states that ℙ[𝑋 > 𝑠 + 𝑡 | 𝑋 > 𝑡] = ℙ[𝑋 > 𝑠]. Now
we define the gaps between them order statistics as

𝐿𝑖 =

{
𝑋(𝑖+1) for 𝑖 = 0,
𝑋(𝑖+1) − 𝑋(𝑖) for 𝑖 = 1, . . . , 𝑛 − 1.

We additionally define sets of indices. Let 𝒮 be the set of indices above index (𝑖). Then there exists some subset of
indices of the original iid random variables 𝑋𝑗 that correspond to the order statistics indices in 𝒮. We define this set
as 𝒜. We all define the 𝒮′ and 𝒜′ in the same way as 𝒮 and 𝒜, but now we include index (𝑖). We have that

𝒮 = {(𝑖 + 1), (𝑖 + 2), . . . , (𝑛)} that correspond to some set of indices of 𝑋𝑗 𝒜 = { 𝑗1 , 𝑗2 , . . . , 𝑗𝑛−𝑖}
𝒮′ = {(𝑖), (𝑖 + 1), . . . , (𝑛)} that correspond to some set of indices of 𝑋𝑗 𝒜′ = { 𝑗0 , 𝑗1 , . . . , 𝑗𝑛−𝑖}

Note that the indices within 𝒜 and 𝒜′ are not unique. Their uniqueness is not critical to what follows. Importantly,
the cardinality of 𝒜 is |𝒜| = 𝑛 − 𝑖. It then follows that for all 𝑖 = 1, . . . , 𝑛 − 1,

ℙ[𝐿𝑖 > 𝑥] = ℙ[𝑋(𝑖+1) − 𝑋(𝑖) > 𝑥] = ℙ[𝑋(𝑖+1) − 𝑋(𝑖) > 𝑥 |𝑋(𝑖) > 𝑡] = ℙ[𝑋(𝑖+1) > 𝑥 + 𝑡 |𝑋(𝑖) > 𝑡]

ℙ[𝐿𝑖 > 𝑥] = ℙ


⋂
𝑗∈𝒜

𝑋𝑗 > 𝑥 + 𝑡
����� ⋂
𝑗∈𝒜′

𝑋𝑗 > 𝑡

 =
∏
𝑗∈𝒜

ℙ

𝑋𝑗 > 𝑥 + 𝑡
����� ⋂
𝑗∈𝒜′

𝑋𝑗 > 𝑡

 (by independence)

ℙ[𝐿𝑖 > 𝑥] =
∏
𝑗∈𝒜

ℙ
[
𝑋𝑗 > 𝑥

]
(by memoryless property)

ℙ[𝐿𝑖 > 𝑥] =
∏
𝑗∈𝒜

(1 − ℙ
[
𝑋𝑗 ≤ 𝑥

]
) =

∏
𝑗∈𝒜

1 − 𝐹𝑋𝑗 (𝑥) =
∏
𝑗∈𝒜

1 − (1 − 𝑒−𝜆𝑥) =
∏
𝑗∈𝒜

𝑒−𝜆𝑥 = 𝑒−𝜆(𝑛−𝑖)𝑥 .

To conclude, we have that

ℙ[𝐿𝑖 > 𝑥] = 1 − ℙ[𝐿𝑖 ≤ 𝑥] = 1 − 𝑒−𝜆(𝑛−𝑖)𝑥 =⇒ 𝐿𝑖 ∼ Exp((𝑛 − 𝑖)𝜆) for 𝑖 = 0, 1, . . . , 𝑛 − 1
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(c) Use the previous item to show that each 𝑋(𝑖) has the same distribution as a sum of 𝑖 independent random variables.
To begin, we note that

𝑋(1) = 𝐿0 = 𝑋(1)

𝑋(2) = 𝐿0 + 𝐿1 = 𝑋(1) +
(
𝑋(2) − 𝑋(1)

)
𝑋(3) = 𝐿0 + 𝐿1 + 𝐿2 = 𝑋(1) +

(
𝑋(2) − 𝑋(1)

)
+

(
𝑋(3) − 𝑋(2)

)
...

𝑋(𝑖) =
𝑖∑
𝑘=1

𝐿𝑘−1 = 𝑋(1) +
(
𝑋(2) − 𝑋(1)

)
+ · · · +

(
𝑋(𝑖−1) − 𝑋(𝑖−2)

)
+

(
𝑋(𝑖) − 𝑋(𝑖−1)

)
where 𝐿𝑘 are independent events for all 𝑘 = 0, 1, . . . , 𝑛 − 1. Note their independence follows from our result in part
(b). Since each 𝑋(𝑖+1) − 𝑋(𝑖) depends only on the residual lifetimes (i.e., the 𝑋𝑗 ’s in 𝒜) and not on any earlier times,
the spacings 𝐿𝑘 are independent. Then we conclude that 𝑋(𝑖) has the same distribution as a sum of 𝑖 independent
random variables,

𝑋(𝑖) =
𝑖∑
𝑘=1

𝐿𝑘−1 where 𝐿𝑘−1 ∼ Exp((𝑛 − 𝑘 + 1)𝜆) for 𝑘 = 1, . . . , 𝑖.

(d) Calculate the expectation and the variance of 𝑋(𝑖) for 𝑖 = 1, . . . , 𝑛.
To begin we recall that the expectation and variance of 𝑋 ∼ Exp(𝜆) is 𝔼[𝑋] = 1

𝜆 and Var[𝑋] = 1
𝜆2 . Then, 𝔼[𝐿𝑘−1] =

1
𝜆(𝑛−𝑘+1) and Var[𝐿𝑘−1] = 1

𝜆2(𝑛−𝑘+1)2 . The expectation of 𝑋(𝑖) is

𝔼[𝑋(𝑖)] = 𝔼

[
𝑖∑
𝑘=1

𝐿𝑘−1

]
=

𝑖∑
𝑘=1

𝔼[𝐿𝑘−1] =
𝑖∑
𝑘=1

1
𝜆(𝑛 − 𝑘 + 1) (by independence)

𝔼[𝑋(𝑖)] =
1
𝜆

𝑖∑
𝑘=1

1
(𝑛 − 𝑘 + 1) for 𝑖 = 1, . . . , 𝑛,

and the variance is

Var[𝑋(𝑖)] = Var

[
𝑖∑
𝑘=1

𝐿𝑘−1

]
=

𝑖∑
𝑘=1

Var[𝐿𝑘−1] =
𝑖∑
𝑘=1

1
𝜆2(𝑛 − 𝑘 + 1)2 (by independence)

Var[𝑋(𝑖)] =
1
𝜆2

𝑖∑
𝑘=1

1
(𝑛 − 𝑘 + 1)2 for 𝑖 = 1, . . . , 𝑛.

2. (Joint and conditional densities) Let 𝑋,𝑌 be two random variables with the following properties. 𝑌 has density function
𝑓𝑌(𝑦) = 3𝑦2 for 0 < 𝑦 < 1 and zero elsewhere. For 0 < 𝑦 < 1, given that 𝑌 = 𝑦, 𝑋 has conditional density function
𝑓𝑋 |𝑌(𝑥 |𝑦) = 2𝑥

𝑦2 for 0 < 𝑥 < 𝑦 and zero elsewhere.

(a) Find the joint density function 𝑓𝑋,𝑌(𝑥, 𝑦) of 𝑋,𝑌. Be precise about the values (𝑥, 𝑦) for which your formula is valid.
Check that the joint density function you find integrates to 1.
To find 𝑓𝑋,𝑌(𝑥, 𝑦), we use 𝑓𝑋,𝑌(𝑥, 𝑦) = 𝑓𝑋 |𝑌(𝑥 |𝑦) 𝑓𝑌(𝑦). Then we have that

𝑓𝑋,𝑌(𝑥, 𝑦) = 𝑓𝑋 |𝑌(𝑥 |𝑦) 𝑓𝑌(𝑦) =
2𝑥
𝑦2 · 3𝑦2 = 6𝑥 for 𝑦 ∈ (0, 1) and 𝑥 ∈ (0, 𝑦).

To check that this is a valid density function, we verify that it integrates to 1,∫ 1

0

∫ 𝑦

0
6𝑥 𝑑𝑥 𝑑𝑦 =

∫ 1

0
3𝑦2 𝑑𝑦 = 1 ✓
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(b) Find the conditional density function of 𝑌, given 𝑋 = 𝑥. Be precise about the values of 𝑥 and 𝑦 for which the answer
is valid. Identify the conditional distribution of 𝑌 by name.
To find the conditional density function of 𝑌 given 𝑋 = 𝑥, we use:

𝑓𝑌 |𝑋(𝑦 |𝑥) =
𝑓𝑋,𝑌(𝑥, 𝑦)
𝑓𝑋(𝑥)

First, we need to calculate 𝑓𝑋(𝑥). We have that

𝑓𝑋(𝑥) =
∫ 1

0
𝑓𝑋,𝑌(𝑥, 𝑦) 𝑑𝑦 =

∫ 1

𝑥

6𝑥 𝑑𝑦 = 6𝑥(1 − 𝑥)

Then we have that

𝑓𝑌 |𝑋(𝑦 |𝑥) =
𝑓𝑋,𝑌(𝑥, 𝑦)
𝑓𝑋(𝑥)

=
6𝑥

6𝑥(1 − 𝑥) =
1

1 − 𝑥 for 0 < 𝑥 < 𝑦 < 1.

The conditional distribution of 𝑌 given 𝑋 = 𝑥 is Uniform on the interval (𝑥, 1), i.e.,

𝑌 | 𝑋 ∼ Uniform(𝑥, 1) for 0 < 𝑥 < 𝑦 < 1.

3. (Model selection) Given data 𝑥1 , . . . , 𝑥𝑛 , consider the problem of selecting between the two models:

Model One : 𝑋1 , . . . , 𝑋𝑛
i.i.d.∼ 𝑁(0, 1)

Model Two : 𝑋1 , . . . , 𝑋𝑛
i.i.d.∼ 𝑁(𝜇, 1) for an unknown 𝜇.

To use probability to solve this problem, let us introduce an additional random variableΘ that has the Bernoulli distribution
with parameter 0.5. Assume that the conditional distribution of 𝑋1 , . . . , 𝑋𝑛 given Θ = 𝜃 is given by the following

𝑋1 , . . . , 𝑋𝑛 |Θ = 0 i.i.d.∼ 𝑁(0, 1)

and
𝑋1 , . . . , 𝑋𝑛 |𝜇,Θ = 1 i.i.d.∼ 𝑁(𝜇, 1) and 𝜇|Θ = 1 ∼ 𝑁(0, 𝜏2).

Here 𝜏 is a parameter which you can treat as a fixed constant in this exercise.

(a) Using the formula

𝑓𝑋1 ,...,𝑋𝑛 |Θ=1(𝑥1 , . . . , 𝑥𝑛) =
∫

𝑓𝑋1 ,...,𝑋𝑛 |𝜇,Θ=1(𝑥1 , . . . , 𝑥𝑛) 𝑓𝜇|Θ=1(𝜇)𝑑𝜇 (3)

prove that

𝑓𝑋1 ,...,𝑋𝑛 |Θ=1(𝑥1 , . . . , 𝑥𝑛) =
(

1√
2𝜋

)𝑛 1√
1 + 𝑛𝜏2

exp

(
−
∑𝑛
𝑖=1 𝑥

2
𝑖

2

)
exp

(
𝑛2𝜏2𝑥2

2(1 + 𝑛𝜏2)

)
,

where 𝑥 is the mean of 𝑥1 , . . . , 𝑥𝑛 .
Using the formula:

𝑓𝑋1 ,...,𝑋𝑛 |Θ=1(𝑥1 , . . . , 𝑥𝑛) =
∫

𝑓𝑋1 ,...,𝑋𝑛 |𝜇,Θ=1(𝑥1 , . . . , 𝑥𝑛) 𝑓𝜇|Θ=1(𝜇) 𝑑𝜇

Recall that if 𝑍 ∼ 𝑁(𝜇, 𝜎2), then

𝑓𝑍(𝑧) =
1√

2𝜋𝜎2
exp

(
−(𝑧 − 𝜇)2

2𝜎2

)
By independence of 𝑋1 , . . . , 𝑋𝑛 , we have that

𝑓𝑋1 ,...,𝑋𝑛 |𝜇,Θ=1(𝑥1 , . . . , 𝑥𝑛) =
𝑛∏
𝑖=1

𝑓𝑋𝑖 |𝜇,Θ=1(𝑥𝑖) =
𝑛∏
𝑖=1

1√
2𝜋

exp
(
−(𝑥𝑖 − 𝜇)2

2

)
=

(
1√
2𝜋

)𝑛
exp

(
−1

2

𝑛∑
𝑖=1

(𝑥𝑖 − 𝜇)2
)
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Let 𝑥 = 1
𝑛

∑𝑛
𝑖=1 𝑥𝑖 . Expanding the sum inside the exponent, we get:

−1
2

𝑛∑
𝑖=1

(𝑥𝑖 − 𝜇)2 = −1
2

𝑛∑
𝑖=1

(
𝑥2
𝑖 − 2𝑥𝑖𝜇 + 𝜇2

)
= −1

2

𝑛∑
𝑖=1

𝑥2
𝑖 + 𝜇

𝑛∑
𝑖=1

𝑥𝑖 −
𝑛𝜇2

2 = −1
2

𝑛∑
𝑖=1

𝑥2
𝑖 + 𝜇𝑛𝑥 − 𝑛𝜇2

2

Since 𝜇 | Θ = 1 ∼ 𝑁(0, 𝜏2), we have:

𝑓𝜇|Θ=1(𝜇) =
1√

2𝜋𝜏2
exp

(
−

𝜇2

2𝜏2

)
Plugging our results into Equation (3), we have that

𝑓𝑋1 ,...,𝑋𝑛 |Θ=1(𝑥1 , . . . , 𝑥𝑛) =
∫

𝑓𝑋1 ,...,𝑋𝑛 |𝜇,Θ=1(𝑥1 , . . . , 𝑥𝑛) 𝑓𝜇|Θ=1(𝜇)𝑑𝜇

𝑓𝑋1 ,...,𝑋𝑛 |Θ=1(𝑥1 , . . . , 𝑥𝑛) =
∫ [(

1√
2𝜋

)𝑛
exp

(
−1

2

𝑛∑
𝑖=1

𝑥2
𝑖 + 𝜇𝑛𝑥 − 𝑛𝜇2

2

)] [
1√

2𝜋𝜏2
exp

(
− 𝜇2

2𝜏2

)]
𝑑𝜇

𝑓𝑋1 ,...,𝑋𝑛 |Θ=1(𝑥1 , . . . , 𝑥𝑛) =
(

1√
2𝜋

)𝑛
exp

(
−1

2

𝑛∑
𝑖=1

𝑥2
𝑖

) ∫
1√

2𝜋𝜏2
exp

(
𝜇𝑛𝑥 − 𝑛𝜇2

2 − 𝜇2

2𝜏2

)
𝑑𝜇︸                                            ︷︷                                            ︸

(∗)

Now our goal is to rewrite the terms in the exponent in the form of − (𝜇−𝛼)2
2𝛽2 + constant for some 𝛼 and 𝛽2 that would

effectively represent the mean and variance of a Gaussian. We have that

−𝑛𝜇
2

2 + 𝜇𝑛𝑥 − 𝜇2

2𝜏2 = −1
2

(
𝑛 + 1

𝜏2

)
𝜇2 + 𝜇𝑛𝑥 = − 𝜇2

2𝜏2

(
1 + 𝑛𝜏2

)
+ 𝜇𝑛𝑥. = − 1

2𝜏2

(
1 + 𝑛𝜏2

) (
𝜇2 − 2𝜇 · 𝑛𝜏2𝑥

1 + 𝑛𝜏2

)
.

Completing the square inside the parentheses gives

−𝑛𝜇
2

2 + 𝜇𝑛𝑥 − 𝜇2

2𝜏2 = − 1
2𝜏2

(
1 + 𝑛𝜏2

) (
𝜇 − 𝑛𝜏2𝑥

1 + 𝑛𝜏2

)2
+ 1

2𝜏2

(
𝑛𝜏2𝑥

)2

1 + 𝑛𝜏2 = − 1
2𝜏2

(
1 + 𝑛𝜏2

) (
𝜇 − 𝑛𝜏2𝑥

1 + 𝑛𝜏2

)2
+ 𝑛2𝜏2𝑥2

2(1 + 𝑛𝜏2) .

Thus, we identify 𝛼 and 𝛽2 as: 𝛼 = 𝑛𝜏2𝑥
1+𝑛𝜏2 and 𝛽2 = 𝜏2

1+𝑛𝜏2 . With this in mind, we can rewrite our integral (∗) as∫
1√

2𝜋𝜏2
exp

(
𝜇𝑛𝑥 − 𝑛𝜇2

2 − 𝜇2

2𝜏2

)
𝑑𝜇 =

∫
1√

2𝜋𝜏2

√
2𝜋𝛽2√
2𝜋𝛽2

exp
(
−(𝜇 − 𝛼)2

2𝛽2 + 𝑛2𝜏2𝑥2

2(1 + 𝑛𝜏2)

)
𝑑𝜇

∫
1√

2𝜋𝜏2
exp

(
𝜇𝑛𝑥 − 𝑛𝜇2

2 − 𝜇2

2𝜏2

)
𝑑𝜇 =

(
𝛽

𝜏

)
exp

(
𝑛2𝜏2𝑥2

2(1 + 𝑛𝜏2)

)
��������������:1∫

1√
2𝜋𝛽2

exp
(
−(𝜇 − 𝛼)2

2𝛽2

)
𝑑𝜇∫

1√
2𝜋𝜏2

exp
(
𝜇𝑛𝑥 − 𝑛𝜇2

2 − 𝜇2

2𝜏2

)
𝑑𝜇 =

(
1√

1 + 𝑛𝜏2

)
exp

(
𝑛2𝜏2𝑥2

2(1 + 𝑛𝜏2)

)
Plugging this back in, we arrive at the desired result

𝑓𝑋1 ,...,𝑋𝑛 |Θ=1(𝑥1 , . . . , 𝑥𝑛) =
(

1√
2𝜋

)𝑛 1√
1 + 𝑛𝜏2

exp

(
−1

2

𝑛∑
𝑖=1

𝑥2
𝑖

)
exp

(
𝑛2𝜏2𝑥2

2(1 + 𝑛𝜏2)

)
(b) Calculate the conditional distribution of Θ given 𝑋1 = 𝑥1 , . . . , 𝑋𝑛 = 𝑥𝑛 .

By Bayes rule, we have that

𝑓Θ |𝑋1=𝑥1 ,...,𝑋𝑛=𝑥𝑛 (𝜃) =
𝑓𝑋1 ,...,𝑋𝑛 |Θ(𝑥1 , . . . , 𝑥𝑛)ℙ[Θ = 𝜃]

𝑓𝑋1 ,...,𝑋𝑛 (𝑥1 , . . . , 𝑥𝑛)
=

𝑓𝑋1 ,...,𝑋𝑛 |Θ(𝑥1 , . . . , 𝑥𝑛)ℙ[Θ = 𝜃]
𝑓𝑋1 ,...,𝑋𝑛 |Θ=0(𝑥0)ℙ[Θ = 0] + 𝑓𝑋1 ,...,𝑋𝑛 |Θ=1(𝑥0)ℙ[Θ = 1]

𝑓Θ |𝑋1=𝑥1 ,...,𝑋𝑛=𝑥𝑛 (𝜃) =
𝑓𝑋1 ,...,𝑋𝑛 |Θ(𝑥1 , . . . , 𝑥𝑛)

𝑓𝑋1 ,...,𝑋𝑛 |Θ=0(𝑥1 , . . . , 𝑥𝑛) + 𝑓𝑋1 ,...,𝑋𝑛 |Θ=1(𝑥1 , . . . , 𝑥𝑛)
(4)
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where the last simplification come from the symmetry of Θ, i.e.,

ℙ[Θ = 𝜃] =
{

1
2 when Θ = 0
1
2 when Θ = 1

In part (a) we showed that

𝑓𝑋1 ,...,𝑋𝑛 |Θ=1(𝑥1 , . . . , 𝑥𝑛) =
(

1√
2𝜋

)𝑛
exp

(
−1

2

𝑛∑
𝑖=1

𝑥2
𝑖

)
exp

(
𝑛2𝜏2𝑥2

2(1 + 𝑛𝜏2)

) (
1√

1 + 𝑛𝜏2

)
So now we need to solve for 𝑓𝑋1 ,...,𝑋𝑛 |Θ=0(𝑥1 , . . . , 𝑥𝑛). We have that

𝑓𝑋1 ,...,𝑋𝑛 |Θ=0(𝑥1 , . . . , 𝑥𝑛) =
𝑛∏
𝑖=1

𝑓𝑋𝑖 |Θ=0(𝑥𝑖) =
(

1√
2𝜋

)𝑛
exp

{
−1

2

𝑛∑
𝑖=1

𝑥2
𝑖

}
Then the denominator in Equation (4) becomes

𝑓𝑋1 ,...,𝑋𝑛 |Θ=0(𝑥1 , . . . , 𝑥𝑛) + 𝑓𝑋1 ,...,𝑋𝑛 |Θ=1(𝑥1 , . . . , 𝑥𝑛) =
(

1√
2𝜋

)𝑛
exp

{
−1

2

𝑛∑
𝑖=1

𝑥2
𝑖

}
×

(
1 + 1√

1 + 𝑛𝜏2
exp

(
𝑛𝜏2𝑥2

2(1 + 𝑛𝜏2)

))
Thus,

𝑓Θ |𝑋1=𝑥1 ,...,𝑋𝑛=𝑥𝑛 (𝜃) =


√

1+𝑛𝜏2
√

1+𝑛𝜏2+exp
(

𝑛𝜏2𝑥2
2(1+𝑛𝜏2)

) when Θ = 0

exp
(

𝑛𝜏2𝑥2
2(1+𝑛𝜏2)

)
√

1+𝑛𝜏2+exp
(

𝑛𝜏2𝑥2
2(1+𝑛𝜏2)

) when Θ = 1

(c) Intuitively, we would prefer Model Two over Model One when 𝑥 is far from zero. Is this intuition reflected in your
conditional distribution from the previous part?
Yes this intuition reflected in your conditional distribution from the previous part, because 𝑓Θ=1|𝑋1=𝑥1 ,...,𝑋𝑛=𝑥𝑛 (𝜃) → 1
as 𝑥2 goes away from zero. Meaning, the probability of using Model Two will increase 𝑥 goes away from zero.

4. (Gamma-Poisson) Consider random variables Θ, 𝑋1 , . . . , 𝑋𝑛 such that

Θ ∼ Gamma(𝛼,𝜆) and 𝑋1 , . . . , 𝑋𝑛 |Θ = 𝜃
i.i.d.∼ Poisson(𝜃)

Recall the following about the Gamma distribution

𝑓𝑥(𝑥) =
𝜆𝛼

Γ(𝛼)𝑥
𝛼−1𝑒−𝜆𝑥 where Γ(𝑟) =

{
(𝑟 − 1)! when 𝑟 ∈ ℕ+∫ ∞

0 𝑡𝑟−1𝑒−𝑡 𝑑𝑡 holds for all 𝑟 > 0

Three other useful properties of the Gamma function are∫ ∞

0
𝑒−𝛼𝑡 𝑡𝛽−1 𝑑𝑡 =

1
𝛼𝛽

Γ(𝛽), Γ(𝑧 + 1) = 𝑧Γ(𝑧), and Γ

(
1
2

)
=
√
𝜋.

Additionally, recall that for 𝑌 ∼ Poisson(𝜆), we have

ℙ[𝑌 = 𝑘] = 𝑒−𝜆𝜆𝑘

𝑘! for 𝑘 ∈ {0, 1, 2, . . . }

(a) Find the conditional distribution of Θ given 𝑋1 = 𝑥1 , 𝑋2 = 𝑥2 , . . . , 𝑋𝑛 = 𝑥𝑛 .
To find 𝑓Θ |𝑋1 ,...,𝑋𝑛 (𝜃), we will use

𝑓Θ |𝑋1 ,...,𝑋𝑛 (𝜃) =
ℙ[𝑋1 = 𝑥1 , . . . , 𝑋𝑛 = 𝑥𝑛 | Θ = 𝜃] 𝑓Θ(𝜃)

𝑓𝑋1 ,...,𝑋𝑛 (𝑥1 , . . . , 𝑥𝑛)
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We start with

ℙ[𝑋1 = 𝑥1 , . . . , 𝑋𝑛 = 𝑥𝑛 | Θ = 𝜃] = 𝑒−𝑛𝜃
𝑛∏
𝑖=1

𝜃𝑥𝑖

𝑥𝑖 !
= 𝑒−𝑛𝜃𝜃𝑛𝑥

𝑛∏
𝑖=1

1
𝑥𝑖 !

where 𝑥 = 1
𝑛

∑𝑛
𝑖=1 𝑥𝑖 . We know that the marginal distribution of Θ is 𝑓Θ(𝜃) = 𝜆𝛼

Γ(𝛼)𝜃
𝛼−1𝑒−𝜆𝜃. Then we have

𝑓𝑋1 ,...,𝑋𝑛 (𝑥1 , . . . , 𝑥𝑛) =
∫

ℙ[𝑋1 = 𝑥1 , . . . , 𝑋𝑛 = 𝑥𝑛 | Θ = 𝜃] 𝑓Θ(𝜃) 𝑑𝜃 =

𝑛∏
𝑖=1

1
𝑥𝑖 !

· 𝜆𝛼

Γ(𝛼)

∫ ∞

0
𝑒−(𝑛+𝜆)𝜃𝜃𝑛𝑥+𝛼−1 𝑑𝜃

𝑓𝑋1 ,...,𝑋𝑛 (𝑥1 , . . . , 𝑥𝑛) =
𝑛∏
𝑖=1

1
𝑥𝑖 !

· 𝜆𝛼

Γ(𝛼) ·
Γ(𝑛𝑥̄ + 𝛼)
(𝑛 + 𝜆)𝑛𝑥̄+𝛼

Plugging our results into 𝑓Θ |𝑋1 ,...,𝑋𝑛 (𝜃), we have

𝑓Θ |𝑋1 ,...,𝑋𝑛 (𝜃) =
𝑒−𝑛𝜃𝜃𝑛𝑥𝜃𝛼−1𝑒−𝜆𝜃

Γ(𝑛𝑥̄+𝛼)
(𝑛+𝜆)𝑛𝑥̄+𝛼

=
(𝑛 + 𝜆)𝑛𝑥̄+𝛼
Γ(𝑛𝑥̄ + 𝛼) 𝜃𝑛𝑥+𝛼−1𝑒−𝜃(𝑛+𝜆) =⇒ 𝑓Θ |𝑋1 ,...,𝑋𝑛 (𝜃) ∼ Gamma(𝛼 + 𝑛𝑥̄,𝜆 + 𝑛)

(b) Find 𝔼[Θ |𝑋1 = 𝑥1 , . . . , 𝑋𝑛 = 𝑥𝑛].
To find 𝐸[Θ | 𝑋1 = 𝑥1 , . . . , 𝑋𝑛 = 𝑥𝑛], we will use

𝐸[Θ | 𝑋1 = 𝑥1 , . . . , 𝑋𝑛 = 𝑥𝑛] =
∫ ∞

0
𝜃 𝑓Θ |𝑋1=𝑥1 ,...,𝑋𝑛=𝑥𝑛 (𝜃) 𝑑𝜃

Since Θ | 𝑋1 = 𝑥1 , . . . , 𝑋𝑛 = 𝑥𝑛 ∼ Gamma(𝛼 + 𝑛𝑥̄,𝜆 + 𝑛), we have:

𝐸[Θ | 𝑋1 = 𝑥1 , . . . , 𝑋𝑛 = 𝑥𝑛] =
(𝑛 + 𝜆)𝑛𝑥̄+𝛼
Γ(𝑛𝑥̄ + 𝛼)

∫ ∞

0
𝜃 · 𝜃𝑛𝑥+𝛼−1𝑒−𝜃(𝑛+𝜆) 𝑑𝜃 =

(𝑛 + 𝜆)𝑛𝑥̄+𝛼
Γ(𝑛𝑥̄ + 𝛼)

∫ ∞

0
𝜃(𝑛𝑥+𝛼+1)−1𝑒−𝜃(𝑛+𝜆) 𝑑𝜃

𝐸[Θ | 𝑋1 = 𝑥1 , . . . , 𝑋𝑛 = 𝑥𝑛] =
(𝑛 + 𝜆)𝑛𝑥̄+𝛼
Γ(𝑛𝑥̄ + 𝛼) · Γ(𝑛𝑥̄ + 𝛼 + 1)

(𝑛 + 𝜆)𝑛𝑥̄+𝛼+1 =
1

𝑛 + 𝜆
· (𝑛𝑥̄ + 𝛼)Γ(𝑛𝑥̄ + 𝛼)

Γ(𝑛𝑥̄ + 𝛼)

𝐸[Θ | 𝑋1 = 𝑥1 , . . . , 𝑋𝑛 = 𝑥𝑛] =
𝑛𝑥̄ + 𝛼
𝑛 + 𝜆

(c) Write 𝔼[Θ |𝑋1 = 𝑥1 , . . . , 𝑋𝑛 = 𝑥𝑛] as a weighted linear combination of
( 𝑥1+···+𝑥𝑛

𝑛

)
and the mean of the marginal

distribution (i.e., prior mean) of Θ and argue that the weight of the prior mean goes to zero as 𝑛 → ∞.
To begin, we note that our derivation of 𝐸[Θ | 𝑋1 = 𝑥1 , . . . , 𝑋𝑛 = 𝑥𝑛] shows that the expectation of a random variable
𝑋 ∼ Gamma(𝛼,𝜆) is 𝔼[𝑋] = 𝛼

𝜆 . Therefore, 𝐸[Θ] = 𝛼
𝜆 .

Now we rewrite 𝐸[Θ | 𝑋1 = 𝑥1 , . . . , 𝑋𝑛 = 𝑥𝑛] as a weighted linear combination of 𝑥̄ and the mean of the marginal
distribution 𝐸[Θ]. We have that

𝐸[Θ | 𝑋1 = 𝑥1 , . . . , 𝑋𝑛 = 𝑥𝑛] =
𝑛𝑥̄ + 𝛼
𝑛 + 𝜆

=

( 𝑛

𝑛 + 𝜆

)
𝑥̄ +

(
𝜆

𝑛 + 𝜆

)
𝛼
𝜆

It is really clear that as 𝑛 → ∞, the weight on the prior mean also goes to zero, i.e., 𝜆
𝜆+𝑛 → 0.

5. (Law of total expectation)
Let the joint probability mass function (p.m.f.) of (𝑋,𝑌) be

𝑝𝑋,𝑌(𝑘, 𝑛) =
{

1
𝑛+1

(
1 − 1

𝑛+1
) 𝑘−1 1

2𝑛 , for 1 ≤ 𝑛 < ∞ and 1 ≤ 𝑘 < ∞,
0, else.

Throughout this problem, we will leverage the convergence of a geometric series,

∞∑
𝑛=0

𝛼𝑟𝑛 =
𝛼

1 − 𝑟 and
∞∑
𝑛=0

𝛼𝑛𝑟𝑛−1 =
𝛼

(1 − 𝑟)2 for |𝑟 | < 1.
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(a) Find the p.m.f. 𝑝𝑌(𝑛) of 𝑌 and the conditional p.m.f 𝑝𝑋 |𝑌(𝑘 |𝑛).
We obtain the marginal distribution 𝑃𝑌(𝑛) by summing over 𝑘,

𝑃𝑌(𝑛) =
∞∑
𝑘=1

𝑝𝑋,𝑌(𝑘, 𝑛) =
∞∑
𝑘=1

(
1

𝑛 + 1

) (
1
2𝑛

) (
1 − 1

𝑛 + 1

) 𝑘−1
=

(
1

𝑛 + 1

) (
1
2𝑛

) ∞∑
𝑘=1

( 𝑛

𝑛 + 1

) 𝑘−1

𝑃𝑌(𝑛) =
(

1
𝑛 + 1

) (
1
2𝑛

) ∞∑
𝑘=0

(
1 − 1

𝑛 + 1

) 𝑘
=

(
1

𝑛 + 1

) (
1
2𝑛

)
· 1

1 −
(
1 − 1

𝑛+1
) =

1
2𝑛

𝑃𝑌(𝑛) =
1
2𝑛

For the conditional distribution 𝑃𝑋 |𝑌(𝑘 | 𝑛), we have

𝑃𝑋 |𝑌(𝑘 | 𝑛) = 𝑃𝑋,𝑌(𝑘, 𝑛)
𝑃𝑌(𝑛)

=

1
𝑛+1

1
2𝑛

(
1 − 1

𝑛+1
) 𝑘−1

1
2𝑛

=
1

𝑛 + 1

(
1 − 1

𝑛 + 1

) 𝑘−1

𝑃𝑋 |𝑌(𝑘 | 𝑛) = 1
𝑛 + 1

(
1 − 1

𝑛 + 1

) 𝑘−1

(b) Calculate 𝔼[𝑌].
We simply sum over all 𝑛 to obtain 𝔼[𝑌],

𝔼[𝑌] =
∞∑
𝑛=1

𝑛

2𝑛 =

∞∑
𝑛=1

𝑛

(
1
2

)𝑛
=

∞∑
𝑛=0

𝑛

(
1
2

)𝑛
=

∞∑
𝑛=0

(
1
2

)
𝑛

(
1
2

)𝑛−1
=

1
2

(1 − 1
2 )2

= 2

Note that we can change the sum from 1 to ∞ to 0 to ∞ because the first term is zero. Our result is

𝔼[𝑌] = 2.

(c) Find the conditional expectation 𝔼[𝑋 |𝑌].
We simply sum over all 𝑘 to obtain 𝔼[𝑋 | 𝑌],

𝐸[𝑋 | 𝑌] =
∞∑
𝑘=1

𝑘 𝑃(𝑋 = 𝑘 | 𝑌) =
∞∑
𝑘=1

𝑘 · 1
𝑌 + 1 ·

(
1 − 1

𝑌 + 1

) 𝑘−1
=

1
𝑌 + 1

∞∑
𝑘=0

𝑘

(
1 − 1

𝑌 + 1

) 𝑘−1
=

1
𝑌+1(

1 − (1 − 1
𝑌+1 )

)2

𝐸[𝑋 | 𝑌] = 𝑌 + 1

Again, we can change the sum from 1 to 0 because the first term is zero. We have

𝐸[𝑋 | 𝑌] = 𝑌 + 1

(d) Use parts (a) and (c) to calculate 𝔼[𝑋].
Use the law of total expectation, we have that

𝔼[𝑋] = 𝔼[𝔼[𝑋 | 𝑌]] = 𝔼[𝑌 + 1] = 𝔼[𝑌] + 1 = 2 + 1 = 3 =⇒ 𝔼[𝑋] = 3

6. (Expected number of coin tosses)
Consider a sequence of coin tosses.

(a) On average, how many tosses of a fair coin does it take to see two heads in a row?
Let 𝑁 be the total number of tosses needed to get two heads in a row. Additionally, let

• 𝔼[𝑁]: the expected number of tosses to get two heads in a row.
• 𝔼[𝑁 | 𝐻1]: the expected number of tosses given that the first toss is a head.
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Using the law of total expectation on the first toss:

𝔼[𝑁] = 1 + ℙ(𝐻1)𝔼[𝑁 | 𝐻1] + ℙ(not 𝐻1)𝔼[𝑁 | not 𝐻1]

𝔼[𝑁] = 1 + 1
2 𝔼[𝑁 | 𝐻1] +

1
2 𝔼[𝑁]

as this is a fair coin and the number of tosses doesnt change after we don’t get one, i.e., 𝔼[𝑁] = 𝔼[𝑁 | not 𝐻]. Now,
using the law of total expectation again for 𝔼[𝑁 | 𝐻1]:

𝔼[𝑁 | 𝐻1] = 1 + ℙ(𝐻2 | 𝐻1)𝔼[𝑁 | 𝐻1 ∩ 𝐻2] + ℙ(not 𝐻2 | 𝐻1)𝔼[𝑁 | 𝐻1 ∩ not 𝐻2]
𝔼[𝑁 | 𝐻1] = 1 + ℙ(𝐻2)𝔼[𝑁 | 𝐻1 ∩ 𝐻2] + ℙ(not 𝐻2)𝔼[𝑁 | 𝐻1 ∩ not 𝐻2]

𝔼[𝑁 | 𝐻1] = 1 + 1
2 𝔼[𝑁]

Now we note (1.) that 𝔼[𝑁 | 𝐻1 ∩ not 𝐻2] = 𝔼[𝑁] as soon as we hit a tail, we reset, (2.) 𝔼[𝑁 | 𝐻1 ∩ 𝐻2] = 0 as we
reached two heads and we are done, and (3.) ℙ(𝐻2 | 𝐻1) = ℙ(𝐻2) as the probability of the coin landing on heads is
independent of the flip.
Then we have two equations and two unknowns and we can solve for 𝔼[𝑁].

𝔼[𝑁] = 1 + 1
2 𝔼[𝑁 | 𝐻1] +

1
2 𝔼[𝑁] and 𝔼[𝑁 | 𝐻1] = 1 + 1

2 𝔼[𝑁]

𝔼[𝑁] = 1 + 1
2 𝔼[𝑁] + 1

2

(
1 + 1

2 𝔼[𝑁]
)

1
4 𝔼[𝑁] = 3

2
𝔼[𝑁] = 6

(b) How many tosses on average to see the sequence HTH for the first time?
We learned from part (a.) that the flips are independent so we do not need to worry about conditional probabilities.
We also saw that 𝐸[𝑁] = 𝔼[𝑁 | not 𝐻1] = 𝔼[𝑁 | 𝐻1 ∩ 𝐻2], so as soon as we deviate from the desired path, we reset.
Then for clarity, we define

• 𝐸0 be the expected number of tosses to reach 𝐻𝑇𝐻 (the reset state and the expectation we want to solve for).
• 𝐸𝐻 be the expected number of tosses to reach 𝐻𝑇𝐻 after seeing 𝐻.
• 𝐸𝐻𝑇 be the expected number of tosses to see 𝐻𝑇𝐻 after seeing 𝐻𝑇.
• 𝐸𝐻𝑇𝐻 be the expected number of tosses to see 𝐻𝑇𝐻 after seeing 𝐻𝑇𝐻.

Then, we have that

𝐸0 = 1 + 1
2𝐸𝐻 + 1

2𝐸0

𝐸𝐻 = 1 + 1
2𝐸𝐻𝑇 + 1

2𝐸𝐻

𝐸𝐻𝑇 = 1 + 1
2𝐸𝐻𝑇𝐻 + 1

2𝐸0

𝐸𝐻𝑇𝐻 = 0

Now we solve for 𝐸0,

1
2𝐸0 = 1 + 1

2𝐸𝐻

−1
2𝐸𝐻𝑇 = 1 − 1

2𝐸𝐻
1
2𝐸𝐻𝑇 − 1

4𝐸0 =
1
2

1
4𝐸0 =

5
2

𝐸0 = 10
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(c) How does our answer change if we have an unfair coin?
Let 𝑝 be the probability of landing on heads.

• Seeing 2H:

𝐸0 = 1 + 𝑝𝐸𝐻 + (1 − 𝑝)𝐸0
𝐸𝐻 = 1 + (1 − 𝑝)𝐸0

=⇒ 𝐸0 = 1 + 𝑝𝐸𝐻 + (1 − 𝑝)𝐸0
0 = 𝑝 − 𝑝𝐸𝐻 + 𝑝(1 − 𝑝)𝐸0

𝐸0 = 1 + 𝑝 + (1 − 𝑝)𝐸0 + 𝑝(1 − 𝑝)𝐸0

𝑝𝐸0 = 1 + 𝑝 + 𝑝(1 − 𝑝)𝐸0

[𝑝 − 𝑝(1 − 𝑝)]𝐸0 = 1 + 𝑝
𝑝2𝐸0 = 1 + 𝑝

𝐸0 =
1 + 𝑝
𝑝2

As 𝑝 increases the expected number of flips decreases which makes sense.
• Seeing HTH:

𝐸0 = 1 + 𝑝𝐸𝐻 + (1 − 𝑝)𝐸0

𝐸𝐻 = 1 + 𝑝𝐸𝐻 + (1 − 𝑝)𝐸𝐻𝑇
𝐸𝐻𝑇 = 1 + (1 − 𝑝)𝐸0

(1 − 𝑝)𝐸𝐻 = 1 + (1 − 𝑝)
[
1 + (1 − 𝑝)𝐸0

]
𝐸𝐻 =

1
1 − 𝑝 + 1 + (1 − 𝑝)𝐸0

𝑝𝐸0 = 1 + 𝑝
[

1
1 − 𝑝 + 1 + (1 − 𝑝)𝐸0

]
𝐸0 =

1
𝑝
+ 1

1 − 𝑝 + 1 + (1 − 𝑝)𝐸0

𝑝𝐸0 =
1
𝑝
+ 1

1 − 𝑝 + 1

𝐸0 =
1
𝑝2 + 1

𝑝(1 − 𝑝) +
1
𝑝
=

1 − 𝑝
𝑝2(1 − 𝑝) +

𝑝

𝑝2(1 − 𝑝) +
𝑝(1 − 𝑝)
𝑝2(1 − 𝑝) =

1 + 𝑝 − 𝑝2

𝑝2(1 − 𝑝)

𝐸0 =
1
𝑝2 + 1

𝑝(1 − 𝑝) +
1
𝑝

We calculate the 𝑝 that results in the fewest number of flips on average by taking the derivative.

𝑑𝐸0
𝑑𝑝

=
𝑑

𝑑𝑝

(
1 + 𝑝 − 𝑝2

𝑝2(1 − 𝑝)

)
=

(1 − 2𝑝)[𝑝2(1 − 𝑝)] − (2𝑝 − 3𝑝2)[1 + 𝑝 − 𝑝2]
𝑝4(1 − 𝑝)2

= 0

(1 − 2𝑝)[𝑝2(1 − 𝑝)] − (2𝑝 − 3𝑝2)[1 + 𝑝 − 𝑝2] = 0
(1 − 2𝑝)[𝑝(1 − 𝑝)] − (2 − 3𝑝)[1 + 𝑝 − 𝑝2] = 0

(1 − 2𝑝)[𝑝(1 − 𝑝)] = (2 − 3𝑝)[1 + 𝑝 − 𝑝2]
[𝑝 − 𝑝2] − 2𝑝[𝑝 − 𝑝2] = 2[1 + 𝑝 − 𝑝2] − 3𝑝[1 + 𝑝 − 𝑝2]
𝑝 − 𝑝2 − 2𝑝2 + 2𝑝3 = 2 + 2𝑝 − 2𝑝2 − 3𝑝 − 3𝑝2 + 3𝑝3

2𝑝 + 2𝑝2 − 𝑝3 = 2
𝑝[2 + 2𝑝 − 𝑝2] = 2

This leads to a 𝑝★ = 0.688. So the expectation will decrease as it approaches 0.688 and then increase as it increases.
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STAT201A: Introduction to Probability at an Advanced Level November 20th, 2024

Homework # 5: Multivariate Normal and Gaussian Process
Reece D. Huff

Problems (Solutions)
1. (Multivariate normal) Suppose 𝑌 ∼ 𝒩𝑛(𝜇,Σ) in this problem.

(a) If 𝑎 is any fixed vector in ℝ𝑛 , show that

𝑎⊤(𝑌 − 𝜇)
√
𝑎⊤Σ𝑎

∼ 𝒩(0, 1).

We begin by taking the expectation of the random variable 𝑍 =
𝑎⊤(𝑌−𝜇)√
𝑎⊤Σ𝑎

,

𝔼[𝑍] = 𝔼

[
𝑎⊤(𝑌 − 𝜇)
√
𝑎⊤Σ𝑎

]
=

1√
𝑎⊤Σ𝑎

(
𝔼[𝑎⊤(𝑌 − 𝜇)]

)
=

1√
𝑎⊤Σ𝑎

𝑎⊤
(
𝔼[𝑌 − 𝜇]

)
=

1√
𝑎⊤Σ𝑎

𝑎⊤

�
����(
𝔼[𝑌] − 𝜇

)
= 0 ✓

where we can pull out the constants 𝑎⊤ and 1√
𝑎⊤Σ𝑎

by the linearity of expectation and note that 𝔼[𝑌] = 𝜇. Next, we
compute the variance of 𝑍,

Var[𝑍] = Var
[
𝑎⊤(𝑌 − 𝜇)
√
𝑎⊤Σ𝑎

]
=

1
𝑎⊤Σ𝑎

Var[𝑎⊤(𝑌 − 𝜇)] = 1
𝑎⊤Σ𝑎

Var[𝑎⊤𝑌 − 𝑎⊤𝜇] = 1
𝑎⊤Σ𝑎

(
Var[𝑎⊤𝑌] +�����Var[𝑎⊤𝜇]

)
Var[𝑍] = 1

𝑎⊤Σ𝑎
𝑎⊤ Var[𝑌]𝑎 = 1

𝑎⊤Σ𝑎
𝑎⊤Σ𝑎 = 1 ✓

where we used that for any random vector ®𝑋, constant vector ®𝛼, and scalar 𝛽, we have

Var[ ®𝛼⊤ ®𝑋] = ®𝛼⊤ Var[ ®𝑋] ®𝛼 and Var[𝛽 ®𝑋] = 𝛽2 Var[ ®𝑋].

Therefore, we have shown that 𝑍 is distributed according to 𝒩(0, 1).
(b) If 𝐴 is now a random vector that is independent of 𝑌, then show again that

𝐴⊤(𝑌 − 𝜇)
√
𝐴⊤Σ𝐴

is distributed according to 𝒩(0, 1) and that it is independent of 𝐴.
Similar to part (a), we can compute the expectation of the random variable 𝑍 =

𝐴⊤(𝑌−𝜇)√
𝐴⊤Σ𝐴

,

𝔼[𝑍] = 𝔼

[
𝐴⊤(𝑌 − 𝜇)
√
𝐴⊤Σ𝐴

]
=

1√
𝐴⊤Σ𝐴

(
𝔼[𝐴⊤(𝑌 − 𝜇)]

)
=

1√
𝐴⊤Σ𝐴

𝐴⊤
(
𝔼[𝑌 − 𝜇]

)
=

1√
𝐴⊤Σ𝐴

𝐴⊤

���
��(

𝔼[𝑌] − 𝜇
)
= 0 ✓

and the variance of 𝑍, we have that

Var[𝑍] = Var
[
𝐴⊤(𝑌 − 𝜇)
√
𝐴⊤Σ𝐴

]
=

1
𝐴⊤Σ𝐴

Var[𝐴⊤(𝑌 − 𝜇)] = 1
𝐴⊤Σ𝐴

Var[𝐴⊤𝑌 − 𝐴⊤𝜇] = 1
𝐴⊤Σ𝐴

(
Var[𝐴⊤𝑌] +�����Var[𝐴⊤𝜇]

)
Var[𝑍] = 1

𝐴⊤Σ𝐴
𝐴⊤ Var[𝑌]𝐴 =

1
𝐴⊤Σ𝐴

𝐴⊤Σ𝐴 = 1 ✓

and we can conclude that 𝑍 ∼ 𝒩(0, 1).
To show that 𝑍 ⊥⊥ 𝐴, we will use our result from part (a) that 𝑎⊤(𝑌−𝜇)√

𝑎⊤Σ𝑎
∼ 𝒩(0, 1). We have that

(𝑍 | 𝐴 = 𝑎) = 𝑎⊤(𝑌 − 𝜇)
√
𝑎⊤Σ𝑎

∼ 𝒩(0, 1).

In words, 𝑍 |𝐴 = 𝑎 follows the same distribution as 𝑍. Therefore, 𝑍 ⊥⊥ 𝐴.
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(c) Using the above result, show that if 𝑌 ∼ 𝒩3(0, 𝐼3), then

𝑌1𝑒
𝑌3 + 𝑌2 log |𝑌3 |√

𝑒2𝑌3 + (log |𝑌3 |)2
∼ 𝒩(0, 1).

To begin, we note that in the case of a Multivariate Normal distribution, Σ𝑖 𝑗 = 0 ⇔ 𝑌𝑖 ⊥⊥ 𝑌𝑗 for all 𝑖 ≠ 𝑗. Therefore,
we have that 𝑌1 ⊥⊥ 𝑌2 ⊥⊥ 𝑌3.
Next, we notice that the numerator 𝑌1𝑒

𝑌3 + 𝑌2 log |𝑌3 | is a linear combination of the random vector 𝑌′ = [𝑌1 , 𝑌2]⊤.
Therefore, we construct the random vector 𝐴′ = [𝑒𝑌3 , log |𝑌3 |]⊤ and note that the random vector 𝐴′ is independent of
𝑌′ (since 𝑌1 ⊥⊥ 𝑌2 ⊥⊥ 𝑌3). We can now use the result from part (a) to show that 𝑍 =

𝐴⊤(𝑌−𝜇)√
𝐴⊤Σ𝐴

∼ 𝒩(0, 1). We have that

𝑍 =
𝐴′⊤(𝑌′ − 𝜇′)
√
𝐴′⊤Σ′𝐴′

=

[
𝑒𝑌3 log |𝑌3 |

] [
𝑌1
𝑌2

]
−

[
𝑒𝑌3 log |𝑌3 |

] [
0
0

]
√[

𝑒𝑌3 log |𝑌3 |
] [

1 0
0 1

] [
𝑒𝑌3

log |𝑌3 |

] =
𝑌1𝑒

𝑌3 + 𝑌2 log |𝑌3 |√
𝑒2𝑌3 + (log |𝑌3 |)2

where 𝜇′ = 𝔼[𝑌′] = [0, 0]⊤ and Σ′ = Var[𝑌′] = 𝐼2. Therefore, we have that 𝑍 ∼ 𝒩(0, 1).

2. (Marginally normal but not bivariate normal) Give an example of a 2 × 1 random vector 𝑌 = (𝑌1 , 𝑌2)⊤ with a positive
definite covariance matrix such that each 𝑌1 and 𝑌2 is standard normal but 𝑌 is not bivariate normal.
To begin, let 𝑌1 ∼ 𝒩(0, 1) and 𝑌2 =𝑊𝑌1 where𝑊 is a Rademacher random variable that is independent of 𝑌1 and has the

following distribution ℙ(𝑊 = 𝑘) =
{

1/2, if 𝑘 = 1,
1/2, if 𝑘 = −1.

with 𝔼[𝑊] = 0 and Var[𝑊] = 1.

By our construction, clearly 𝑌1 is not independent of 𝑌2 as 𝑌2 is a function of 𝑌1.
Next, we show that the marginal distributions of 𝑌1 and 𝑌2 are standard normal. 𝑌1 is standard normal by construction.
𝑌2 is also standard normal as

ℙ[𝑌2 ≤ 𝑦] = ℙ[𝑊𝑌1 ≤ 𝑦] = ℙ[𝑊𝑌1 ≤ 𝑦 |𝑊 = 1]ℙ[𝑊 = 1] + ℙ[𝑊𝑌1 ≤ 𝑦 |𝑊 = −1]ℙ[𝑊 = −1]

ℙ[𝑌2 ≤ 𝑦] = 1
2 (ℙ[𝑌1 ≤ 𝑦] + ℙ[−𝑌1 ≤ 𝑦]) = ℙ[𝑌1 ≤ 𝑦]

where the last equality follows from the symmetry of the standard normal distribution (i.e., if 𝑌1 ∼ 𝒩(0, 1) then −𝑌1 ∼
𝒩(0, 1)).
Next we calculate the covariance matrix of 𝑌. We have that

Σ = Var[𝑌] = Cov[𝑌,𝑌] = 𝔼[𝑌𝑌⊤] − 𝔼[𝑌]𝔼[𝑌]⊤ =

(
Var[𝑌1] Cov[𝑌1 , 𝑌2]

Cov[𝑌2 , 𝑌1] Var[𝑌2]

)
The covariance between 𝑌1 and 𝑌2 is

Cov[𝑌1 , 𝑌2] = Cov[𝑌2 , 𝑌1] = 𝔼[𝑌1𝑌2] − 𝔼[𝑌1]𝔼[𝑌2] = 𝔼[𝑌1𝑊𝑌1] −���𝔼[𝑌1]𝔼[𝑊𝑌1] = 𝔼[𝑌2
1𝑊] − 0 = 𝔼[𝑌2

1 ]���𝔼[𝑊] = 0

Thus, the covariance matrix of 𝑌 is

Σ =

(
1 0
0 1

)
Finally, we show that 𝑌 is not bivariate normal. To do this, recall that two random variables 𝑋 and 𝑌 are said to be
bivariate normal (or two jointly normal random variables), if 𝑎𝑋 + 𝑏𝑌 has a normal distribution for all 𝑎, 𝑏 ∈ ℝ.
In our case, we have that 𝑌1 and 𝑌2 are standard normal, but 𝑍 = 𝑌1 + 𝑌2 is not standard normal. To see this, note that

𝑍 = 𝑌1 + 𝑌2 =

{
2𝑌1 , with probability 1/2,
0, with probability 1/2.

In other words, ℙ[𝑍 = 0] = 1/2 which is not the characteristic of a standard normal random variable. Therefore, 𝑌 is not
bivariate normal.
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3. (Conditional distribution) Consider three random variables 𝑌1, 𝑌2, and 𝑌3 that are independent and standard normal.
Let

𝑋1 = 𝑌2 + 𝑌3 ,

𝑋2 = 𝑌1 + 𝑌3 ,

𝑋3 = 𝑌1 + 𝑌2.

Find the conditional distribution of 𝑋1 given 𝑋2 = 𝑋3 = 0.
To begin, recall that we can partition the multivariable normal distribution 𝑋 ∼ 𝒩𝑛(𝜇,Σ) into 𝑋𝑎 ∈ ℝ𝑘 and 𝑋𝑏 ∈ ℝ𝑛−𝑘 ,

such that 𝑋 =

(
𝑋𝑎
𝑋𝑏

)
, 𝜇 =

(
𝜇𝑎
𝜇𝑏

)
, and Σ =

(
Σ𝑎𝑎 Σ𝑎𝑏
Σ𝑏𝑎 Σ𝑏𝑏

)
, where 𝜇𝑎 and 𝜇𝑏 are the means of 𝑋𝑎 and 𝑋𝑏 , respectively, and Σ𝑎𝑎 ,

Σ𝑎𝑏 , Σ𝑏𝑎 , and Σ𝑏𝑏 are the corresponding covariance matrices. We that the marginal distributions of 𝑋𝑎 and 𝑋𝑏 are given by

𝑋𝑎 ∼ 𝒩𝑘(𝜇𝑎 ,Σ𝑎𝑎), and 𝑋𝑏 ∼ 𝒩𝑛−𝑘(𝜇𝑏 ,Σ𝑏𝑏).

and the conditional distribution of 𝑋𝑎 given 𝑋𝑏 is given by

𝑋𝑎 | 𝑋𝑏 = 𝑥𝑏 ∼ 𝒩𝑘(𝜇𝑎 |𝑏 ,Σ𝑎 |𝑏), where 𝜇𝑎 |𝑏 = 𝜇𝑎 + Σ𝑎𝑏Σ
−1
𝑏𝑏
(𝑥𝑏 − 𝜇𝑏), Σ𝑎 |𝑏 = Σ𝑎𝑎 − Σ𝑎𝑏Σ

−1
𝑏𝑏
Σ𝑏𝑎 . (5)

Now, we can apply this result to the given problem. Let us calculate the expectation and covariance matrix of 𝑋 =

[𝑋1 , 𝑋2 , 𝑋3]⊤. We have that

𝔼[𝑋𝑖] = 𝔼[𝑌𝑗] + 𝔼[𝑌𝑘] = 0, Cov[𝑋𝑖 , 𝑋𝑖] = Var[𝑋𝑖] = Var[𝑌𝑗] + Var[𝑌𝑘] = 2 and
Cov[𝑋𝑖 , 𝑋𝑗] = Cov[𝑌𝑗 + 𝑌𝑘 , 𝑌𝑖 + 𝑌𝑘] =�����Cov[𝑌𝑗 , 𝑌𝑖] +������Cov[𝑌𝑗 , 𝑌𝑘] +�����Cov[𝑌𝑘 , 𝑌𝑖] + Cov[𝑌𝑘 , 𝑌𝑘] = Var[𝑌𝑘] = 1

for all 𝑖 , 𝑗 , 𝑘 ∈ {1, 2, 3} such that 𝑖 ≠ 𝑗 ≠ 𝑘. Thus we have

𝑋 =
©­«
𝑋𝑎 =

[
𝑋1

]
𝑋𝑏 =

[
𝑋2
𝑋3

]ª®¬ , 𝜇 =
©­«
0
0
0

ª®¬ =
©­«
𝜇𝑎 =

[
0
]

𝜇𝑏 =

[
0
0

]ª®¬ , and Σ =


2 1 1
1 2 1
1 1 2

 =
©­«
Σ𝑎𝑎 = [2] Σ𝑎𝑏 =

[
1 1

]
Σ𝑏𝑎 =

[
1
1

]
Σ𝑏𝑏 =

[
2 1
1 2

]ª®¬ ,
Noting that Σ−1

𝑏𝑏
=

1
det(Σ𝑏𝑏)

[
2 −1
−1 2

]
=

1
3

[
2 −1
−1 2

]
, we use Equation (5) to show

𝜇𝑎 |𝑏 = 𝜇𝑎 + Σ𝑎𝑏Σ
−1
𝑏𝑏
(𝑥𝑏 − 𝜇𝑏) =

[
0
]
+

(
1
3

) [
1 1

] [
2 −1
−1 2

] ( [
𝑋2
𝑋3

]
−

[
0
0

] )
=

(
1
3

) [
1 1

] [
𝑋2
𝑋3

]
=

1
3

(
𝑋2 + 𝑋3

)
and

Σ𝑎 |𝑏 = Σ𝑎𝑎 − Σ𝑎𝑏Σ
−1
𝑏𝑏
Σ𝑏𝑎 = [2] −

(
1
3

) [
1 1

] [
2 −1
−1 2

] [
1
1

]
= 2 −

(
1
3

) [
1 1

] [
1
1

]
= 2 −

(
1
3

) (
1 + 1

)
= 2 − 2

3 =
4
3

Therefore, (
𝑋1 | 𝑋2 = 0, 𝑋3 = 0

)
∼ 𝒩1

(
0, 4

3

)

4. (More on jointly Gaussian distributions) Let 𝑋 and 𝑌 be independent standard normal variables.

(a) For a constant 𝑘, find ℙ[𝑋 > 𝑘𝑌].
Let 𝑍𝑎 = 𝑋 − 𝑘𝑌. Then we have

𝔼[𝑍𝑎] = 𝔼[𝑋 − 𝑘𝑌] = 𝔼[𝑋] − 𝑘 𝔼[𝑌] = 0 and Var[𝑍𝑎] = Var[𝑋 − 𝑘𝑌] = Var[𝑋] + 𝑘2 Var[𝑌] = 1 + 𝑘2

Therefore, 𝑍𝑎 ∼ 𝒩(0, 1 + 𝑘2) and

ℙ[𝑋 > 𝑘𝑌] = ℙ[𝑋 − 𝑘𝑌 > 0] = ℙ[𝑍𝑎 > 0] =⇒ ℙ[𝑋 > 𝑘𝑌] = 1
2
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(b) If𝑈 =
√

3𝑋 + 𝑌 and 𝑉 = 𝑋 −
√

3𝑌, find ℙ[𝑈 > 𝑘𝑉]. First, we note that

𝔼[𝑈] = 𝔼[
√

3𝑋 + 𝑌] =
√

3𝔼[𝑋] + 𝔼[𝑌] = 0 and 𝔼[𝑉] = 𝔼[𝑋 −
√

3𝑌] = 𝔼[𝑋] −
√

3𝔼[𝑌] = 0

and

Var[𝑈] = Var[
√

3𝑋 + 𝑌] = 3 Var[𝑋] + Var[𝑌] = 4, Var[𝑉] = Var[𝑋 −
√

3𝑌] = Var[𝑋] + 3 Var[𝑌] = 4 and

Cov[𝑈,𝑉] = Cov[
√

3𝑋 + 𝑌, 𝑋 −
√

3𝑌] =
√

3 Var[𝑋] −
√

3 Var[𝑌] = 0

Let 𝑍𝑏 = 𝑈 − 𝑘𝑉 . Then we have

𝔼[𝑍𝑏] = 𝔼[𝑈 − 𝑘𝑉] = 𝔼[𝑈] − 𝑘 𝔼[𝑉] = 0 and Var[𝑍𝑏] = Var[𝑈 − 𝑘𝑉] = Var[𝑈] + 𝑘2 Var[𝑉] = 4(1 + 𝑘2)

Therefore, 𝑍𝑏 ∼ 𝒩
(
0, 4(1 + 𝑘2)

)
and

ℙ[𝑈 > 𝑘𝑉] = ℙ[𝑈 − 𝑘𝑉 > 0] = ℙ[𝑍𝑏 > 0] =⇒ ℙ[𝑈 > 𝑘𝑉] = 1
2

(c) Find ℙ[𝑈2 +𝑉2 < 1].
For this problem, we will use polar coordinates. Let 𝑅2 = 𝑋2 + 𝑌2 such that

𝑈2 +𝑉2 = (
√

3𝑋 + 𝑌)2 + (𝑋 −
√

3𝑌)2 = 3𝑋2 + 2
√

3𝑋𝑌 + 𝑌2 + 𝑋2 − 2
√

3𝑋𝑌 + 3𝑌2 = 4(𝑋2 + 𝑌2) = 4𝑅2.

We also let 𝑋 = 𝑅 cos(Θ) and 𝑌 = 𝑅 sin(Θ) for a Θ ∼ Uniform[0, 2𝜋]. It then follows that

ℙ[𝑈2 +𝑉2 < 1] = ℙ[4(𝑋2 + 𝑌2) < 1] = ℙ[4𝑅2 < 1] = ℙ

[
𝑅2 <

1
4

]
= ℙ

[
𝑅 <

1
2

]
ℙ[𝑈2 +𝑉2 < 1] =

∫ 2𝜋

0

∫ 1
2

0

1
2𝜋 exp

{
−𝑟2

2

}
𝑟𝑑𝑟𝑑𝜃

Let 𝑢 = 𝑟2

2 and 𝑑𝑢 = 𝑟𝑑𝑟. We change the bound of 𝑟 = 1
2 to 𝑢 = 1

8 . Then we have

ℙ[𝑈2 +𝑉2 < 1] = 1
2𝜋

∫ 2𝜋

0

∫ 1
8

0
𝑒−𝑢𝑑𝑢𝑑𝜃 =

∫ 1
8

0
𝑒−𝑢𝑑𝑢 = −

[
𝑒−𝑢

] 1
8

0
= 1 − 𝑒− 1

8

ℙ[𝑈2 +𝑉2 < 1] = 1 − 𝑒− 1
8

(d) Find the conditional distribution of 𝑋 given 𝑉 = 𝑣.

Let us consider the following: Let 𝑍1 , 𝑍2
i.i.d.∼ 𝒩(0, 1) and 𝑋 and 𝑉 are jointly normal random variables,[

𝑋
𝑉

]
=

[
1 0
1 −

√
3

] [
𝑍1
𝑍2

]
+

[
0
0

]
Then the two dimensional version of Equation (5) is that

(
𝑋 | 𝑉 = 𝑣

)
∼ 𝒩1

(
𝔼[𝑋 | 𝑉],Var[𝑋 | 𝑉]

)
where

𝔼[𝑋 | 𝑉] = 𝔼[𝑋] + Cov[𝑋,𝑉]
Var[𝑉] (𝑉 − 𝔼[𝑉]), Var[𝑋 | 𝑉] = Var[𝑋] − (Cov[𝑋,𝑉])2

Var[𝑉] . (6)

We have that 𝔼[𝑋] = 𝔼[𝑉] = 0, Var[𝑋] = 1, and Var[𝑉] = 4 (see part (b) for the calculation of Var[𝑉]) We calculate
Cov[𝑋,𝑉]

Cov[𝑋,𝑉] = Cov[𝑋, 𝑋 −
√

3𝑌] = Var[𝑋] −
√

3�����Cov[𝑋,𝑌] = 1

We calculate 𝔼[𝑋 | 𝑉] and Var[𝑋 | 𝑉],

𝔼[𝑋 | 𝑉 = 𝑣] =���𝔼[𝑋] +������: 1
Cov[𝑋,𝑉]

����: 4Var[𝑉]
(𝑣 −���𝔼[𝑉]) = 𝑣

4 and Var[𝑋 | 𝑉] =����:1Var[𝑋] − (������: 1
Cov[𝑋,𝑉])2

����: 4Var[𝑉]
=

3
4 .

Thus, the conditional distribution is given by (
𝑋 | 𝑉 = 𝑣

)
∼ 𝒩1

(
𝑣

4 ,
3
4

)
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5. (Wigner’s surmise) Let 𝑋 =

(
𝑋1 𝑋3
𝑋3 𝑋2

)
with 𝑋1 and 𝑋2 independent 𝒩(0, 1) and 𝑋3 another independent 𝒩(0, 1/2). Let

𝜆1 and 𝜆2 be two eigenvalues of 𝑋 and 𝑠 = |𝜆1 − 𝜆2 |.

(a) Prove that 𝑠 =
√
(𝑋1 − 𝑋2)2 + 4𝑋2

3 .
To begin we determine the eigenvalues of 𝑋. We have that

det(𝑋 − 𝜆𝐼2) = det
(
𝑋1 − 𝜆 𝑋3
𝑋3 𝑋2 − 𝜆

)
= (𝑋1 − 𝜆)(𝑋2 − 𝜆) − 𝑋2

3 = 𝜆2 − 𝜆(𝑋1 + 𝑋2) + (𝑋1𝑋2 − 𝑋2
3 ) = 0.

Setting the characteristic equation to zero and solving for 𝜆, we have

𝜆 =

(𝑋1 + 𝑋2) ±
√
(𝑋1 + 𝑋2)2 − 4(𝑋1𝑋2 − 𝑋2

3 )
2 =

(𝑋1 + 𝑋2) ±
√
(𝑋1 − 𝑋2)2 + 𝑋2

3

2 .

Therefore, we have the 𝑠 is

𝑠 = |𝜆1 − 𝜆2 | =

�������
(𝑋1 + 𝑋2) +

√
(𝑋1 − 𝑋2)2 + 𝑋2

3

2 −
(𝑋1 + 𝑋2) −

√
(𝑋1 − 𝑋2)2 + 𝑋2

3

2

������� =
√
(𝑋1 − 𝑋2)2 + 𝑋2

3 ✓

(b) Find the density of 𝑠.

To determine the density of 𝑠, we let 𝑍1 =
𝑋1−𝑋2√

2
and 𝑍2 =

√
2𝑋3 such that 𝑍1 , 𝑍2

i.i.d.∼ 𝒩(0, 1)2 . Then we have

𝑠 =

√
(𝑋1 − 𝑋2)2 + 𝑋2

3 =

√
2𝑍2

1 + 2𝑍2
2 =

√
2(𝑍2

1 + 𝑍
2
2).

We showed in class that the sum of 𝑘 sqaured independent, standard normal random variables is distributed according
to the chi-squared distribution with 𝑘 degrees of freedom 𝜒2

𝑘
. Let𝑊 = 𝑍2

1 + 𝑍
2
2. Then𝑊 ∼ 𝜒2

2 with a pdf of

𝑓𝑊 (𝑤) = 1
2 𝑒

−𝑤/2 where 𝑊 = 𝑍2
1 + 𝑍

2
2 ∼ 𝜒2

2 .

Now we apply change of variable to determine the distribution of 𝑠. Let 𝑆 =
√

2𝑊 (i.e.,𝑊 = 𝑆2

2 ). Then we have

𝑓𝑆(𝑠) = 𝑓𝑊

(
𝑠2

2

) ����𝑑𝑊𝑑𝑆 ���� = 1
2 𝑒

− 𝑠2
4 |𝑠 | = 𝑠

2 𝑒
− 𝑠2

4 for all 𝑠 ≥ 0

where 𝑠 ∼ Rayleigh(
√

2).
(c) Plot the density function of 𝑠. What do you observe regarding the eigenvalues of the random matrix 𝑋?

𝑠 = |𝜆1 − 𝜆2 |

𝑓𝑆(𝑠)

Figure 6: Plot of 𝑓𝑆(𝑠) for 0 ≤ 𝑠 ≤ 5.

2We can easily show that 𝔼(𝑍1) = 𝔼(𝑍2) = 0, Var(𝑍1) = 1
2 Var(𝑋1) + 1

2 Var(𝑋2) = 1 and Var(𝑍2) = Var(
√

2𝑋3) = 2 Var(𝑋3) = 1. The independence of 𝑍1
and 𝑍2 follows from the independence of 𝑋1 , 𝑋2, and 𝑋3.
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Comments:
• The density function 𝑓𝑆(𝑠) = 𝑠

2 𝑒
−𝑠2/4 is zero at 𝑠 = 0, indicating that the eigenvalues are almost surely distinct.

• The eigenvalue spacings is non-uniform and follow a Rayleigh distribution that peaks at approximately 𝑠 = 1.4.
• The eigenvalues of the random matrix 𝑋 are typically spread out rather than clustered together (e.g., ℙ[𝑠 ≤ 1] ≤

ℙ[𝑠 ≥ 1]).

6. (1D Gaussian process) In this problem, you will implement a 1D Gaussian process that predicts outputs based on noisy
training data. You will be given (noisy) 1D training data pairs 𝐷train = {(𝑥1 , 𝑦1), (𝑥2 , 𝑦2), . . . }. Your task is to predict
the output for a set of test queries 𝐷test = {𝑥∗1 , 𝑥

∗
2 , . . . }, conditioned on the training data. Implement two separate kernel

functions, namely the

• Squared Exponential Kernel: This is the kernel we discussed in class.

𝑘(𝑥𝑖 , 𝑥 𝑗) = 𝜎2
𝑓
exp

(
−
(𝑥𝑖 − 𝑥 𝑗)𝑇𝑀(𝑥𝑖 − 𝑥 𝑗)

2

)
where 𝜎 𝑓 is a scale factor for the kernel and 𝑀 is a metric measuring distance between two input vectors. In the 1D
case, 𝑀 = 1

𝑙2
where 𝑙 is the length scale of the kernel.

• Matérn Kernel: This kernel is used commonly in many machine learning applications.

𝑘(𝑥𝑖 , 𝑥 𝑗) =
21−𝜈

Γ(𝜈)

(√
2𝜈𝑟
𝑙

)𝜈
𝐾𝜈

(√
2𝜈𝑟
𝑙

)
where 𝜈 and 𝑙 are (positive) parameters of the kernel and 𝑟 = |𝑥𝑖 − 𝑥 𝑗 |. 𝐾𝜈 is a modified Bessel function and Γ is
the gamma function. Good parameter settings for 𝜈 are 0.25 - 3. You can use scipy.special.kv() in Python or
besselK() in R for implementing 𝐾𝜈.

(a) Implement the squared exponential and Matérn kernel functions to compute similarity between any pair of inputs.
The output for each function should be a kernel matrix 𝐾.

(b) Using your kernel functions, implement a Gaussian process regression function to predict the posterior mean and
variance of test data ®𝑦∗.

(c) The simulation function and plotting function are provided in the file ps5_GP_1D.ipynb. Vary the kernel parameters
(e.g., 𝜎 𝑓 , 𝑙, and 𝜈) and observe how they affect the predictive mean and variance. What impact do these parameters
have on the smoothness and uncertainty of your GP predictions?
Note: It’s recommended to use Python (Jupyter notebook) and submit a PDF file including code, plots, and comments.
If you prefer using another coding language, please ensure the data simulation is consistent with the provided code.

• Squared Exponential Kernel:
– Varying 𝜎 𝑓 :

* Predictive Mean: 𝜎 𝑓 doesn’t really affect the predicted mean.
* Predictive Variance: Increases with larger 𝜎 𝑓 , resulting in wider uncertainty bands (notice how the bounds

of the axes changes as 𝜎 𝑓 increases).
– Varying 𝑙:

* Predictive Mean: Smaller 𝑙 values allow the function to change rapidly, fitting closely to training data and
resulting jagged bands; larger 𝑙 yields smoother functions.

* Predictive Variance: Smaller 𝑙 leads to lower variance near training points but higher variance away from
them.

• Matérn Kernel:
– Varying 𝜈:

* Predictive Mean: Smaller 𝜈 values (0.25 ≤ 𝜈 ≤ 3) allow for rougher, less smooth functions; larger 𝜈 results
in smoother functions.

* Predictive Variance: Smaller 𝜈 increases uncertainty between data points as the function is more jagged.
– Varying 𝑙:

* Again, smaller 𝑙 permits allows for a more jagged function. So the same holds here for the predicted mean
and variance in the Matérn Kernel as the Squared Exponential Kernel.

See the attached Jupyter notebook for the solution.
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STAT201A: Introduction to Probability at an Advanced Level December 6th, 2024

Homework # 6: Discrete Markov Chains
Reece D. Huff

Notation
Let

{
𝑋𝑡 , 𝑡 ∈ ℕ0

}
represent a Galton-Watson process where 𝑋𝑡 represents the number of particles at time 𝑡 and ℕ0 respresents

the set of natural numbers including 0, i.e., ℕ0 = {0, 1, 2, . . .}. Let 𝐵(𝑡)
𝑖

represent the number of offspring of branch 𝑖 at time
𝑡. Then we have

𝑋𝑡 = 𝐵
(𝑡−1)
1 + · · · + 𝐵(𝑡−1)

𝑋𝑡−1
.

The probability of branch 𝑖 has 𝑘 offspring at time 𝑡,ℙ[𝐵(𝑡)
𝑖

= 𝑘], is given by an offspring number distribution ℱ = {𝑝𝑘 , 𝑘 ∈ ℕ0}
with mean 𝜇 < ∞ and variance 𝜎2 < ∞. Here, 𝑝𝑘 is shorthand for ℙ[𝐵(𝑡)

𝑖
= 𝑘]. We note that each particle gives birth to 𝑘 ∈ ℕ0

children with probability independently of other particles in the past and the present, i.e.,

𝐵
(𝑡−1)
1 , . . . , 𝐵

(𝑡−1)
𝑋𝑡−1

i.i.d.∼ ℱ and ⊥⊥ from 𝑋𝑡 .

In class, we showed that 𝔼[𝑋𝑡] = 𝜇𝑡 and Var[𝑋𝑡] = 𝜎2 (𝜇𝑡−1 + 𝜇𝑡 + · · · + 𝜇2𝑡−2) .
We defined the extinction time as 𝜏 =

{
𝑡 ∈ ℕ0 | 𝑋𝑡 = 0

}
and the extinction probability as ℙ[𝜏 < ∞]. We also introduced the

notation

𝜑(𝑠) = 𝔼[𝑠𝐵] =
∞∑
𝑘=0

𝑠𝑘 ℙ[𝐵 = 𝑘] =
∞∑
𝑘=0

𝑠𝑘𝑝𝑘 and 𝜑𝑡(𝑠) = 𝔼[𝑠𝑋𝑡 ] =
∞∑
𝑘=0

𝑠𝑘 ℙ[𝑋𝑡 = 𝑘]

We let 𝑒𝑡 = ℙ[𝑋𝑡 = 0], the probability of extinction by time 𝑡, from which we showed 𝑒𝑡 = 𝜑(𝑒𝑡−1). We derived that the
probability of extinction is the smallest non-negative solution of the fixed point equation, 𝑠 = 𝜑(𝑠).

Markov Chain Definitions in Simple Terms
• Irreducible: A Markov Chain is irreducible if it is possible to visit every other state regardless of where you start.

In most cases, we determine if an MC is irreducible by looking for terminal states: if a chain has a terminal state,
it’s definitely not irreducible (unless the state space consists of that one state only). However, the absence of a single
terminal state does not necessarily guarantee irreducibility, because it’s possible to have multiple disjoint sets of states
that don’t communicate with each other (no terminal states, but the chain still isn’t fully “connected”).

• A state 𝑖 ∈ 𝒮 is...

1. recurrent or persistent if when starting from 𝑖, the probability of eventually returning to 𝑖 in the future is 1.
(a) positive recurrent Imagine you’re in a particular state (a place) that you can return to again and again. If,

on average, it doesn’t take you too long to get back there—meaning the expected time until you return is
finite—then this state is positive recurrent. It’s like a bus that comes around regularly and quickly enough
that you never have to wait forever.

(b) null recurrent Now imagine you’re still guaranteed to return to that same state eventually (just like above),
but this time, you might have to wait a very, very long time on average—so long that the average waiting time
is actually infinite. In other words, it’s certain you’ll get back there if you wait long enough, but there is no
meaningful “average” return time because it stretches out to infinity. Such a state is called null recurrent. It’s
like a bus that will definitely come, but you can’t put a reasonable number on how long you’ll have to wait.

2. transient if when starting from 𝑖, the probability of eventually returning to 𝑖 in the future is not 1.

• Periodicity:

1. Periodic: If I know for a fact, that after 𝑛 steps, I will be at some state 𝑗.
2. Aperiodic: If I do not know for a fact, that after 𝑛 steps, I will be at some state 𝑗.

• Ergodicity: A Markov chain is ergodic if it is irreducible, aperiodic, and (usually) positive recurrent (for finite state
spaces, irreducible + aperiodic automatically gives positive recurrence).
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Problems (Solutions)
1. (Branching process) A branching process starts with one individual, i.e. 𝑋(0) = 1, who reproduces according to the

following principle:

# of children 0 1 2
probability 1

6
1
3

1
2

Individuals reproduce independently of each other and independently of the number of their sisters and brothers.
Determine

(a) the probability that the population becomes extinct;
Recall in class, we derived that the probability of extinction is the smallest non-negative solution of the fixed point
equation, 𝑠 = 𝜑(𝑠). Then, we have that

𝑠 = 𝜑(𝑠) =
∞∑
𝑘=0

𝑠𝑘𝑝𝑘 = 𝑠0𝑝0 + 𝑠1𝑝1 + 𝑠2𝑝2 =⇒ 𝑠 =
1
6 + 1

3 𝑠 +
1
2 𝑠

2 =⇒ 1
2 𝑠

2 − 2
3 𝑠 +

1
6 = 0

=⇒ 𝑠2 − 4
3 𝑠 +

1
3 = 0 =⇒ (𝑠 − 1)(𝑠 − 1/3) = 0 =⇒ 𝑠1 = 1, 𝑠2 =

1
3 .

Clearly, 𝑠2 = 1
3 is the smallest non-negative solution of the fixed point equation, 𝑠 = 𝜑(𝑠), so we have

ℙ[extinction] = ℙ[𝜏 < ∞] = 1
3 .

(b) the probability that the population has become extinct in the second generation, i.e. ℙ[𝑋(2) = 0];
By the law of total probability3, we have that

ℙ[𝑋2 = 0] =
∞∑
𝑘=0

ℙ[𝑋2 = 0 | 𝑋1 = 𝑘]ℙ[𝑋1 = 𝑘]

ℙ[𝑋2 = 0] =
���������:1
ℙ[𝑋2 = 0 | 𝑋1 = 0]ℙ[𝑋1 = 0] + ℙ[𝑋2 = 0 | 𝑋1 = 1]ℙ[𝑋1 = 1] + ℙ[𝑋2 = 0 | 𝑋1 = 2]ℙ[𝑋1 = 2]

ℙ[𝑋2 = 0] =
(
1
6

)
+

(
1
6

) (
1
3

)
+

(
1
6 × 1

6

) (
1
2

)
ℙ[𝑋2 = 0] = 17

72

(c) the expected number of children given that there are no grandchildren.
In this problem, we are asked to calculate 𝔼[𝑋1 |𝑋2 = 0]. We have that

𝔼[𝑋1 |𝑋2 = 0] =
∞∑
𝑘=0

𝑘 ℙ[𝑋1 = 𝑘 |𝑋2 = 0] =
∞∑
𝑘=0

𝑘

(
ℙ[𝑋2 = 0|𝑋1 = 𝑘]ℙ[𝑋1 = 𝑘]

ℙ[𝑋2 = 0]

)
𝔼[𝑋1 |𝑋2 = 0] = 1

(
ℙ[𝑋2 = 0|𝑋1 = 1]ℙ[𝑋1 = 1]

ℙ[𝑋2 = 0]

)
+ 2

(
ℙ[𝑋2 = 0|𝑋1 = 2]ℙ[𝑋1 = 2]

ℙ[𝑋2 = 0]

)
3Note that this approach is no different from the approach in class, where we showed 𝑒𝑡 = 𝜑(𝑒𝑡−1) with 𝑒𝑡 = ℙ[𝑋𝑡 = 0] representing the probability of

extinction by time 𝑡, i.e.,

ℙ[𝑋2 = 0] = 𝑒2 = 𝜑(𝑒1) =
∞∑
𝑘=0

(𝑒1)𝑘𝑝𝑘 = (𝑒1)0𝑝0 + (𝑒1)1𝑝1 + (𝑒1)2𝑝2 = (𝑒1)0𝑝0 + (𝑒1)1𝑝1 + (𝑒1)2𝑝2

ℙ[𝑋2 = 0] =
(
1
6

)
+

(
1
3

)
𝑒1 +

(
1
2

)
(𝑒1)2 =

(
1
6

)
+

(
1
3

) ( ∞∑
ℓ=0

(𝑒1)ℓ 𝑝ℓ

)
+

(
1
2

) ( ∞∑
ℓ=0

(𝑒1)ℓ 𝑝ℓ

)2

ℙ[𝑋2 = 0] =
(
1
6

)
+

(
1
3

) (
1
6

)
+

(
1
2

) (
1
6

)2
=

17
72
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𝔼[𝑋1 |𝑋2 = 0] = 1
(
(1/6) (1/3)
(17/72)

)
+ 2

(
(1/6)2 (1/2)
(17/72)

)
=

72
17

[
1
(
1
6

) (
1
3

)
+ 2

(
1
6

)2 (
1
2

)]
𝔼[𝑋1 |𝑋2 = 0] = 6

17

2. (Random walk) Random walk on {0, 1, 2, 3}. Consider the Markov chain (𝑋𝑛) with transition matrix

𝑃 =


1
2

1
2 0 0

1
2 0 1

2 0
0 1

2 0 1
2

0 0 1
2

1
2

 ,
started with 𝑋0 = 0. Define 𝑇𝑗 as min{𝑛 ≥ 1 : 𝑋𝑛 = 𝑗}. Find explicitly the following distributions and expectations:

(a) The distribution of 𝑋2.
From class, we defined the row vector ®𝑢𝑛 :=

[
ℙ[𝑋𝑛 = 𝑖]

]
for all 𝑖 ∈ 𝒮 := {0, 1, 2, 3} such that ®𝑢𝑛 = ®𝑢0𝑃

𝑛 . It follows
that

®𝑢2 = ®𝑢0𝑃
2 =

[
1 0 0 0

] 
1
2

1
2 0 0

1
2 0 1

2 0
0 1

2 0 1
2

0 0 1
2

1
2




1
2

1
2 0 0

1
2 0 1

2 0
0 1

2 0 1
2

0 0 1
2

1
2

 =
[
1 0 0 0

] 
1
2

1
4

1
4 0

1
4

1
2 0 1

4
1
4 0 1

2
1
4

0 1
4

1
4

1
2

 =
[ 1

2
1
4

1
4 0

]
Thus, the distribution of 𝑋2 is given by

ℙ[𝑋2 = 𝑖] =


1
2 when 𝑖 = 0
1
4 when 𝑖 = 1
1
4 when 𝑖 = 2
0 when 𝑖 = 3

(b) The limit distribution of 𝑋𝑛 as 𝑛 → ∞.
Since this Markov Chain has a finite state space 𝒮 and is irreducible and aperiodic, the limit distribution of 𝑋𝑛 as
𝑛 → ∞ is given by

lim
𝑛→∞

𝑃𝑛 = 1𝜋 where 𝜋 is the unique stationary distribution from 𝜋 = 𝜋𝑃.

It follows that

𝜋 = 𝜋𝑃 ⇔ 𝜋⊤ = 𝑃⊤𝜋⊤ =⇒

𝜋0
𝜋1
𝜋2
𝜋3

 =


1
2

1
2 0 0

1
2 0 1

2 0
0 1

2 0 1
2

0 0 1
2

1
2



𝜋0
𝜋1
𝜋2
𝜋3

 =


1
2𝜋0 + 1

2𝜋1
1
2𝜋0 + 1

2𝜋2
1
2𝜋1 + 1

2𝜋3
1
2𝜋2 + 1

2𝜋3

 =⇒ 𝜋0 = 𝜋1 = 𝜋2 = 𝜋3.

Since 𝜋0 = 𝜋1 = 𝜋2 = 𝜋3 and we must have an eigenvalue of 1, we ensure that
∑
𝑖∈𝒮 𝜋𝑖 = 1. Then the limit distribution

of 𝑋𝑛 as 𝑛 → ∞.

lim
𝑛→∞

[𝑃𝑛]𝑖 𝑗 = 𝜋 𝑗 ,∀𝑖 , 𝑗 ∈ 𝒮 where 𝜋 = (𝜋𝑖)𝑖∈𝒮 is the unique stationary distribution 𝜋 𝑗 =


1
4 when 𝑗 = 0
1
4 when 𝑗 = 1
1
4 when 𝑗 = 2
1
4 when 𝑗 = 3
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(c) 𝔼[𝑇0]
Since our Markov chain is irreducible and finite, then 𝜋 is the unique stationary distribution and 𝜋𝑖 = 1/𝑟𝑖 , ∀𝑖 ∈ 𝒮
where 𝑟𝑖 = 𝔼[𝑇𝑖] is the mean recurrence time. It follows that

𝜋0 =
1
𝑟0

=⇒ 𝑟0 =
1

1/4
= 4. =⇒ 𝔼[𝑇0] = 4.

We can equivalently show that for 𝐸𝑖 = 𝔼[𝑇0 | 𝑋0 = 𝑖] for all 𝑖 ∈ 𝒮, we have

𝐸0 = 1 + 1/2𝐸1
𝐸1 = 1 + 1/2𝐸2
𝐸2 = 1 + 1/2𝐸1 + 1/2𝐸3
𝐸3 = 1 + 1/2𝐸2 + 1/2𝐸3

=⇒ 𝐸2 = 1 + 1
2𝐸1 +

(
1 + 1

2𝐸2

)
=⇒ 𝐸1 = 1 +

(
2 + 1

2𝐸1

)
=⇒ 𝐸0 = 1 + (3) = 4

(d) 𝔼[𝑇3]
Similarly, let 𝐹𝑖 = 𝔼[𝑇3 | 𝑋0 = 𝑖] for all 𝑖 ∈ 𝒮. Then we have

𝔼[𝑇3 | 𝑋0 = 0] = 𝔼[𝑇3 | 𝑋0 = 0, 𝑋1 = 0]ℙ[𝑋1 = 0 | 𝑋0 = 0] + 𝔼[𝑇3 | 𝑋0 = 0, 𝑋1 = 1]ℙ[𝑋1 = 1 | 𝑋0 = 0]
𝔼[𝑇3 | 𝑋0 = 1] = 𝔼[𝑇3 | 𝑋0 = 1, 𝑋1 = 0]ℙ[𝑋1 = 0 | 𝑋0 = 1] + 𝔼[𝑇3 | 𝑋0 = 1, 𝑋1 = 2]ℙ[𝑋1 = 2 | 𝑋0 = 1]
𝔼[𝑇3 | 𝑋0 = 2] = 𝔼[𝑇3 | 𝑋0 = 2, 𝑋1 = 1]ℙ[𝑋1 = 1 | 𝑋0 = 2] + 𝔼[𝑇3 | 𝑋0 = 2, 𝑋1 = 3]ℙ[𝑋1 = 3 | 𝑋0 = 2]

⇔
𝐹0 = 1 + 1/2𝐹0 + 1/2𝐹1
𝐹1 = 1 + 1/2𝐹0 + 1/2𝐹2
𝐹2 = 1 + 1/2𝐹1

=⇒
𝐹0 = 2 + 𝐹1
𝐹1 = 1 + 1/2𝐹0 + 1/2𝐹2
𝐹1 = 2𝐹2 − 2

=⇒ 1 + 1/2𝐹0 + 1/2𝐹2 = 2𝐹2 − 2 =⇒ 𝐹0 = 3𝐹2 − 6

=⇒ 𝐹0 = 2 + (2𝐹2 − 2) = 2𝐹2 =⇒ 𝐹2 = 6 =⇒ 𝐹0 = 12

Thus, we have

𝔼[𝑇3] = 12.

(e) ℙ[𝑇3 < 𝑇0]
The probability that 𝑇3 < 𝑇0 is given by

ℙ[𝑇3 < 𝑇0] = ℙ[𝑇3 < 𝑇0 | 𝑋0 = 0]ℙ[𝑋0 = 0]

We can find the probability of 𝑇3 < 𝑇0 by conditioning on the first step of the Markov chain. We have

ℙ[𝑇3 < 𝑇0 | 𝑋0 = 0] = ℙ[𝑇3 < 𝑇0 | 𝑋0 = 0, 𝑋1 = 0]ℙ[𝑋1 = 0 | 𝑋0 = 0] + ℙ[𝑇3 < 𝑇0 | 𝑋0 = 0, 𝑋1 = 1]ℙ[𝑋1 = 1 | 𝑋0 = 0]
ℙ[𝑇3 < 𝑇0 | 𝑋0 = 1] = ℙ[𝑇3 < 𝑇0 | 𝑋0 = 1, 𝑋1 = 0]ℙ[𝑋1 = 0 | 𝑋0 = 1] + ℙ[𝑇3 < 𝑇0 | 𝑋0 = 1, 𝑋1 = 2]ℙ[𝑋1 = 2 | 𝑋0 = 1]
ℙ[𝑇3 < 𝑇0 | 𝑋0 = 2] = ℙ[𝑇3 < 𝑇0 | 𝑋0 = 2, 𝑋1 = 1]ℙ[𝑋1 = 1 | 𝑋0 = 2] + ℙ[𝑇3 < 𝑇0 | 𝑋0 = 2, 𝑋1 = 3]ℙ[𝑋1 = 3 | 𝑋0 = 2]

Let 𝐺𝑖 = ℙ[𝑇3 < 𝑇0 | 𝑋0 = 𝑖] for all 𝑖 ∈ 𝒮. Then we have

𝐺0 = 1/2𝐺1
𝐺1 = 1/2𝐺2
𝐺2 = 1/2𝐺1 + 1/2

=⇒ 2𝐺0 = 𝐺1
𝐺1 = 1/2 (1/2𝐺1 + 1/2) =⇒ 2𝐺0 = 1/2 (𝐺0 + 1/2) =⇒ 3/2𝐺0 = 1/4 =⇒ ℙ[𝑇3 < 𝑇0] = 1/6

3. (The average number of jobs)
Jennifer is employed for one day at a time. When she is out of work, she visits the job agency in the morning to see if there
is work for that day. There is a job for her with probability 1/2. If there is no work, she comes back the next day. When
she has a job, she will be called back to the same job for the next day with probability 2/3. When she is not called back,
she goes to the job agency again the next morning to look for a new job that she had not had previously. Approximate the
average number of jobs Jennifer works in a year.
Let the state in which Jennifer is not working and the state in which she is working be the 0th and 1st states of a 2-state
Markov chain, respectively. Let 𝑋𝑛 be the state of Jennifer on day 𝑛 with 𝑋0 = 1. The transition matrix is given by

𝑃 =

[
1/2 1/2
1/3 2/3

]
56



Recall in class, we showed that the fraction of time spent in state 𝑗 during the steps 0, 1, 2, . . . , 𝑛 is given by

𝐻
(𝑛)
𝑗

:= 1
𝑛 + 1

𝑛∑
𝑘=0

1{𝑋𝑘 = 𝑗}

The expected value given the initial state 𝑋0 = 𝑖 is

𝔼[𝐻(𝑛)
𝑗

| 𝑋0 = 𝑖] = 1
𝑛 + 1

𝑛∑
𝑘=0

ℙ[𝑋𝑘 = 𝑗 | 𝑋0 = 𝑖] = 1
𝑛 + 1

𝑛∑
𝑘=0

[𝑃𝑘]𝑖 𝑗
𝑛→∞−→ 𝜋 𝑗

We use this result to find the average number of jobs Jennifer works in a year. We approximate that 365 days is enough for
the chain to reach its stationary distribution. Then, we have

𝔼[Jobs worked in a year] = 365 × 𝔼[𝐻(365)
𝑗

| 𝑋0 = 0] ≈ 365 × 𝜋1

where 𝜋 = (𝜋0 ,𝜋1) is the unique stationary distribution of the chain. We find 𝜋 by solving the equation 𝜋 = 𝜋𝑃 to get

𝜋 = 𝑃𝜋 ⇐ 𝜋⊤ = 𝑃⊤𝜋⊤ =⇒
[
𝜋0
𝜋1

]
=

[
1/2 1/3
1/2 2/3

] [
𝜋0
𝜋1

]
=

[
1/2𝜋0 + 1/3𝜋1
1/2𝜋0 + 2/3𝜋1

]
=⇒

[
𝜋0
𝜋1

]
=

[
2/5
3/5

]
Therefore, the average number of jobs Jennifer works in a year is

𝔼[Jobs worked in a year] ≈ 219.

4. (Rain or no rain) Suppose that at day 0 it is not raining. Then each new day, if it rained yesterday, it will rain with
probability 0.7; if it did not rain yesterday, it will rain with probability 0.2.
Let the state in which it is not raining and the state in which it is raining be the 0th and 1st states of a 2-state Markov chain,
respectively. Let 𝑋𝑛 be the state of the weather on day 𝑛 with 𝑋0 = 0. The transition matrix is given by

𝑃 =

[
0.8 0.2
0.3 0.7

]
(a) Find the stationary distribution.

We showed in class that the unique stationary distribution 𝜋 = (𝜋0 ,𝜋1) of the chain is given by

𝜋 =
1

𝑎 + 𝑏 [𝑏, 𝑎]

where 𝑎 and 𝑏 are the off-diagonal entries of the transition matrix 𝑃. Therefore, we have

𝜋 =
1

0.2 + 0.3 [0.3, 0.2] =
[
3
5 ,

2
5

]
(b) How many days should we expect to wait to have rain for the first time?

For this part, we are interested in finding the mean first passage time from state 0 to state 1. We defined the
fundamental matrix of irreducible MC as

𝑍 = (𝐼 − 𝑃 + 1𝜋)−1

In this case, we have

𝑍 =

( [
1 0
0 1

]
−

[
0.8 0.2
0.3 0.7

]
+

[
0.6 0.4
0.6 0.4

] )−1
=

[
0.8 0.2
0.3 0.7

]−1
=

1
0.5

[
0.7 −0.2
−0.3 0.8

]
=

[
1.4 −0.4
−0.6 1.6

]
The mean first passage time is given by

𝔼[𝑇𝑗 | 𝑋0 = 𝑖] =
𝑍 𝑗 𝑗 − 𝑍𝑖 𝑗

𝜋 𝑗

Therefore, we have

𝔼[𝑇1 | 𝑋0 = 0] = 𝑍11 − 𝑍01
𝜋1

=
1.6 − (−0.4)

2/5
= 5 days
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5. (The game of roulette) A gambler plays the game of roulette, betting 𝑋 dollars on red or black. The gambler wins 𝑋
dollars with probability 𝑝 = 18/38 or loses the bet with probability 𝑞 = 20/38. Suppose that the gambler starts the game with
$500 in his pocket and an upper limit on winnings is 1000.
Before we proceed, we derive the Gambler’s ruin formula which that the probability of ruin for a gambler starting with 𝑖
units of money is given by

ℙ[ruin | 𝑋0 = 𝑖] =

(
𝑞

𝑝

) 𝑖
−

(
𝑞

𝑝

)𝑁
1 −

(
𝑞

𝑝

)𝑁
where 𝑁 is the upper limit on winnings. We will use this formula to compute the probability of ruin for the gambler.

Proof. Suppose we normalize our Markov chain such that the gambler starts with 𝑖 units of money where 0 ≤ 𝑖 ≤ 𝑁 . Let
𝑋𝑛 be the gambler’s fortune at time 𝑛 with 𝑋0 = 𝑖. The gambler’s fortune evolves as

𝑋𝑛+1 =

{
𝑋𝑛 + 1 with probability 𝑝
𝑋𝑛 − 1 with probability 𝑞

The gambler’s ruin is the event that the gambler loses all his money, i.e.,𝑋𝑛 = 0. We are interested in finding the probability
of ruin, i.e., ℙ[𝑋𝑛 = 0 | 𝑋0 = 𝑖]. We begin by writing the recursive relation

ℙ[𝑋𝑛 = 0 | 𝑋0 = 𝑖] = 𝑝 ℙ[𝑋𝑛−1 = 1 | 𝑋0 = 𝑖] + 𝑞 ℙ[𝑋𝑛−1 = −1 | 𝑋0 = 𝑖]
Let 𝑟𝑖 = ℙ[𝑋𝑛 = 0 | 𝑋0 = 𝑖]. We can write the above equation as

𝑟𝑖 = 𝑝𝑟𝑖+1 + 𝑞𝑟𝑖−1.

We then have

𝑥 𝑖 = 𝑝𝑥 𝑖+1 + 𝑞𝑥 𝑖−1 =⇒ 𝑝𝑥2 − 𝑥 + 𝑞 = 0 =⇒ (𝑥 − 1)(𝑥 − 𝑞/𝑝) = 0

The roots of the above equation are 𝑥 = 1 and 𝑥 = 𝑞/𝑝. Therefore, the general solution to the above equation is given By

𝑟𝑖 = 𝐴 + 𝐵
(
𝑞

𝑝

) 𝑖
We can solve for 𝐴 and 𝐵 by using the boundary conditions 𝑟0 = 1 and 𝑟𝑁 = 0. We have

𝑟0 = 𝐴 + 𝐵 = 1 and 𝑟𝑁 = 𝐴 + 𝐵
(
𝑞

𝑝

)𝑁
= 0

Solving the above equations, we get

𝐴 =

−
(
𝑞

𝑝

)𝑁
1 −

(
𝑞

𝑝

)𝑁 and 𝐵 =
1

1 −
(
𝑞

𝑝

)𝑁
Therefore, we have

𝑟𝑖 =

(
𝑞

𝑝

) 𝑖
−

(
𝑞

𝑝

)𝑁
1 −

(
𝑞

𝑝

)𝑁
This completes the proof.

(a) Compute the probability of the gambler’s ruin for 𝑋 = $10.
Now that we have the formula for the probability of ruin, we can plug in the values of 𝑖 and 𝑁 to get the probability
of ruin for the gambler. We normalize our values such that the gambler starts with 𝑖 units of money where 0 ≤ 𝑖 ≤ 𝑁 .
We have 𝑖 = 50 and 𝑁 = 100. Also, note that 𝑞/𝑝 = 20/38/18/38 = 20/18 = 10/9. Therefore, we have

ℙ[ruin | 𝑋0 = $500] = ℙ[ruin | 𝑋0 = 50] =

(
𝑞

𝑝

)50
−

(
𝑞

𝑝

)100

1 −
(
𝑞

𝑝

)100 ≈ 0.9949
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(b) Compute the probability of the gambler’s ruin for 𝑋 = $100.
We do the same for 𝑋 = $100. We have 𝑖 = 5 and 𝑁 = 10. Therefore, we have

ℙ[ruin | 𝑋0 = $500] = ℙ[ruin | 𝑋0 = 5] =

(
𝑞

𝑝

)5
−

(
𝑞

𝑝

)10

1 −
(
𝑞

𝑝

)10 ≈ 0.6287

(c) Compare the above results with the probability of ruin in the case the gambler bets everything on a single turn of the
wheel.
If we bet it all on a single turn of the wheel, the probability of ruin is simply the probability of losing the bet, i.e.,
𝑞 = 20/38 ≈ 0.5263. This is much higher than the probability of ruin in the previous cases.
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STAT201A: Introduction to Probability at an Advanced Level (Fall 2024)
UC Berkeley

Problem Set 1

Due: 10:00pm, Friday, September 13, 2024 (via Gradescope)

1. (Basic probability) Assume that P(A) = 0.6, P(B) = 0.7 and P(C) = 0.8.

(a) Show that 0.3 ≤ P(A ∩B) ≤ 0.6.

(b) Show that 0.1 ≤ P(A ∩B ∩ C) ≤ 0.6.

2. (Independence) Suppose we roll an unbiased six-sided die n ≥ 3 times. Let Eij denote the event
that the ith and the jth rolls produce the same number. Show that the events {Eij | 1 ≤ i < j ≤ n}
are pairwise independent but not independent as a family.

3. (Expectation, joint distribution, uniform distribution) Let X be a random variable with
values {1, 2} and Y a random variable with values {0, 1, 2}. Initially we have the following partial
information about their joint probability mass function.

Y = 0 Y = 1 Y = 2

X = 1 1/8

X = 2 0

Subsequently we learn that E[XY ] = 13
9 and that Y has uniform distribution. Use this information

to fill in the missing values of the joint probability mass function table.

4. (Conditioning, cumulative distribution function) You flip a fair coin. If you get tails, you
choose a uniformly random number on the interval [0, 2]. If you get heads, you choose the number 1.
Let X be the random variable describing the outcome of that experiment.

(a) Using the law of total probabilities, calculate P(X ≤ 1/2) and P(X ≤ 3/2).

(b) Find the cumulative distribution function FX of X.

(c) Is X a discrete random variable? Is X a continuous random variable?

5. (Bounding even moments) Let X be a random variable. Show that E[X2k] ≥ (E[X])2k for all
positive integers k.

6. (Continuous distributions, probability density function, independence) Pick a uniformly
chosen random point (X,Y ) inside the sector delimited by the x-axis, the y-axis and the parabola
given by the equation y = 1− x2; see Figure 1.

(a) Verify that the area of that sector is 2/3.

(b) What is the probability that the distance of this point to the y-axis is less than 1/2?

(c) What is the probability that the distance of this point to the origin is more than 1/2?

(d) Find the p.d.f. of X.

(e) Find the p.d.f. of Y .

(f) Are X and Y independent?

1
page 60 — jump to Solution 1



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 1: Graph of y = 1− x2

7. (Events, indicators and basic probability inequalities) Recall that for an event A, we denote
the corresponding indicator random variable by I(A) (i.e., I(A) takes value 1 when A occurs and the
value 0 when A does not occur). Also recall that the probability P(A) of A equals the expectation
of the random variable E(I(A)).

(a) Given events A1, . . . , An, show that I (∪n
i=1Ai) = max1≤i≤n I (Ai).

(b) Using the fact observed above (and the following ordering property of expectation: X ≤ Y
implies that E(X) ≤ E(Y )), show that

P (∪n
i=1Ai) ≤

n∑

i=1

P (Ai) .

Note: This is known as the union bound and used quite frequently.

(c) For every event A, show that I (Ac) = 1 − I(A) where Ac denotes the event that A does not
occur.

(d) For events A1, . . . , An, show that I (∩n
i=1Ai) =

∏n
i=1 I (Ai).

(e) Using the above two facts, prove the inclusion-exclusion formula: For events A1, . . . , An,

P (∪n
i=1Ai) = Σ1 − Σ2 +Σ3 − Σ4 + · · ·+ (−1)n−1Σn

where
Σk :=

∑

1≤i1<i2<···<ik≤n

P (Ai1Ai2 · · ·Aik) .

8. (Hypergeometric and exchangeability) We have an urn with R red balls and N − R white
balls, where 0 < R < N . We draw n balls in sequence from the urn without replacement. Let Ri

denote the proposition that the ith draw results in a red ball.

(a) Calculate P (Ri) for each i = 1, . . . , n.

(b) Show that P (Rj | Rk) = P (Rk | Rj) for every 1 ≤ j, k ≤ n.

(c) Calculate P
(
Rk | ⋃n

i=k+1Ri

)
for a fixed 1 ≤ k < n.
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(d) Let X be the random variable representing the minimum number of draws required to get at
least one red ball. Calculate E[X], the expected value of X. (Hint: Use exchangeability to
simplify the calculation.)

(e) Suppose that instead of only two colors, the urn has balls of k different colors: N1 of color
1, N2 of color 2, . . . , Nk of color k. Let N = N1 + · · · + Nk. Argue that the probability of
drawing r1 balls of color 1, r2 balls of color 2, . . . , rk balls of color k in n = r1 + · · ·+ rk draws
without replacement is given by (

N1

r1

)
· · ·
(
Nk
rk

)
(
N
n

) .
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STAT201A: Introduction to Probability at an Advanced Level (Fall 2024)
UC Berkeley

Problem Set 2

Due: 10:00pm, Friday, September 27, 2024 (via Gradescope)

1. (Binomial tail bounds) Let Sn have the Binomial(n, pi) distribution of the number of successes
in n independent Bernoulli(p) trials. Use a suitable computational environment to evaluate the
right tail probabilities

P
(
Sn

n
≥ pi + ϵ

)

for n = 100 and pi = i/10 for i = 1, 2, . . . , 9, and ϵ = 1/10, together with various approximations
and upper bounds as indicated. In each case,

• give an exact mathematical formula for the function of i you are computing;

• indicate suitable code for evaluating the formula in your preferred environment and attach
the code at the end of the homework;

• give the numerical values correct to two significant decimal place.

(a) The exact probabilities.

(b) Markov’s upper bounds for these probabilities.

(c) Chebychev’s upper bounds for these probabilities (which can be halved for i = 5 only: explain
why).

(d) Hoeffding’s upper bounds.

(e) Chernoff’s upper bounds.

2. (LLN) Suppose that X1, X2, . . . form an i.i.d. sequence of random variables with E[Xi] = µ < ∞
and Var[Xi] = σ2 < ∞. Evaluate

lim
n→∞

1(
n
2

)
∑

i,j:1≤i<j≤n

(Xi −Xj)
2.

3. (Chebyshev & CLT) Let X1, X2, X3, . . . be i.i.d. random variables with mean zero and finite
variance σ2. Let Sn = X1 + · · ·+Xn. Determine the limits below, with precise justifications.

(a) limn→∞ P(Sn ≥ 0.01n).

(b) limn→∞ P(Sn ≥ 0).

(c) limn→∞ P(Sn ≥ −0.01n).

4. (Convolution & MGF) The Laplace distribution has density fZ(z) = λ
2 exp(−λ|z|) and MGF

MZ(t) = λ2

λ2−t2
, where λ > 0. Let X,Y

iid∼ Exp(λ). Prove that Z = X − Y follows a Laplace
distribution by using:

(a) Moment generating functions.

(b) The convolution formula.

1
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5. (Moments & MGF) Let X be a random variable with p.d.f. given by

fX(x) =





2/9, if 0 ≤ x ≤ 1,

(4− |4− 2x|)/9, if 1 < x ≤ 4,

0, otherwise.

(a) Verify that this is actually a p.d.f.

(b) Find the moment generating function of X.

(c) Find E[X] and Var[X].

(d) Find a formula for the moments of X.

6. (Distribution of sums using MGFs) Let Sn := X1+ · · ·+Xn for independent X1, . . . , Xn. Use
MGFs to find the distribution of Sn

(a) For Xi with Normal
(
µi, σ

2
i

)
distribution.

(b) For Xi with Gamma (ri, λ) distribution.

(c) For Xi = Z2
i with Zi ∼ Normal(0, 1).

2
page 64 — jump to Solution 2



STAT201A: Introduction to Probability at an Advanced Level (Fall 2024)
UC Berkeley

Problem Set 3

Due: 10:00pm, Friday, October 11, 2024 (via Gradescope)

1. (Approximating Binomial Distributions) The goal of this question is to empirically verify
three approximations to the exact Binomial probability P(X = k), where X ∼ Binomial(n, p):

• P(Y = k), where Y ∼ Poisson(np), the Poison approximation with rate parameter np;

• The normal approximation

ϕ(k;np, np(1− p)) :=
1√

2πnp(1− p)
exp

{
− (k − np)2

2np(1− p)

}

• The entropic approximation

Ent(k;n, p) :=
1√

2πnf(1− f)
exp(−nKL(f∥p))

where f = k
n and KL(f∥p) = f log f

p + (1− f) log 1−f
1−p .

(a) Take n = 30 and p = 0.05. Create a table ( 31 rows and 3 columns) containing the absolute
errors for each approximation,

|P(X = k)− P(Y = k)|, |P(X = k)− ϕ(k;np, np(1− p))|

and
|P(X = k)− Ent(k;n, p)|

for k = 0, 1, . . . , 30. (Note: The entropic approximation does not exist for k = 0 and k = 30,
so only list it for k = 1, . . . , 29 ).
Based on the table, comment on the accuracy of each of the three approximations for the
Binomial distribution.

(b) Create a similar table for the relative errors

|P(X = k)− P(Y = k)|
P(X = k)

,
|P(X = k)− ϕ(k;np, np(1− p))|

P(X = k)

and
|P(X = k)− Ent(k;n, p)|

P(X = k)

for k = 0, 1, . . . , 30. Based on this table, comment on the accuracy of each of the three
approximations for the Binomial.

(c) Repeat exercises (a) and (b) above for n = 30 and p = 0.25.

(d) Repeat exercises (a) and (b) above for n = 30 and p = 0.5.
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2. (KL-Divergence, Multinomial) Let X and Y be discrete random variables with distributions
p and q respectively (So p(k) = P(X = k) and q(k) = P(Y = k)). Remember that the Kull-
back–Leibler divergence is defined by

KL(p∥q) := Ep

[
ln
(p(X)

q(X)

)]
=
∑

k

p(k) ln
(p(k)
q(k)

)
.

(a) Show that when q(k) is a Poisson distribution with parameter λ > 0, then the KL-divergence
is minimized by setting λ to be the mean of p(k).

(b) Rememebr that the entropy H(p) is defined to be H(p|q) := −Ep[ln(p(X))]. Assume that
we need to place n balls into d bins. The number of ways to place the balls resulting in ki
total balls in bin i, for i = 1, . . . , d, is given by the combinatorial expression

(
n

k1,k2,...,kd

)
. Now

consider the empirical distribution of the balls. Its probability mass function is p(i) = ki/n.
Let Np denote the number of configurations with empirical distribution p, show that

ln(Np) = nH(p) +O(ln(n)),

where h(p) is the entropy of p.

In other words, there are many more high-entropy configurations than low-entropy configura-
tions. This suggests the intuition that, if we consider a physical system at a “macro level”
(such as the distribution of gas particles in a container) then we should expect it to drift
toward high-entropy configurations.

Hint: Recall Stirling’s approximation

ln(n!) = n ln(n)− n+O(ln(n)).

3. (Poisson) Let K = X1 +X2 + · · ·+XN , where N ∼ Poisson (λ) and X1, X2, · · · are independent
Bernoulli (p) random variables. Assuming that N and {Xi}i∈N are mutually independent, find the
distribution of K.

4. (Joint densities) Let the joint density function of (X,Y ) be

f(x, y) =

{
3xy(x+ y), if (x, y) ∈ [0, 1]2,

0, else.

Calculate the covariance Cov(X,Y ).

5. (Transformation of random variables)

(a) Suppose X has the Cauchy distribution with density:

fX(x) :=
1

π(1 + x2)
.

Show that 1/X has the same distribution as X.

(b) Suppose Y ∼ Exp(1). Find a function g : (0,∞) → (−∞,∞) such that g(Y ) has the Cauchy
distribution with density given by (a).

(c) Suppose Z ∼ Exp(λ), where λ > 0. Show that the distribution of W := ⌈Z⌉ (here ⌈z⌉ is
the smallest integer that is larger than or equal to z) is Geometric. Explicitly express the
parameter of the Geometric distribution in terms of λ.

6. (Transformation of random variables) Suppose X ∼ Uniform[−π, 2π]. Find the p.d.f. of
Y = sin(X).
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STAT201A: Introduction to Probability at an Advanced Level (Fall 2024)
UC Berkeley

Problem Set 4

Due: 10:00pm, Tuesday, November 5, 2024 (via Gradescope)

1. (Order statistics) Let X1, . . . , Xn be i.i.d. random variables with Exp(λ) distribution, where
λ > 0, and let X(i) be the order statistics for i = 1, . . . , n.

(a) Find the distribution of X(1).

(b) Using the memoryless property, find the distribution of X(i+1) −X(i) for i = 1, . . . , n− 1.

(c) Use the previous item to show that each X(i) has the same distribution as a sum of i indepen-
dent random variables.

(d) Calculate the expectation and the variance of X(i) for i = 1, . . . , n.

2. (Joint and conditional densities) Let X,Y be two random variables with the following proper-
ties. Y has density function fY (y) = 3y2 for 0 < y < 1 and zero elsewhere. For 0 < y < 1, given
that Y = y, X has conditional density function fX|Y (x|y) = 2x

y2
for 0 < x < y and zero elsewhere.

(a) Find the joint density function fX,Y (x, y) of X,Y . Be precise about the values (x, y) for which
your formula is valid. Check that the joint density function you find integrates to 1.

(b) Find the conditional density function of Y , given X = x. Be precise about the values of x and
y for which the answer is valid. Identify the conditional distribution of Y by name.

3. (Model selection) Given data x1, . . . , xn, consider the problem of selecting between the two
models:

Model One : X1, . . . , Xn
i.i.d∼ N(0, 1)

and
Model Two : X1, . . . , Xn

i.i.d∼ N(µ, 1) for an unknown µ.

To use probability to solve this problem, let us introduce an additional random variable Θ that
has the Bernoulli distribution with parameter 0.5. Assume that the conditional distribution of
X1, . . . , Xn given Θ = θ is given by the following

X1, . . . , Xn | Θ = 0
i.i.d∼ N(0, 1)

and
X1, . . . , Xn | µ,Θ = 1

i.i.d∼ N(µ, 1) and µ | Θ = 1 ∼ N
(
0, τ2

)
.

Here τ is a parameter which you can treat as a fixed constant in this exercise.

(a) Using the formula

fX1,...,Xn|Θ=1 (x1, . . . , xn) =

∫
fX1,...,Xn|µ,Θ=1 (x1, . . . , xn) fµ|Θ=1(µ)dµ

prove that

fX1,...,Xn|Θ=1 (x1, . . . , xn) =

(
1√
2π

)n 1√
1 + nτ2

exp

(
−
∑n

i=1 x
2
i

2

)
exp

(
n2τ2x̄2

2 (1 + nτ2)

)
,

where x̄ is the mean of x1, . . . , xn.
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(b) Calculate the conditional distribution of Θ given X1 = x1, . . . , Xn = xn.

(c) Intuitively, we would prefer Model Two over Model One when x̄ is far from zero. Is this
intuition reflected in your conditional distribution from the previous part?

4. (Gamma-Poisson) Consider random variables Θ, X1, . . . , Xn such that

Θ ∼ Gamma(α, λ) and X1, . . . , Xn | Θ = θ
i.i.d.∼ Poisson(θ)

(a) Find the conditional distribution of Θ given X1 = x1, X2 = x2, . . . , Xn = xn.

(b) Find E [Θ | X1 = x1, . . . , Xn = xn].

(c) Write E [Θ | X1 = x1, . . . , Xn = xn] as a weighted linear combination of (x1 + · · ·+ xn) /n and
the mean of the marginal distribution (i.e., prior mean) of Θ and argue that the weight of the
prior mean goes to zero as n → ∞.

5. (Law of total expectation) Let the joint probability mass function (p.m.f.) of (X,Y ) be

pX,Y (k, n) =





1

n+ 1

(
1− 1

n+ 1

)k−1 1

2n
, for 1 ≤ n < ∞ and 1 ≤ k < ∞,

0, else.

(a) Find the p.m.f. pY (n) of Y and the conditional p.m.f pX|Y (k|n).
(b) Calculate E[Y ].

(c) Find the conditional expectation E[X|Y ].

(d) Use parts (a) and (c) to calculate E[X].

6. (Expected number of coin tosses) Consider a sequence of coin tosses.

(a) On average, how many tosses of a fair coin does it take to see two heads in a row?

(b) How many tosses on average to see the sequence HTH for the first time?

(c) How does our answer changes if we have an unfair coin?
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STAT201A: Introduction to Probability at an Advanced Level (Fall 2024)
UC Berkeley

Problem Set 5

Due: 10:00pm, Wednesday, November 20, 2024 (via Gradescope)

1. (Multivariate normal) Suppose Y ∼ Nn(µ,Σ) in this problem.

(a) If a is any fixed vector in Rn, show that

aT (Y − µ)√
aTΣa

∼ N (0, 1).

(b) If A is now a random vector that is independent of Y , then show again that

AT (Y − µ)√
ATΣA

is distributed according to N (0, 1) and that it is independent of A.

(c) Using the above result, show that if Y ∼ N3 (0, I3), then

Y1e
Y3 + Y2 log |Y3|√

e2Y3 + (log |Y3|)2
∼ N (0, 1).

2. (Marginally normal but not bivariate normal) Give an example of a 2 × 1 random vector
Y = (Y1, Y2)

T with positive definite covariance matrix such that each Y1 and Y2 is standard normal
but Y is not bivariate normal.

3. (Conditional distribution) Consider three random variables Y1, Y2 and Y3 that are independent
and standard normal. Let

X1 = Y2 + Y3,

X2 = Y1 + Y3,

X3 = Y1 + Y2.

Find the conditional distribution of X1 given X2 = X3 = 0.

4. (More on jointly Gaussian distributions) Let X and Y be independent standard normal
variables.

(a) For a constant k, find P(X > kY ).

(b) If U =
√
3X + Y , and V = X −

√
3Y , find P(U > kV ).

(c) Find P(U2 + V 2 < 1).

(d) Find the conditional distribution of X given V = v.

5. (Wigner’s surmise) Let X =

(
X1 X3

X3 X2

)
with X1 and X2 independent N (0, 1) and X3 another

independent N (0, 1/2). Let λ1 and λ2 be two eigenvalues of X and s = |λ1 − λ2|.
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(a) Prove that s =
√
(X1 −X2)2 + 4X2

3 .

(b) Find the density of s.

(c) Plot the density function of s. What do you observe respect to the eigenvalues of the random
matrix X?

6. (1D Gaussian process) In this problem, you will implement a 1D Gaussian process that pre-
dicts outputs based on noisy training data. You will be given (noisy) 1D training data pairs
Dtrain = {(x1, y1) , (x2, y2) . . .}. Your task is to predict the output for a set of test queries
Dtest = {x∗1, x∗2, . . .}, conditioned on the training data. Implement two separate kernel functions,
namely the

• Squared Exponential Kernel: This is the kernel we discussed in class.

k (xi, xj) = σ2
f exp

(
−(xi − xj)

T M (xi − xj)

2

)

where σf is a scale factor for the kernel and M is a metric measuring distance between two
input vectors. In the 1D case, M = 1

l2
where l is the length scale of the kernel.

• Matérn Kernel: This kernel is used commonly in many machine learning applications.

k (xi, xj) =
21−ν

Γ(ν)

(√
2νr

l

)ν

Kν

(√
2νr

l

)

where ν and l are (positive) parameters of the kernel and r = |xi − xj |. Kν is a modified bessel
function and Γ is the gamma function. Good parameters settings for ν are 0.25 - 3. You can
use scipy.special.kv() in Python or besselK() in R for implementing Kν .

(a) Implement the squared exponential and Matérn kernel functions to compute similarity between
any pair of inputs. The output for each function should be a kernel matrix K.

(b) Using your kernel functions, implement a Gaussion process regression function to predict the
posterior mean and variance of test data y⃗∗.

(c) The simulation function and plotting function are provided in the file ps5 GP 1D.ipynb. Vary
the kernel parameters (e.g., σf , l, and ν) and observe how they affect the predictive mean and
variance. What impact do these parameters have on the smoothness and uncertainty of your
GP predictions?

Note: It’s recommended to use Python (Jupyter notebook) and submit a pdf file including
code, plots and comments. If you prefer using another coding language, please make sure the
data simulation is the same with the provided code.
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STAT201A: Introduction to Probability at an Advanced Level (Fall 2024)
UC Berkeley

Problem Set 6

Due: 10:00pm, Friday, December 6, 2024 (via Gradescope)

1. (Branching process) A branching process starts with one individual, i.e. X(0) = 1, who repro-
duces according to the following principle:

# of children 0 1 2

probability 1
6

1
3

1
2

Individuals reproduce independently of each other and independently of the number of their sisters
and brothers. Determine

(a) the probability that the population becomes extinct;

(b) the probability that the population has become extinct in the second generation, i.e. P(X(2) =
0);

(c) the expected number of children given that there are no grandchildren.

2. (Random walk) Random walk on {0, 1, 2, 3}. Consider the Markov chain (Xn) with transition
matrix

P =




1
2

1
2 0 0

1
2 0 1

2 0
0 1

2 0 1
2

0 0 1
2

1
2


 ,

started with X0 = 0. Define Tj as min {n ≥ 1 : Xn = j}. Find explicitly the following distributions
and expectations.

(a) The distribution of X2.

(b) The limit distribution of Xn as n → ∞.

(c) E[T0]

(d) E[T3]

(e) P[T3 < T0]

3. (The average number of jobs) Jennifer is employed for one day at a time. When she is out of
work, she visits the job agency in the morning to see if there is work for that day. There is a job
for her with probability 1/2. If there is no work, she comes back the next day. When she has a
job, she will be called back to the same job for the next day with probability 2/3. When she is not
called back, she goes to the job agency again the next morning to look for a new job that she had
not had previously. Approximate the average number of jobs Jennifer works in a year.

4. (Rain or no rain) Suppose that at day 0 it is not raining. Then each new day, if it rained
yesterday, it will rain with probability 0.7; if it did not rain yesterday, it will rain with probability
0.2.

(a) Find the stationary distribution.
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(b) How many days should we expect to wait to have rain for the first time?

5. (The game of roulette) A gambler plays the game of roulette, betting X dollars on red or black.
The gambler wins X dollars with probability p = 18/38 or loses the bet with probability q = 20/38.
Suppose that the gambler starts the game with $500 in his pocket and upper limit on winnings is
$1000.

(a) Compute the probability of the gambler’s ruin for X = $10.

(b) Compute the probability of the gambler’s ruin for X = $100.

(c) Compare the above results with the probability of ruin in the case the gambler bets everything
on a single turn of the wheel.
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STAT201A: Introduction to Probability at an Advanced Level (Fall 2024)
UC Berkeley

Problem Set 1 Solutions

1. (Basic probability) Assume that P(A) = 0.6, P(B) = 0.7 and P(C) = 0.8.

(a) Show that 0.3 ≤ P(A ∩B) ≤ 0.6.
For the second inequality, since A∩B ⊆ A then P(A∩B) ≤ P(A) = 0.6. For the first inequality
note that P(A ∪B) ≤ 1. Using the principle of inclusion-exclusion on B and C we have that

P(A ∩B) = P(A) + P(B)− P(A ∪B)

≥ 0.6 + 0.7− 1 = 0.3

We conclude that 0.3 ≤ P(A ∩B) ≤ 0.6.

(b) Show that 0.1 ≤ P(A ∩B ∩ C) ≤ 0.6.
For the second inequality, since A ∩ B ∩ C ⊆ A then P(A ∩ B ∩ C) ≤ P(A) = 0.6. Note that
P((A∩B)∪C) ≤ 1. Using the principle of inclusion-exclusion again on C and A∩B we have
that

P(A ∩B ∩ C) = P(A ∩B) + P(C)− P((A ∩B) ∪ C)

≥ 0.3 + 0.8− 1 = 0.1

2. (Independence) Suppose we roll an unbiased six-sided die n ≥ 3 times. Let Eij denote the event
that the ith and the jth rolls produce the same number. Show that the events {Eij | 1 ≤ i < j ≤ n}
are pairwise independent but not independent as a family.
Remark that P(Eij) = 1/6. We also have that P(Eij ∩Ekℓ) = 1/36 and P(Eij ∩Eik) = 1/36. Since
P(Eij ∩Ekℓ) = P(Eij)P(Ekℓ) in all cases, we conclude that the events are pairwise independent. On
the other hand, remark that P(E12)P(E13)P(E23) = 1/63 while P(E12 ∩ E13 ∩ E23) = 1/62. Hence
the events are not independent.

3. (Expectation, joint distribution, uniform distribution) Let X be a random variable with
values {1, 2} and Y a random variable with values {0, 1, 2}. Initially we have the following partial
information about their joint probability mass function.

Y = 0 Y = 1 Y = 2

X = 1 1/8

X = 2 0

Subsequently we learn that E[XY ] = 13
9 and that Y has uniform distribution. Use this information

to fill in the missing values of the joint probability mass function table.

The missing values on the table are a = P(X = 1, Y = 1), b = P(X = 1, Y = 2), c = P(X = 2, Y =
0) and d = P(X = 2, Y = 2). We know this must be a joint PMF so

1/8 + a+ b+ c+ d = 1.
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We also know that
E[XY ] = a+ 2b+ 4d = 13/9,

and since Y is uniform we have that

1/8 + c = a = b+ d.

Using the last equation on the first two equations we obtain 3b + 3d = 1 and 3b + 5d = 13/9. By
solving the system of equations we obtain b = 1/9, d = 2/9 and finally using the last equation again
we conclude a = 1/3 and c = 5/24.

Y=0 Y=1 Y=2

X=1 1/8 1/3 1/9

X=2 5/24 0 2/9

4. (Conditioning, cumulative distribution function) You flip a fair coin. If you get tails, you
choose a uniformly random number on the interval [0, 2]. If you get heads, you choose the number 1.
Let X be the random variable describing the outcome of that experiment.

(a) Using the law of total probabilities, calculate P(X ≤ 1/2) and P(X ≤ 3/2).

(b) Find the cumulative distribution function FX of X.

(c) Is X a discrete random variable? Is X a continuous random variable?

Let T be the event in which we got tails and H be the event in which we got heads.

(a) We have that

P(X ≤ 1/2) = P(X ≤ 1/2|T )P(T ) + P(X ≤ 1/2|H)P(H)

=
1

4
× 1

2
+ 0× 1

2
=

1

8
,

and that

P(X ≤ 3/2) = P(X ≤ 3/2|T )P(T ) + P(X ≤ 3/2|H)P(H)

=
3

4
× 1

2
+ 1× 1

2
=

7

8
.

(b) We want to find FX(s) = P(X ≤ s). We will proceed exactly as in part 1. If s < 0 then
directly P(X ≤ s) = 0. If s > 2 then directly P(X ≤ s) = 1. If 0 < s < 1 then

P(X ≤ s) = P(X ≤ s|T )P(T ) + P(X ≤ s|H)P(H)

=
s

2
× 1

2
+ 0× 1

2
=

s

4
,

If 1 ≤ s ≤ 2 then

P(X ≤ s) = P(X ≤ s|T )P(T ) + P(X ≤ s|H)P(H)

=
s

2
× 1

2
+ 1× 1

2
=

2 + s

4
.
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(c) Following the definitions given in lecture, this is neither a continuous or a discrete random
variable. It is not continuous since we have P(X = 1) = 1/2 ̸= 0. It is not discrete since the
sum of probabilities of possible values X can take with positive probability is 1/2 instead of 1.
There are other ways to argue. For example showing that FX is not continuous, that X don’t
have a p.d.f., that the cardinality of possible values X can take is infinite uncountable, etc.

5. (Bounding even moments) Let X be a random variable. Show that E[X2k] ≥ (E[X])2k for all
positive integers k. This is a direct application of Jensen’s inequality with the function φ(x) = x2k.
To verify that φ is convex we can calculate the second derivative and verify it is nonnegative.

6. (Continuous distributions, probability density function, independence) Pick a uniformly
chosen random point (X,Y ) inside the sector delimited by the x-axis, the y-axis and the parabola
given by the equation y = 1− x2; see Figure 1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 1: Graph of y = 1− x2

(a) Verify that the area of that sector is 2/3.

(b) What is the probability that the distance of this point to the y-axis is less than 1/2?

(c) What is the probability that the distance of this point to the origin is more than 1/2?

(d) Find the p.d.f. of X.

(e) Find the p.d.f. of Y .

(f) Are X and Y independent?

(a) Calculate
∫ 1
0 1− x2 dx = [x− x3/3]10 = 2/3.

(b) Let A be the described event, given that we are choosing a point uniformly, the value of P(A)
is given by the ratios of area described in event A and the total area of the delimited sector.
Given that, let’s note that for the distance between the y-axis and the point to be less than
1/2 then the point must be in the sector delimited by the y-axis, the x-axis, the equation

y = 1 − x2 and the line x = 1/2. The area of this sector is given by
∫ 1/2
0 1 − x2 dx =

11

24
.

Finally P(A) =
11/24

2/3
=

11

16
.
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(c) We proceed as in part 2., let B be the described event. the are we are looking for correspond
to the area of the original sector minus a quarter of disk of radius 1/2. More precisly P(B) =
2/3− π/16

2/3
= 1− 3π

32
≈ 0.705...

(d) The pdf of X is the only function pX(t) such that P (a ≤ X ≤ b) =
∫ b
a pX(t) dt. We get

pX(t) = 3
2(1− t2) for 0 ≤ t ≤ 1 and 0 in other case.

(e) Similarly, the pdf of Y is pY (t) =
3
2(
√
1− t) for 0 ≤ t ≤ 1 and 0 in other case.

(f) Just taking I = [4/5, 1], remark that P(X ∈ I) ̸= 0 and P(Y ∈ I) ̸= 0, however P(X ∈ I, Y ∈
I) = 0. Since P(X ∈ I, Y ∈ I) = 0 ̸= P(X ∈ I)P(Y ∈ I), we conclude that X and Y are not
independent.

7. (Events, indicators and basic probability inequalities) Recall that for an event A, we denote
the corresponding indicator random variable by I(A) (i.e., I(A) takes value 1 when A occurs and the
value 0 when A does not occur). Also recall that the probability P(A) of A equals the expectation
of the random variable E(I(A)).

(a) Given events A1, . . . , An, show that I (∪n
i=1Ai) = max1≤i≤n I (Ai).

Recall the definition of the indicator function I(A) for an event A :

I(A) =

{
1 if A occurs

0 if A does not occur

The event ∪n
i=1Ai occurs if at least one of the Ai occurs, meaning that:

I (∪n
i=1Ai) =

{
1 if at least one Ai occurs

0 if none of the Ai occurs.

The maximum of the individual indicators:

max
1≤i≤n

I (Ai) =

{
1 if I (Ai) = 1 for at least one i

0 if I (Ai) = 0 for all i

By definition, I (Ai) = 1 if and only if eventAi occurs. Therefore, the maximummax1≤i≤n I (Ai)
takes the value 1 if at least one of the events Ai occurs, and 0 if none of the events occur. This
shows

I (∪n
i=1Ai) = max

1≤i≤n
I (Ai) .

(b) Using the fact observed above (and the following ordering property of expectation: X ≤ Y
implies that E(X) ≤ E(Y )), show that

P (∪n
i=1Ai) ≤

n∑

i=1

P (Ai) .

Note: This is known as the union bound and used quite frequently.
We know that for any collection of non-negative random variables X1, X2, . . . , Xn, the maxi-
mum of these random variables is always less than or equal to the sum:

max
1≤i≤n

Xi ≤
n∑

i=1

Xi
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Applying this to our indicator random variables and from result from a) , we have:

I (∪n
i=1Ai) = max

1≤i≤n
I (Ai) ≤

n∑

i=1

I (Ai)

We then have
P (∪n

i=1Ai) = E [I (∪n
i=1Ai)]

≤ E

[
n∑

i=1

I (Ai)

]
(i)

=

n∑

i=1

E [I (Ai)] (ii)

=

n∑

i=1

P (Ai)

where (i) follows the ordering property of expectation and (ii) holds because of linearity of
expectation.

(c) For every event A, show that I (Ac) = 1 − I(A) where Ac denotes the event that A does not
occur.
By definition:

I(A) =

{
1 if A occurs

0 if A does not occur.

I (Ac) =

{
1 if Ac occurs (i.e., A does not occur)

0 if Ac does not occur (i.e., A occurs)

Thus, we observe that I (Ac) = 1 when I(A) = 0, and I (Ac) = 0 when I(A) = 1. Hence,

I (Ac) = 1− I(A).

(d) For events A1, . . . , An, show that I (∩n
i=1Ai) =

∏n
i=1 I (Ai).

The indicator I (∩n
i=1Ai) is 1 if and only if all events Ai occur simultaneously, otherwise it is

0. This can be expressed as

I (∩n
i=1Ai) =

{
1 if I (Ai) = 1 for all i

0 if I (Ai) = 0 for some i

This is exactly the product of the indicators:

I (∩n
i=1Ai) =

n∏

i=1

I (Ai)

(e) Prove the inclusion-exclusion formula: For events A1, . . . , An,

P (∪n
i=1Ai) = Σ1 − Σ2 +Σ3 − Σ4 + · · ·+ (−1)n−1Σn
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where
Σk :=

∑

1≤i1<i2<···<ik≤n

P (Ai1Ai2 · · ·Aik) .

(Approach 1: induction) Base cases. For n = 1, the formula is simply P(A1) = P(A1) and
for n = 2, the formula is

P(A1 ∪A2) = P(A1) + P(A2)− P(A1 ∩A2),

which holds as the standard inclusion-exclusion formula for the union of two events. Hence,
the base case holds for both n = 1 and n = 2.
Inductive Step. Assume that the formula holds for n = k. That is, assume

P
(
∪k
i=1Ai

)
=
∑

1≤i≤k

P(Ai)−
∑

1≤i1<i2≤k

P (Ai1 ∩Ai2) + . . .

+ (−1)k−1P
(
∩k
i=1Ai

)
.

We need to show that the formula also holds for n = k + 1, i.e.,

P
(
∪k+1
i=1Ai

)
=

∑

1≤i≤k+1

P(Ai)−
∑

1≤i1<i2≤k+1

P (Ai1 ∩Ai2) + . . .

+ (−1)kP
(
∩k+1
i=1Ai

)
.

We can express the union of the k + 1 events as

P
(
∪k+1
i=1Ai

)
= P

(
(∪k

i=1Ai) ∪Ak+1

)

= P
(
∪k
i=1Ai

)
+ P(Ak+1)− P

((
∪k
i=1Ai

)
∩Ak+1

)

= P
(
∪k
i=1Ai

)
+ P(Ak+1)− P

(
∪k
i=1 (Ai ∩Ak+1)

)
.

As we assume the formula holds for n = k, we can expand P
(
∪k
i=1 (Ai ∩Ak+1)

)
as

P
(
∪k
i=1 (Ai ∩Ak+1)

)
=
∑

1≤i≤k

P (Ai ∩Ak+1)−
∑

1≤i1<i2≤k

P (Ai1 ∩Ai2 ∩Ak+1)

+ · · ·+ (−1)k−1P
(
∩k+1
i=1Ai

)
.

Substituting this into the expression for P
(
∪k+1
i=1Ai

)
, we obtain

P
(
∪k+1
i=1Ai

)
=

∑

1≤i≤k+1

P(Ai)−
∑

1≤i1<i2≤k+1

P (Ai1 ∩Ai2) + . . .

+ (−1)kP
(
∩k+1
i=1Ai

)
.
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This shows that the formula holds for n = k + 1, completing the induction.
(Approach 2: Direct proof) From parts (c) and (d) it is clear that:

I (∪n
i=1Ai) = 1− I (∩n

i=1A
c
i )

= 1−
n∏

i=1

I (1−Ai)

(expand this product)

= 1−


1−

n∑

i=1

I (Ai) +
∑

i<j

I (Ai, Aj)−
∑

i<j<k

I (Ai, Aj , Ak) + . . .




=

n∑

i=1

I (Ai)−
∑

i<j

I (Ai, Aj) +
∑

i<j<k

I (Ai, Aj , Ak)− . . .

Taking the expectation of both sides:

P (∪n
i=1Ai) =

n∑

i=1

P (Ai)−
∑

i<j

P (Ai, Aj) +
∑

i<j<k

P (Ai, Aj , Ak)− . . .

Note that the RHS can be written more simply such as:

Σk =
∑

i≤i1<i2<···<ik≤n

P (Ai1 , Ai2 , . . . , Aik)

Thus
P (∪n

i=1Ai) = Σi − Σ2 +Σ3 − Σ4 + . . .+ (−1)n−1Σn

8. (Hypergeometric and exchangeability) We have an urn with R red balls and N − R white
balls, where 0 < R < N . We draw n balls in sequence from the urn without replacement. Let Ri

denote the proposition that the ith draw results in a red ball.

(a) Calculate P (Ri) for each i = 1, . . . , n.
Since there are R red balls out of N total balls, we have

P (R1) =
R

N
.

By exchangability, it follows that when we consider one i at a time, we have

P (Ri) =
R

N
, ∀i ∈ {1, . . . , n}.

Exchanging the order in which we consider i does not change the underlying distribution.

(b) Show that P (Rj | Rk) = P (Rk | Rj) for every 1 ≤ j, k ≤ n.
Consider the definition of conditional probabilities:

P (Ri | Rj) =
P (Ri ∩Rj)

P (Rj)

=
P (Ri ∩Rj)

P (Ri)
( by part (a))

= P (Rj | Ri)

7
page 79 — back to Homework 1



(c) Calculate P
(
Rk | ⋃n

i=k+1Ri

)
for a fixed 1 ≤ k < n.

For fixed 1 ≤ k < n,

P

(
Rk |

n⋃

i=k+1

Ri

)
=

P
(
Rk ∩ (

⋃n
i=k+1Ri)

)

P
(⋃n

i=k+1Ri

)

=
P
(
R1 ∩ (

⋃n
i=k+1Ri)

)

P
(⋃n−k

i=1 Ri

) ( by exchangability )

=
P (R1)P

(⋃n−k+1
i=2 Ri | R1

)

P
(⋃n−k

i=1 Ri

)

=

(
R
N

) (
1− P

(
draw n−k white balls

from a urn with N−1 balls

))

1− P
(

all of the first n−k
draws are are white

)

=

(
R
N

) [
1− (N−R

n−k )
(N−1
n−k)

]

1− (N−R
n−k )
( N
n−k)

(d) Let X be the random variable representing the minimum number of draws required to get at
least one red ball. Calculate E[X], the expected value of X. (Hint: Use exchangeability to
simplify the calculation.)
Label the white balls as 1, 2, . . . , N −R. Define the indicator variable Ij for each white ball j,
where Ij = 1 if white ball j is drawn before any red ball, and Ij = 0 otherwise.
The probability that a specific white ball j is drawn before any red ball is given by

P(Ij = 1) =
1

R+ 1

This is because, when considering the order in which one specific white ball and all red balls
are drawn, all possible orders are equally likely.
Let Y represent the number of white balls drawn before the first red ball. Then Y is simply
the sum of all indicator variables:

Y =

N−R∑

j=1

Ij .

Thus, the expected value of Y is

E[Y ] =

N−R∑

j=1

E[Ij ] =
N −R

R+ 1

Since we are interested in the expected number of total draws X to get the first red ball, we
have X = Y + 1 (as the next draw after all white balls have been drawn must be a red ball).
Therefore,

E[X] = E[Y ] + 1 =
N + 1

R+ 1
.
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(e) Suppose that instead of only two colors, the urn has balls of k different colors: N1 of color
1, N2 of color 2, . . . , Nk of color k. Let N = N1 + · · · + Nk. Argue that the probability of
drawing r1 balls of color 1, r2 balls of color 2, . . . , rk balls of color k in n = r1 + · · ·+ rk draws
without replacement is given by (

N1

r1

)
· · ·
(
Nk
rk

)
(
N
n

) .

Use the concept of combinatorial counting.
Total Number of Possible Outcomes: The total number of ways to draw n balls from an
urn containing N balls (where N = N1+N2+ · · ·+Nk) without considering the color is given
by the binomial coefficient

(
N
n

)
.

Number of Favorable Outcomes: The number of ways to choose r1 balls from the N1 balls
of color 1 is

(
N1

r1

)
. Similarly, the number of ways to choose r2 balls from the N2 balls of color

2 is
(
N2

r2

)
, and so on. The total number of ways to achieve this specific configuration is given

by the product of these individual combinations

(
N1

r1

)
·
(
N2

r2

)
· . . . ·

(
Nk

rk

)

Probability:

Probability =
Number of favorable outcomes

Total number of possible outcomes
=

(
N1

r1

)
·
(
N2

r2

)
· . . . ·

(
Nk
rk

)
(
N
n

)
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STAT201A: Introduction to Probability at an Advanced Level (Fall 2024)
UC Berkeley

Problem Set 2

Due: 10:00pm, Friday, September 27, 2024 (via Gradescope)

1. (Binomial tail bounds) Let Sn have the Binomial(n, pi) distribution of the number of successes
in n independent Bernoulli(pi) trials. Use a suitable computational environment to evaluate the
right tail probabilities

P
(
Sn

n
≥ pi + ϵ

)

for n = 100 and pi = i/10 for i = 1, 2, . . . , 9, and ϵ = 1/10, together with various approximations
and upper bounds as indicated. In each case,

• give an exact mathematical formula for the function of i you are computing;

• indicate suitable code for evaluating the formula in your preferred environment and attach
the code at the end of the homework;

• give the numerical values correct to two significant decimal place.

(a) The exact probabilities.
For a binomial random variable Sn ∼ Binomial (n, pi), the exact probability is

P (Sn ≥ n (pi + ϵ)) =

n∑

k=[n(pi+ϵ)]

(
n

k

)
pki (1− pi)

n−k

(b) Markov’s upper bounds for these probabilities.
Markov’s inequality provides a simple upper bound on the tail probability, which is

P (Sn ≥ n (pi + ϵ)) ≤ E [Sn]

n (pi + ϵ)
=

npi
n (pi + ϵ)

=
pi

pi + ϵ

(c) Chebychev’s upper bounds for these probabilities (which can be halved for i = 5 only: explain
why).
Chebyshev’s inequality uses the variance of Sn, which is Var (Sn) = npi (1− pi). It provides
an upper bound on the tail probability as

P (Sn ≥ n (pi + ϵ)) ≤ Var (Sn)

n2ϵ2
=

pi (1− pi)

nϵ2

When pi = 0.5, the probability distribution for Sn is symmetric around its expectation 0.5n

P
(∣∣∣∣

Sn

n
− 0.5

∣∣∣∣ ≥ ϵ

)
= P (Sn ≥ n(0.5 + ϵ)) + P (Sn ≤ n(0.5− ϵ))

= 2P (Sn ≥ n(0.5 + ϵ)) .

When pi ̸= 0.5, the distribution is not symmetric and that’s why the bound can be halved for
i = 5 only.
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(d) Hoeffding’s upper bounds.
Hoeffding’s inequality provides an upper bound for the sum of independent bounded random
variables, such as a binomial variable Sn. The upper bound is

P
(
Sn

n
≥ pi + ϵ

)
≤ exp

(
−2nϵ2

)

(e) Chernoff’s upper bounds.
Here we use KL divergence form for Chernoff’s bound

P (Sn ≥ n (pi + ϵ)) ≤ exp (−nD (pi + ϵ∥pi))

where the KL divergence KL(q∥p) between two Bernoulli distributions with parameters q and
p is given by

KL(q∥p) = q log

(
q

p

)
+ (1− q) log

(
1− q

1− p

)

For q = pi + ϵ and p = pi, the bound becomes:

P (Sn ≥ n (pi + ϵ)) ≤ exp

(
−n

[
(pi + ϵ) log

(
pi + ϵ

pi

)
+ (1− pi − ϵ) log

(
1− pi − ϵ

1− pi

)])

Remark: The proof of equivalence of the standard form and the KL divergence form of Cher-
noff’s bound in Binomial distribution.
The standard form of Chernoff’s bound gives an exponential decay for the upper tail of a sum
of independent random variables. For Sn ≥ n (pi + ϵ), the bound is

P (Sn ≥ n (pi + ϵ)) ≤ min
t>0

(
E
[
etSn

]
e− tn(pi+ϵ)

)

For binomial random variables, the moment generating function E
[
etSn

]
is

E
[
etSn

]
=
(
pie

t + (1− pi)
)n

Thus, the bound can be expressed as

P (Sn ≥ n (pi + ϵ)) ≤
(
pie

t + (1− pi)
)n

e− tn(pi+ϵ)

Optimizing for t using calculus, we get that the right-hand side is minimized if

et =
(1− pi) (pi + ϵ)

pi (1− pi − ϵ)

Substituting this back into the bound, we obtain the KL divergence form of the Chernoff
bound, which is equivalent to

P (Sn ≥ n (pi + ϵ)) ≤ exp (−nD (pi + ϵ∥pi))
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2. (LLN) Suppose that X1, X2, . . . form an i.i.d. sequence of random variables with E[Xi] = µ < ∞
and Var[Xi] = σ2 < ∞. Evaluate

lim
n→∞

1(
n
2

)
∑

i,j:1≤i<j≤n

(Xi −Xj)
2.

First notice that
∑

1≤i<j≤n(Xi −Xj)
2 = n

∑n
k=1X

2
k −

(∑n
k=1Xk

)2
. Now using the law of larges

numbers we get

(
n

2

)−1

n

n∑

k=1

X2
k =

2n

n− 1

∑n
k=1X

2
k

n
→ 2(σ2 + µ2).

and that

(
n

2

)−1( n∑

k=1

Xk

)2
=

2n

n− 1

(∑n
k=1Xk

n

)2
→ 2µ2.

We then have that
(
n
2

)−1∑
1≤i<j≤n(Xi −Xj)

2 → 2(σ2 + µ2 − µ2) = 2σ2.

3. (Chebyshev & CLT) Let X1, X2, X3, . . . be i.i.d. random variables with mean zero and finite
variance σ2. Let Sn = X1 + · · ·+Xn. Determine the limits below, with precise justifications.

(a) limn→∞ P(Sn ≥ 0.01n).

(b) limn→∞ P(Sn ≥ 0).

(c) limn→∞ P(Sn ≥ −0.01n).

(a) Using Chebyshev’s inequality, we get that

P (Sn ≥ 0.01n) ≤ nσ2

n2/104
→ 0.

(b) Using CLT, we get that

P
(
Sn√
n
≥ 0

)
→ 1

2
.

(b) Using Chebyshev’s inequality, we get that

P (Sn ≤ −0.01n) ≤ nσ2

n2/104
→ 0.

Therefore,
P (Sn ≥ −0.01n) → 1.

4. (Convolution & MGF) The Laplace distribution has density fZ(z) = λ
2 exp(−λ|z|) and MGF

MZ(t) = λ2

λ2−t2
, where λ > 0. Let X,Y

iid∼ Exp(λ). Prove that Z = X − Y follows a Laplace
distribution by using:

(a) Moment generating functions.
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(b) The convolution formula.

(a) Our approach is to find the MGF of Z = X − Y and match it to the moment generating

function of the Laplace distribution, which is given to be λ2

λ2−t2
. We have:

MZ(t) = MX(t)M−Y (t)

= MX(t)E[e−tY ]

= MX(t)MY (−t)

=
λ

λ− t

λ

λ− (−t)
=

λ2

λ2 − t2
,

and therefore Z is Laplace.

(b) Using the convolution formula:

fZ(z) =

∫ ∞

−∞
fX(x)f−Y (z − x) dx

=

∫ ∞

−∞
λe−λxI(x>0)λe

−λ(−(z−x))I(z−x<0)dx

=

∫ ∞

−∞
λe−λxI(x>0)λe

−λ(x−z)I(x−z>0)dx

= λ2eλz
∫ ∞

−∞
e−2λxI(x>0)I(x−z>0)dx

We can simplify the indicators:

I(x>0) · I(x−z>0) = I(x>0)&(x>z) = Ix>max(0,z).

Therefore:

fZ(z) = λ2eλz
∫ ∞

max(z,0)
e−2λxdx

= λ2eλz
[
− 1

2λ
e−2λx

]x=∞

x=max(z,0)

= λ2eλz · 1

2λ
e−2λmax(z,0)

=
λ

2
eλz · e−2λmax(z,0)

=
λ

2
e−λ(2max(z,0)−z)

=
λ

2
e−λ|z|

which is the Laplace(λ) PDF.
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5. (Moments & MGF) Let X be a random variable with p.d.f. given by

fX(x) =





2/9, if 0 ≤ x ≤ 1,

(4− |4− 2x|)/9, if 1 < x ≤ 4,

0, otherwise.

(a) Verify that this is actually a p.d.f.

(b) Find the moment generating function of X.

(c) Find E[X] and Var[X].

(d) Find a formula for the moments of X.

First note that the p.d.f. can also be written as

fX(x) =





2/9 if 0 ≤ x ≤ 1

2x/9 if 1 < x ≤ 2

(8− 2x)/9 if 2 < x ≤ 4

0 else.

(a) Let’s verify that
∫∞
−∞ fX(x) dx = 1.

∫ ∞

−∞
fX(x) dx =

∫ 1

0
2/9 dx+

∫ 2

1
2x/9 dx+

∫ 4

2
(8− 2x)/9 dx

=
2

9

(
[x]10 + [x2/2]21 + [4x− x2/2]42

)

=
2

9

(
(1− 0) + (2− 1/2) + (8− 6)

)
= 1.

(b) Let’s do the full calculation,

E[etX ] =

∫ ∞

−∞
etxfX(x) dx

=
2

9

(∫ 1

0
etx dx+

∫ 2

1
xetx dx+

∫ 4

2
(4− x)etx dx

)

=
2

9

(
[
etx

t
]10 + [

(tx− 1)etx

t2
]21 + [

(1 + 4t− tx)etx

t2
]42

)

=
2

9

(et − 1

t
+

(2t− 1)e2t − (t− 1)et

t2
+

(1 + 4t− 4t)e4t − (1 + 4t− 2t)e2t

t2

)

=
2

9
· e

4t + et − 2e2t − t

t2

(c) One way to solve this problem is to directly calculate E[X] and E[X2] using the formulas
E[X] =

∫∞
−∞ xfX(x) dx and E[X] =

∫∞
−∞ x2fX(x) dx and then Var(X) = E[X2] − E[X]2.

Another way to solve this part is using part 4. We obtain E[X] =
49

27
, E[X2] =

25

6
and then

Var(X) =
1273

1458
.
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(d) Let’s use the Taylor expansion for the exponential. We have that ex =
∑∞

n=0

xn

n!
. Replacing

the series on the formula obtained in part 2. we obtain the following.

E[etx] =
2

9
· e

4t + et − 2e2t − t

t2

=
2

9
·
∑∞

n=0

4ntn

n!
+
∑∞

n=0

tn

n!
− 2

∑∞
n=0

2ntn

n!
− t

t2

=
2

9
·
∑∞

n=0

1

n!
(1 + 4n − 2n+1)tn − t

t2

=
2

9

∞∑

n=2

1 + 4n − 2n+1

n!
tn−2 =

2

9

∞∑

n=0

1 + 4n+2 − 2n+3

(n+ 2)!
tn

We conclude from this that the general formula for the moments is

E(Xn) =
2(1 + 4n+2 − 2n+3)

9(n+ 1)(n+ 2)
.

6. (Distribution of sums using MGFs) Let Sn := X1+ · · ·+Xn for independent X1, . . . , Xn. Use
MGFs to find the distribution of Sn

(a) For Xi with Normal
(
µi, σ

2
i

)
distribution.

The MGF of a normal random variable Xi ∼ Normal
(
µi, σ

2
i

)
is given by

MXi(t) = exp

(
µit+

σ2
i t

2

2

)

Thus, for the sum Sn = X1 +X2 + · · ·+Xn, the MGF is

MSn(t) =

n∏

i=1

MXi(t) =

n∏

i=1

exp

(
µit+

σ2
i t

2

2

)
= exp

(
t

n∑

i=1

µi +
t2

2

n∑

i=1

σ2
i

)

This is the MGF of a normal distribution with mean
∑n

i=1 µi and variance
∑n

i=1 σ
2
i . Therefore,

Sn ∼ Normal

(
n∑

i=1

µi,

n∑

i=1

σ2
i

)

(b) For Xi with Gamma (ri, λ) distribution.
The MGF of a gamma random variable Xi ∼ Gamma (ri, λ) (where ri is the shape parameter
and λ is the rate parameter) is given by

MXi(t) =

(
1− t

λ

)−ri

, for t < λ
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Thus, for the sum Sn = X1 +X2 + · · ·+Xn, the MGF is

MSn(t) =

n∏

i=1

MXi(t) =

n∏

i=1

(
1− t

λ

)−ri

=

(
1− t

λ

)−∑n
i=1 ri

This is the MGF of a gamma distribution with shape parameter
∑n

i=1 ri and rate parameter
λ. Therefore,

Sn ∼ Gamma

(
n∑

i=1

ri, λ

)

(c) For Xi = Z2
i with Zi ∼ Normal(0, 1).

The MGF of Xi is the expectation of etZ
2
i . Applying the density function for Normal distri-

bution, we have

MXi(t) = E
[
etZ

2
i

]
=

∫ ∞

−∞
etz

2 1√
2π

e−
z2

2 dz

=
1√
2π

∫ ∞

−∞
e−

z2

2
(1−2t)dz

=
1√
2π

·
√

2π

1− 2t

=
1√

1− 2t
,

which is valid for t < 1
2 . This is exactly the MGF for χ2

1.

MSn(t) =
(
(1− 2t)−

1
2

)n
= (1− 2t)−

n
2 , for t <

1

2

Therefore, Sn follows a chi-squared distribution with n degrees of freedom Sn ∼ χ2
n.
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STAT201A: Introduction to Probability at an Advanced Level (Fall 2024)
UC Berkeley

Problem Set 3

Due: 10:00pm, Friday, October 11, 2024 (via Gradescope)

1. (Approximating Binomial Distributions) The goal of this question is to empirically verify
three approximations to the exact Binomial probability P(X = k), where X ⇠ Binomial(n, p):

• P(Y = k), where Y ⇠ Poisson(np), the Poison approximation with rate parameter np;

• The normal approximation

�(k; np, np(1 � p)) :=
1p

2⇡np(1 � p)
exp

⇢
� (k � np)2

2np(1 � p)

�

• The entropic approximation

Ent(k; n, p) :=
1p

2⇡nf(1 � f)
exp(�nKL(fkp))

where f = k
n and KL(fkp) = f log f

p + (1 � f) log 1�f
1�p .

(a) Take n = 30 and p = 0.05. Create a table ( 31 rows and 3 columns) containing the absolute
errors for each approximation,

|P(X = k) � P(Y = k)|, |P(X = k) � �(k; np, np(1 � p))|

and
|P(X = k) � Ent(k; n, p)|

for k = 0, 1, . . . , 30. (Note: The entropic approximation does not exist for k = 0 and k = 30,
so only list it for k = 1, . . . , 29 ).
Based on the table, comment on the accuracy of each of the three approximations for the
Binomial distribution.

(b) Create a similar table for the relative errors

|P(X = k) � P(Y = k)|
P(X = k)

,
|P(X = k) � �(k; np, np(1 � p))|

P(X = k)

and
|P(X = k) � Ent(k; n, p)|

P(X = k)

for k = 0, 1, . . . , 30. Based on this table, comment on the accuracy of each of the three
approximations for the Binomial.

(c) Repeat exercises (a) and (b) above for n = 30 and p = 0.25.

(d) Repeat exercises (a) and (b) above for n = 30 and p = 0.5.

See attached PDF.
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2. (KL-Divergence, Multinomial) Let X and Y be discrete random variables with distributions
p and q respectively (So p(k) = P(X = k) and q(k) = P(Y = k)). Remember that the Kull-
back–Leibler divergence is defined by

KL(pkq) := Ep

h
ln
�p(X)

q(X)

�i
=
X

k

p(k) ln
�p(k)

q(k)

�
.

(a) Show that when q(k) is a Poisson distribution with parameter � > 0, then the KL-divergence
is minimized by setting � to be the mean of p(k).

(b) Rememebr that the entropy H(p) is defined to be H(p|q) := �Ep[ln(p(X))]. Assume that
we need to place n balls into d bins. The number of ways to place the balls resulting in ki

total balls in bin i, for i = 1, . . . , d, is given by the combinatorial expression
�

n
k1,k2,...,kd

�
. Now

consider the empirical distribution of the balls. Its probability mass function is p(i) = ki/n.
Let Np denote the number of configurations with empirical distribution p, show that

ln(Np) = nH(p) + O(ln(n)),

where h(p) is the entropy of p.

In other words, there are many more high-entropy configurations than low-entropy configura-
tions. This suggests the intuition that, if we consider a physical system at a “macro level”
(such as the distribution of gas particles in a container) then we should expect it to drift
toward high-entropy configurations.

Hint: Recall Stirling’s approximation

ln(n!) = n ln(n) � n + O(ln(n)).

(a) if q(k) is Poisson with parameter �, then q(k) = e���k/k!. Let’s calculate now the KL-
divergence.

KL(pkq) =
X

k

p(k) ln
�p(k)

q(k)

�

=
X

k

p(k) ln
�
p(k)

�
�
X

k

p(k) ln
�
e���k/k!

�

=
X

k

p(k) ln
�
p(k)

�
+ �

X

k

p(k) �
X

k

p(k)
⇣
k ln

�
�
�
� ln

�
k!
�⌘

=
X

k

p(k) ln
�
p(k)

�
+ �� ln

�
�
�X

k

kp(k) +
X

k

p(k) ln
�
k!
�

Taking the derivative we can verify that there is a minimum precisly when � =
P

k kp(k).

(b) As stated at the beginning of the problem, Np = n!
k1!k2!···kd! , we can now use Stirling approxi-
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mation and do a calculation.

log(Np) = log(n!) �
dX

i=1

log(ki!)

= n log(n) � n + O(log n) �
⇣ dX

i=1

ki log(ki) � ki + O(log ki)
⌘

= n log(n) � n + O(log n) �
⇣ dX

i=1

ki log(ki) � ki + O(log n)
⌘

= n log(n) � n �
⇣ dX

i=1

ki log(ki) � ki

⌘
+ O(log n)

=
⇣ dX

i=1

ki

⌘
log(n) �

⇣ dX

i=1

ki log(ki)
⌘

+
⇣ dX

i=1

ki

⌘
� n + O(log n)

= �
⇣ dX

i=1

ki

�
log(ki) � log(n)

�⌘
+ O(log n)

= �n
⇣ dX

i=1

ki

n
log
�ki

n

�⌘
+ O(log n)

= nh(p) + O(log n)

The relevant identities we used are that ki  n and hence log(ki) = O(log n), that
Pd

i=1 ki = n

and since d is fixed and finite, O(log n)
Pd

i=1 O(log n) is still O(log n).

3. (Poisson) Let K = X1 + X2 + · · · + XN , where N ⇠ Poisson (�) and X1, X2, · · · are independent
Bernoulli (p) random variables. Assuming that N and {Xi}i2N are mutually independent, find the
distribution of K.

MN (t) =

1X

i=0

e���
i

i!
eti =

1X

i=0

e��

�
�et
�i

i!
= e��e�et

= e�(et�1),
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Here we used that ex =
P1

i=0
xi

i! . We have

MK (t) = E
⇥
etK
⇤

=

1X

n=0

E
h
et

Pn
i=1 Xi

i
P (N = n)

=

1X

n=0

�
q + pet

�n
e���

n

n!

=

1X

n=0

e��

�
�
�
q + pet

��n

n!

= e��e�(q+pet)

= e�(q+pet�1)

= e�(pet�p)

= e�p(et�1),

we used the fact q � 1 = �p. This is the same as the MGF of Poisson (�p), thus K ⇠ Poison (�p).

4. (Joint densities) Let the joint density function of (X, Y ) be

f(x, y) =

(
3xy(x + y), if (x, y) 2 [0, 1]2,

0, else.

Calculate the covariance Cov(X, Y ). We want to calculate E[X], E[Y ] and E[XY ]. In all cases we
need to apply the formula

E[g(X, Y )] =

Z 1

�1

Z 1

�1
g(x, y)f(x, y) dx dy.

Let’s do each one of the calculations and then conclude.

E[X] =

Z 1

�1

Z 1

�1
xf(x, y) dx dy

=

Z 1

0

Z 1

0
3x2y(x + y) dx dy

=

Z 1

0

Z 1

0
3x3y + 3x2y2 dx dy

=

Z 1

0

3

4
y + y2 dy

=
17

24
.
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By symmetry we also have E[Y ] =
17

24
.

E[XY ] =

Z 1

�1

Z 1

�1
xyf(x, y) dx dy

=

Z 1

0

Z 1

0
3x2y2(x + y) dx dy

=

Z 1

0

Z 1

0
3x3y2 + 3x2y3 dx dy

=

Z 1

0

3

4
y2 + y3 dy

=
1

2
.

We finally conclude using the formula Cov(X,Y ) = E[XY ]�E[X]E[Y ] = 1/2� (17/24)2 = �1/576.

5. (Transformation of random variables)

(a) Suppose X has the Cauchy distribution with density:

fX(x) :=
1

⇡(1 + x2)
.

Show that 1/X has the same distribution as X.
We aim to find the probability density function of Y = 1

X . Using the change of variables
formula, we have

fY (y) = fX

✓
1

y

◆ ����
dx

dy

����

=
1

⇡

✓
1 +

⇣
1
y

⌘2
◆ ·
�����

1

y2

����

=
1

⇡(1 + y2)
.

Therefore, Y = 1
X has the same distribution as X.

(b) Suppose Y ⇠ Exp(1). Find a function g : (0,1) ! (�1,1) such that g(Y ) has the Cauchy
distribution with density given by (a).
The CDF of X in (a) is

FX(x) =
1

⇡

⇣
arctan(x) +

⇡

2

⌘
.

The CDF of Y is
FY (y) = P (Y  y) = 1 � e�y, y > 0.

Suppose g is a strictly increasing function, we can relate the CDFs of Y and X as

FY (y) = P (Y  y) = P (g(Y )  g(y)) = FX(g(y))
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Substituting the CDFs, we have

1 � e�y =
1

⇡

⇣
arctan(g(y)) +

⇡

2

⌘

Simplifying the above, we get

g(y) = tan
⇣
⇡
�
1 � e�y

�
� ⇡

2

⌘

which is strictly increasing when y > 0. This is the required transformation that ensures g(Y )
follows the Cauchy distribution.

(c) Suppose Z ⇠ Exp(�), where � > 0. Show that the distribution of W := dZe (here dze is
the smallest integer that is larger than or equal to z) is Geometric. Explicitly express the
parameter of the Geometric distribution in terms of �.
Suppose X has an exponential distribution with rate parameter �, i.e., the density of X is
given by

fx(x) = �e��x; x > 0.

Now consider Y = dXe. Since the ceiling function returns the smallest integer that is larger
than or equal to X, Y is a discrete random variable. The PMF of Y can be expressed as

P[Y = y] = P[y � 1 < x  y]

=

Z y

y�1
�e��xdx

= �e��x
���
y

y�1

= e��(y�1)
h
1 � e��

i

=
⇣
1 �

⇣
1 � e��

⌘⌘y�1 ⇣
1 � e��

⌘

The geometric distribution has the PMF P[X = x] = (1 � p)x�1p. Recognizing p = 1 � e��,
we now have the PMF of Y = dXe in the form of a geometric distribution with parameter
p = 1 � e��. Therefore, for X ⇠ Exp(�), we have Y = dXe ⇠ Geo(1 � e��).

6. (Transformation of random variables) Suppose X ⇠ Uniform[�⇡, 2⇡]. Find the p.d.f. of
Y = sin(X).

0

1

�1

Plot of y = sin(x).

Here we have a transformation of the form Y = g(X) for g(x) = sin(x). While X takes values on
[�⇡, 2⇡], Y takes values on [�1, 1]. A picture of the function g on [�⇡, 2⇡] show us that we have
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to make a distinction in two cases, either y 2 [�1, 0] or y 2 (0, 1]. We want to use the formula

fY (y) =
X

g(x)=y,
g0(x) 6=0

fX(x)
1

|g0(x)| . Note that fX(x) = 1/(3⇡) for x 2 [�⇡, 2⇡]. g0(x) = cos(x). Now we

separate in two cases.

(a) If y 2 (�1, 0) then y has 4 preimages, we obtain

fY (y) =
X

g(x)=y,
g0(x) 6=0

fX(x)
1

|g0(x)|

=
X

g(x)=y,
g0(x) 6=0

1

3⇡
⇥ 1

cos(arcsin(y)
=

4

3⇡
p

1 � y2
.

(b) If y 2 (1, 0) then y has 2 preimages, we obtain

fY (y) =
X

g(x)=y,
g0(x) 6=0

fX(x)
1

|g0(x)|

=
X

g(x)=y,
g0(x) 6=0

1

3⇡
⇥ 1

cos(arcsin(y)
=

2

3⇡
p

1 � y2
.

We shouldn’t be concerned by the cases y = �1, 0, 1 since Y is a continuous random variable and
we can modify the p.d.f at a finite number of points without any repercussion. We conclude that

fY (y) =

8
>>>><
>>>>:

4

3⇡
p

1 � y2
if y 2 (�1, 0),

2

3⇡
p

1 � y2
if y 2 (0, 1),

0 else.
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STAT201A_PS3_code

2024-10-06

Q1a

## Given values
n <- 30
p <- 0.05
k <- 0:30
## Binomial Calculation
## P(Bin(n,p) = k)
binom <- dbinom(k, n, p)
## Poisson Approximation
## P(Pois(np) = k)
pois <- dpois(k, n*p)
## Normal Approximation
## phi(k; np, np(1-p))
norm <- dnorm(k, n*p, sqrt(n*p*(1-p)))
#n*abs(k/n - p)ˆ3 ## normal approx is good if this value is small

## Entropy Approximation
## Ent(k; n, p)
## Note that f=k/n and the entropy approximation DNE for k=0 and k=30
f <- k/n
entr <- 1/(sqrt(2*pi*n*f*(1-f)))*exp(-n*(f*log(f/p) + (1-f)*log((1-f)/(1-p))))
## Error terms
## Binomial - Poisson
pois_diff <- abs(binom - pois)
## Binomial - Normal
norm_diff <- abs(binom - norm)
## Binomial - Entropy
entr_diff <- abs(binom - entr)
cbind(pois_diff, norm_diff, entr_diff)

## pois_diff norm_diff entr_diff
## [1,] 8.491396e-03 6.288532e-02 NaN
## [2,] 4.208071e-03 3.277279e-02 2.865137e-02
## [3,] 7.615308e-03 4.749378e-02 1.096979e-02
## [4,] 1.538910e-03 2.470382e-02 3.605901e-03
## [5,] 1.930467e-03 7.845186e-03 9.679277e-04
## [6,] 1.766931e-03 7.810490e-03 2.143120e-04
## [7,] 8.209923e-04 2.434696e-03 3.976033e-05
## [8,] 2.675847e-04 4.806307e-04 6.268669e-06
## [9,] 6.786047e-05 7.384760e-05 8.496632e-07
## [10,] 1.412178e-05 9.515639e-06 9.992828e-08
## [11,] 2.493920e-06 1.051824e-06 1.027277e-08
## [12,] 3.828577e-07 1.006534e-07 9.284106e-10
## [13,] 5.205110e-08 8.387780e-09 7.409012e-11
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## [14,] 6.362462e-09 6.112552e-10 5.237982e-12
## [15,] 7.081188e-10 3.906518e-11 3.287950e-13
## [16,] 7.252526e-11 2.193133e-12 1.834906e-14
## [17,] 6.896636e-12 1.082138e-13 9.107894e-16
## [18,] 6.133846e-13 4.690382e-15 4.019292e-17
## [19,] 5.132796e-14 1.782894e-16 1.574848e-18
## [20,] 4.060356e-15 5.926516e-18 5.466524e-20
## [21,] 3.047997e-16 1.715570e-19 1.675528e-21
## [22,] 2.177936e-17 4.299675e-21 4.514869e-23
## [23,] 1.485157e-18 9.257674e-23 1.063399e-24
## [24,] 9.686240e-20 1.694769e-24 2.173290e-26
## [25,] 6.053980e-21 2.601619e-26 3.818433e-28
## [26,] 3.632400e-22 3.286255e-28 5.701307e-30
## [27,] 2.095617e-23 3.326169e-30 7.132860e-32
## [28,] 1.164232e-24 2.593504e-32 7.360840e-34
## [29,] 6.236956e-26 1.462502e-34 6.203044e-36
## [30,] 3.226012e-27 5.308539e-37 4.487914e-38
## [31,] 1.613006e-28 9.313226e-40 NaN
plot(0:30, pois_diff, type="l", col="red", ylim=c(0,0.08),
ylab="Absolute Difference (Binomial - Approximation)", xlab="k",
main="Binomial Approximations with n=30, p=0.05") ### poisson best here since p is small
lines(0:30, norm_diff, col="blue")
lines(0:30, entr_diff, col="green")
legend("topright", legend=c("Poisson", "Normal", "Entropy"),
col=c("red", "blue", "green"), lty=c(1,1,1), cex=0.8)
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Based on this table, it seems that the Poisson approximation is doing a good job of approximating the
Binomial distribution for small k. As k increases, we see that the error between the actual Binomial values
and the approximations gets closer and closer to zero for all three approximations. It is important to note

2page 97 — back to Homework 3



here though that the true Binomial values are inherently small, so the approximation di�erences are small.
The Entropy approximation is not valid when n ≠ k or k is very small, which is why we have NaN values for
k = 0 and k = n.

Q1b

## Relative Errors
pois_rel_error <- pois_diff / binom
norm_rel_error <- norm_diff / binom
entr_rel_error <- entr_diff / binom
cbind(pois_rel_error, norm_rel_error, entr_rel_error)

## pois_rel_error norm_rel_error entr_rel_error
## [1,] 3.956134e-02 0.29298210 NaN
## [2,] 1.241673e-02 0.09670249 0.084541418
## [3,] 2.944403e-02 0.18363122 0.042413904
## [4,] 1.211267e-02 0.19444231 0.028381831
## [5,] 4.276996e-02 0.17381198 0.021444669
## [6,] 1.430363e-01 0.63227346 0.017348947
## [7,] 3.030614e-01 0.89874474 0.014677142
## [8,] 5.473854e-01 0.98320354 0.012823520
## [9,] 9.174123e-01 0.99835288 0.011486679
## [10,] 1.483921e+00 0.99990583 0.010500489
## [11,] 2.371035e+00 0.99999689 0.009766593
## [12,] 3.803725e+00 0.99999994 0.009223841
## [13,] 6.205587e+00 1.00000000 0.008833103
## [14,] 1.040885e+01 1.00000000 0.008569223
## [15,] 1.812660e+01 1.00000000 0.008416573
## [16,] 3.306925e+01 1.00000000 0.008366598
## [17,] 6.373157e+01 1.00000000 0.008416573
## [18,] 1.307750e+02 1.00000000 0.008569223
## [19,] 2.878913e+02 1.00000000 0.008833103
## [20,] 6.851169e+02 1.00000000 0.009223841
## [21,] 1.776666e+03 1.00000000 0.009766593
## [22,] 5.065349e+03 1.00000000 0.010500489
## [23,] 1.604244e+04 1.00000000 0.011486679
## [24,] 5.715375e+04 1.00000000 0.012823520
## [25,] 2.327005e+05 1.00000000 0.014677142
## [26,] 1.105331e+06 1.00000000 0.017348947
## [27,] 6.300392e+06 1.00000000 0.021444669
## [28,] 4.489030e+07 1.00000000 0.028381831
## [29,] 4.264579e+08 1.00000000 0.042413904
## [30,] 6.077024e+09 1.00000000 0.084541418
## [31,] 1.731952e+11 1.00000000 NaN
plot(0:30, pois_rel_error, type="l", col="red", ylim=c(0,10),
ylab="Relative Error", xlab="k",
main="Binomial Approximations with n=30, p=0.05") ### poisson best here since p is small
lines(0:30, norm_rel_error, col="blue")
lines(0:30, entr_rel_error, col="green")
legend("topright", legend=c("Poisson", "Normal", "Entropy"),
col=c("red", "blue", "green"), lty=c(1,1,1), cex=0.8)

3page 98 — back to Homework 3



0 5 10 15 20 25 30

0
2

4
6

8
10

Binomial Approximations with n=30, p=0.05

k

R
el

at
ive

 E
rro

r

Poisson
Normal
Entropy

The relative error is pretty small for all three approximations until we hit about k = 5. Overall, the relative
Entropy error is best and is consistently small. The Poisson approximation holds when we look at absolute
di�erence, but it does not hold in the context of relative error, which is why see a spike in relative error for
Poisson. For the Normal relative error, it stays at about 1 for k = 8 and beyond.

Q1c

## Repeat this process for n = 30 and p = 0.25
n <- 30
p <- 0.25
k <- 0:30
## Binomial Calculation
## P(Bin(n,p) = k)
binom2 <- dbinom(k, n, p)
## Poisson Approximation
## P(Pois(np) = k)
pois2 <- dpois(k, n*p)
## Normal Approximation
## phi(k; np, np(1-p))
norm2 <- dnorm(k, n*p, sqrt(n*p*(1-p)))
#n*abs(k/n - p)ˆ3 ## normal approx is good if this value is small

## Entropy Approximation
## Ent(k; n, p)
## Note that f=k/n and the entropy approximation DNE for k=0 and k=30
f2 <- k/n
entr2 <- 1/(sqrt(2*pi*n*f*(1-f)))*exp(-n*(f*log(f/p) + (1-f)*log((1-f)/(1-p))))
## Error terms
## Binomial - Poisson
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pois_diff2 <- abs(binom2 - pois2)
## Binomial - Normal
norm_diff2 <- abs(binom2 - norm2)
## Binomial - Entropy
entr_diff2 <- abs(binom2 - entr2)
cbind(pois_diff2, norm_diff2, entr_diff2)

## pois_diff2 norm_diff2 entr_diff2
## [1,] 3.745023e-04 9.548001e-04 NaN
## [2,] 2.362312e-03 2.148155e-03 1.509758e-04
## [3,] 6.924030e-03 2.799400e-03 3.660942e-04
## [4,] 1.203529e-02 9.512783e-04 7.621502e-04
## [5,] 1.249612e-02 3.802816e-03 1.295693e-03
## [6,] 4.646120e-03 8.218080e-03 1.816929e-03
## [7,] 8.737971e-03 7.738469e-03 2.134882e-03
## [8,] 1.975184e-02 1.723586e-03 2.131727e-03
## [9,] 2.198059e-02 5.202900e-03 1.829934e-03
## [10,] 1.536699e-02 7.910260e-03 1.363042e-03
## [11,] 5.034870e-03 5.645154e-03 8.874438e-04
## [12,] 3.450864e-03 1.547615e-03 5.079555e-04
## [13,] 7.510803e-03 1.259906e-03 2.567309e-04
## [14,] 7.686768e-03 1.983581e-03 1.149514e-04
## [15,] 5.874565e-03 1.495681e-03 4.569911e-05
## [16,] 3.721567e-03 7.971628e-04 1.615209e-05
## [17,] 2.046132e-03 3.299491e-04 5.077679e-06
## [18,] 1.003255e-03 1.104228e-04 1.419153e-06
## [19,] 4.471579e-04 3.054174e-05 3.521686e-07
## [20,] 1.838540e-04 7.073812e-06 7.742043e-08
## [21,] 7.055401e-05 1.382503e-06 1.502894e-08
## [22,] 2.550318e-05 2.287576e-07 2.564804e-09
## [23,] 8.744228e-06 3.202122e-08 3.825936e-10
## [24,] 2.858378e-06 3.772368e-09 4.952123e-11
## [25,] 8.940745e-07 3.702489e-10 5.510502e-12
## [26,] 2.683049e-07 2.978268e-11 5.210901e-13
## [27,] 7.740240e-08 1.915055e-12 4.128901e-14
## [28,] 2.150111e-08 9.472807e-14 2.698550e-15
## [29,] 5.759247e-09 3.385663e-15 1.440258e-16
## [30,] 1.489461e-09 7.782203e-17 6.599519e-18
## [31,] 3.723653e-10 8.625467e-19 NaN
plot(0:30, pois_diff2, type="l", col="red", ylim=c(0,0.03),
ylab="Absolute Difference (Binomial - Approximation)", xlab="k",
main="Binomial Approximations with n=30, p=0.25")
lines(0:30, norm_diff2, col="blue")
lines(0:30, entr_diff2, col="green") ## entropy is best here
legend("topright", legend=c("Poisson", "Normal", "Entropy"),
col=c("red", "blue", "green"), lty=c(1,1,1), cex=0.8)
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## Relative Errors
pois_rel_error2 <- pois_diff2 / binom2
norm_rel_error2 <- norm_diff2 / binom2
entr_rel_error2 <- entr_diff2 / binom2
cbind(pois_rel_error2, norm_rel_error2, entr_rel_error2)

## pois_rel_error2 norm_rel_error2 entr_rel_error2
## [1,] 2.097088e+00 5.34656148 NaN
## [2,] 1.322816e+00 1.20289525 0.084541418
## [3,] 8.021846e-01 0.32432490 0.042413904
## [4,] 4.481840e-01 0.03542480 0.028381831
## [5,] 2.068200e-01 0.06293940 0.021444669
## [6,] 4.436348e-02 0.07847035 0.017348947
## [7,] 6.007286e-02 0.05320136 0.014677142
## [8,] 1.188183e-01 0.01036833 0.012823520
## [9,] 1.379744e-01 0.03265913 0.011486679
## [10,] 1.183829e-01 0.06093839 0.010500489
## [11,] 5.541030e-02 0.06212666 0.009766593
## [12,] 6.266342e-02 0.02810277 0.009223841
## [13,] 2.584172e-01 0.04334841 0.008833103
## [14,] 5.730215e-01 0.14786901 0.008569223
## [15,] 1.081940e+00 0.27546514 0.008416573
## [16,] 1.927728e+00 0.41292112 0.008366598
## [17,] 3.391593e+00 0.54691136 0.008416573
## [18,] 6.057917e+00 0.66676229 0.008569223
## [19,] 1.121563e+01 0.76604869 0.008833103
## [20,] 2.190430e+01 0.84277120 0.009223841
## [21,] 4.584970e+01 0.89842291 0.009766593
## [22,] 1.044118e+02 0.93654972 0.010500489
## [23,] 2.625296e+02 0.96137894 0.011486679
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## [24,] 7.401769e+02 0.97685460 0.012823520
## [25,] 2.381354e+03 0.98615246 0.014677142
## [26,] 8.932828e+03 0.99157154 0.017348947
## [27,] 4.020123e+04 0.99464042 0.021444669
## [28,] 2.261365e+05 0.99629656 0.028381831
## [29,] 1.696030e+06 0.99703786 0.042413904
## [30,] 1.908035e+07 0.99691874 0.084541418
## [31,] 4.293080e+08 0.99444867 NaN
plot(0:30, pois_rel_error2, type="l", col="red", ylim=c(0,10),
ylab="Relative Error", xlab="k",
main="Binomial Approximations with n=30, p=0.25") ### poisson best here since p is small
lines(0:30, norm_rel_error2, col="blue")
lines(0:30, entr_rel_error2, col="green")
legend("topright", legend=c("Poisson", "Normal", "Entropy"),
col=c("red", "blue", "green"), lty=c(1,1,1), cex=0.8)
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As shown in the above plot and tables, the entropy approximation is behaving best here with p = 0.25. The
absolute di�erence for entropy is consistently small and the overall relative errors are smaller for entropy when
compared to the other two approximations. At k = 7, we actually do see that the Normal approximation
has a smaller absolute di�erence than the Entropy approximation, but overall the Entropy approximations
behave the best. In terms of relative error, for small k Normal has the worst relative error. For k greater
than 14, the Poisson relative error is the worst. The relative error for Entropy is consistently small.

Q1d

## Repeat this process for n = 30 and p = 0.5
n <- 30
p <- 0.5
k <- 0:30
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## Binomial Calculation
## P(Bin(n,p) = k)
binom3 <- dbinom(k, n, p)
## Poisson Approximation
## P(Pois(np) = k)
pois3 <- dpois(k, n*p)
## Normal Approximation
norm3 <- dnorm(k, n*p, sqrt(n*p*(1-p)))
#n*abs(k/n - p)ˆ3 ## normal approx is good if this value is small

## Entropy Approximation
## Ent(k; n, p)
## Note that f=k/n and the entropy approximation DNE for k=0 and k=30
f3 <- k/n
entr3 <- 1/(sqrt(2*pi*n*f*(1-f)))*exp(-n*(f*log(f/p) + (1-f)*log((1-f)/(1-p))))
## Error terms
## Binomial - Poisson
pois_diff3 <- abs(binom3 - pois3)
## Binomial - Normal
norm_diff3 <- abs(binom3 - norm3)
## Binomial - Entropy
entr_diff3 <- abs(binom3 - entr3)
cbind(pois_diff3, norm_diff3, entr_diff3)

## pois_diff3 norm_diff3 entr_diff3
## [1,] 3.049710e-07 4.363042e-08 NaN
## [2,] 4.560595e-06 2.800940e-07 2.362060e-09
## [3,] 3.400889e-05 1.458370e-06 1.718295e-08
## [4,] 1.682889e-04 6.085087e-06 1.073165e-07
## [5,] 6.197398e-04 2.019336e-05 5.473300e-07
## [6,] 1.803069e-03 5.266949e-05 2.302536e-06
## [7,] 4.286474e-03 1.049484e-04 8.116402e-06
## [8,] 8.474307e-03 1.475841e-04 2.431322e-05
## [9,] 1.399334e-02 1.040396e-04 6.261344e-05
## [10,] 1.908260e-02 1.094041e-04 1.399145e-04
## [11,] 2.062915e-02 4.675016e-04 2.732849e-04
## [12,] 1.541175e-02 7.416804e-04 4.692688e-04
## [13,] 2.306141e-03 6.059874e-04 7.115337e-04
## [14,] 1.592824e-02 4.012203e-05 9.557687e-04
## [15,] 3.299955e-02 8.428050e-04 1.139902e-03
## [16,] 4.202858e-02 1.208676e-03 1.208676e-03
## [17,] 3.940180e-02 8.428050e-04 1.139902e-03
## [18,] 2.679950e-02 4.012203e-05 9.557687e-04
## [19,] 9.940133e-03 6.059874e-04 7.115337e-04
## [20,] 4.871436e-03 7.416804e-04 4.692688e-04
## [21,] 1.382870e-02 4.675016e-04 2.732849e-04
## [22,] 1.653993e-02 1.094041e-04 1.399145e-04
## [23,] 1.491120e-02 1.040396e-04 6.261344e-05
## [24,] 1.138368e-02 1.475841e-04 2.431322e-05
## [25,] 7.746798e-03 1.049484e-04 8.116402e-06
## [26,] 4.847157e-03 5.266949e-05 2.302536e-06
## [27,] 2.847483e-03 2.019336e-05 5.473300e-07
## [28,] 1.592333e-03 6.085087e-06 1.073165e-07
## [29,] 8.546561e-04 1.458370e-06 1.718295e-08
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## [30,] 4.422451e-04 2.800940e-07 2.362060e-09
## [31,] 2.211356e-04 4.363042e-08 NaN
plot(0:30, pois_diff3, type="l", col="red", ylim=c(0,0.05),
ylab="Absolute Difference (Binomial - Approximation)", xlab="k",
main="Binomial Approximations with n=30, p=0.5") ### poisson best here since p is small
lines(0:30, norm_diff3, col="blue")
lines(0:30, entr_diff3, col="green")
legend("topright", legend=c("Poisson", "Normal", "Entropy"),
col=c("red", "blue", "green"), lty=c(1,1,1), cex=0.8)
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pois_rel_error3 <- pois_diff3 / binom3
norm_rel_error3 <- norm_diff3 / binom3
entr_rel_error3 <- entr_diff3 / binom3
cbind(pois_rel_error3, norm_rel_error3, entr_rel_error3)

## pois_rel_error3 norm_rel_error3 entr_rel_error3
## [1,] 3.274601e+02 4.684781e+01 NaN
## [2,] 1.632301e+02 1.002495e+01 0.084541418
## [3,] 8.394658e+01 3.599799e+00 0.042413904
## [4,] 4.450710e+01 1.609313e+00 0.028381831
## [5,] 2.428172e+01 7.911860e-01 0.021444669
## [6,] 1.358561e+01 3.968495e-01 0.017348947
## [7,] 7.751365e+00 1.897814e-01 0.014677142
## [8,] 4.469603e+00 7.784027e-02 0.012823520
## [9,] 2.567132e+00 1.908647e-02 0.011486679
## [10,] 1.432136e+00 8.210703e-03 0.010500489
## [11,] 7.372398e-01 1.670746e-02 0.009766593
## [12,] 3.029299e-01 1.457830e-02 0.009223841
## [13,] 2.862884e-02 7.522833e-03 0.008833103
## [14,] 1.428093e-01 3.597258e-04 0.008569223
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## [15,] 2.436553e-01 6.222929e-03 0.008416573
## [16,] 2.909268e-01 8.366598e-03 0.008366598
## [17,] 2.909268e-01 6.222929e-03 0.008416573
## [18,] 2.402787e-01 3.597258e-04 0.008569223
## [19,] 1.233985e-01 7.522833e-03 0.008833103
## [20,] 9.575183e-02 1.457830e-02 0.009223841
## [21,] 4.942070e-01 1.670746e-02 0.009766593
## [22,] 1.241311e+00 8.210703e-03 0.010500489
## [23,] 2.735518e+00 1.908647e-02 0.011486679
## [24,] 6.004096e+00 7.784027e-02 0.012823520
## [25,] 1.400878e+01 1.897814e-01 0.014677142
## [26,] 3.652194e+01 3.968495e-01 0.017348947
## [27,] 1.115658e+02 7.911860e-01 0.021444669
## [28,] 4.211218e+02 1.609313e+00 0.028381831
## [29,] 2.109609e+03 3.599799e+00 0.042413904
## [30,] 1.582857e+04 1.002495e+01 0.084541418
## [31,] 2.374425e+05 4.684781e+01 NaN
plot(0:30, pois_rel_error3, type="l", col="red", ylim=c(0,10),
ylab="Relative Error", xlab="k",
main="Binomial Approximations with n=30, p=0.5") ### poisson best here since p is small
lines(0:30, norm_rel_error3, col="blue")
lines(0:30, entr_rel_error3, col="green")
legend("top", legend=c("Poisson", "Normal", "Entropy"),
col=c("red", "blue", "green"), lty=c(1,1,1), cex=0.8)
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The absolute error for Poisson is the worst among our approximations. The Poisson absolute errors have a
multi-modal shape, indicating that the Poisson approximations are only suitable for select values of k. The
Normal and Entropy approximations are small overall. Within the range of k = 12, 13, 14, 16, 17, 18 we see
that the Normal approximation is actually lower than Entropy in terms of absolute error. In this scenario,
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Normal is the best approximation. For relative errors, Entropy again is the best. The Entropy relative errors
are consistently small. From k = 7 to k = 23, the Normal relative errors are pretty small. Outside of this
range, the approximation isn’t appropriate. For k = 12 and k = 19, the Poisson relative error is small, but
outside of this range, the approximation worsens.
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STAT201A: Introduction to Probability at an Advanced Level (Fall 2024)
UC Berkeley

Problem Set 4

Due: 10:00pm, Tuesday, November 5, 2024 (via Gradescope)

1. (Order statistics) Let X1, . . . , Xn be i.i.d. random variables with Exp(λ) distribution, where
λ > 0, and let X(i) be the order statistics for i = 1, . . . , n.

(a) Find the distribution of X(1).

(b) Using the memoryless property, find the distribution of X(i+1) −X(i) for i = 1, . . . , n− 1.

(c) Use the previous item to show that each X(i) has the same distribution as a sum of i indepen-
dent random variables.

(d) Calculate the expectation and the variance of X(i) for i = 1, . . . , n.

(a) Since X(1) = mini∈{1,...,n}Xi, P(X(1) > t) = P(Xi > t)n = e−nλt. Hence X(1) is distributed as
an exponential random variable with parameter nλ.

(b) For each i, consider the n− i random variables Yk = Xk−X(i)|Xk>X(i)
. The key observation is

that these random variables have exponential distributions, an application of the memoryless
property gives

P(Yk > t) = P(Xk −X(i) > t|Xk > X(i)) = P(Xk > t).

Moreover, X(i+1) − X(i) corresponds to the minimum of the random variables Yk and hence
has exponential distribution with parameter (n− i)λ.

(c) It follows from our prveious argument that we can write Xi =
∑i

k=1X(k) − X(k−1) where

X(0) = 0. Hence we can describe X(i) =
∑i

k=1 Zk where Zk is a collection of independent
random variables, Zk with exponential distribution with parameter (n− k + 1)λ.

(d) Finally, using our previous formula we have that

E[X(i)] =

i∑

k=1

E[Zk] =

i∑

k=1

1

(n− k + 1)λ
.

Similarly for the variance,

Var[X(i)] =

i∑

k=1

Var[Zk] =

i∑

k=1

1

(n− k + 1)2λ2
.

2. (Joint and conditional densities) Let X,Y be two random variables with the following proper-
ties. Y has density function fY (y) = 3y2 for 0 < y < 1 and zero elsewhere. For 0 < y < 1, given
that Y = y, X has conditional density function fX|Y (x|y) = 2x

y2
for 0 < x < y and zero elsewhere.

(a) Find the joint density function fX,Y (x, y) of X,Y . Be precise about the values (x, y) for which
your formula is valid. Check that the joint density function you find integrates to 1.

1
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(b) Find the conditional density function of Y , given X = x. Be precise about the values of x and
y for which the answer is valid. Identify the conditional distribution of Y by name.

(a) The joint density is given by

fX,Y (x, y) = fX|Y (x|y)fY (y) =
2x

y2
10<x<y · 3y210<y<1 = 6x · 10<x<y<1.

We have that ∫

R

∫

R
fX,Y (x, y) dx dy =

∫ 1

0

∫ y

0
6x dx dy = 1.

(b) We first calculate the maringal density of X, fX(x) =
∫
R fX,Y (x, y) dy =

∫ 1
x 6x dx = 6x(1 −

x) · 10<x<1. We can now calculate the conditional density of Y given X.

fY |X(y|x) = fX,Y (x, y)

fX(x)
=

1

1− x
· 1x<y<1.

We conclude that the conditional distribution of Y given X is U(X, 1), uniform on the interval
(X, 1).

3. (Model selection) Given data x1, . . . , xn, consider the problem of selecting between the two
models:

Model One : X1, . . . , Xn
i.i.d∼ N(0, 1)

and
Model Two : X1, . . . , Xn

i.i.d∼ N(µ, 1) for an unknown µ.

To use probability to solve this problem, let us introduce an additional random variable Θ that
has the Bernoulli distribution with parameter 0.5. Assume that the conditional distribution of
X1, . . . , Xn given Θ = θ is given by the following

X1, . . . , Xn | Θ = 0
i.i.d∼ N(0, 1)

and
X1, . . . , Xn | µ,Θ = 1

i.i.d∼ N(µ, 1) and µ | Θ = 1 ∼ N
(
0, τ2

)
.

Here τ is a parameter which you can treat as a fixed constant in this exercise.

(a) Using the formula

fX1,...,Xn|Θ=1 (x1, . . . , xn) =

∫
fX1,...,Xn|µ,Θ=1 (x1, . . . , xn) fµ|Θ=1(µ)dµ

prove that

fX1,...,Xn|Θ=1 (x1, . . . , xn) =

(
1√
2π

)n 1√
1 + nτ2

exp

(
−
∑n

i=1 x
2
i

2

)
exp

(
n2τ2x̄2

2 (1 + nτ2)

)
,

2
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where x̄ is the mean of x1, . . . , xn.

fX1,...,Xn|Θ=1(x1, . . . , xn) =

∫
fX1,...,Xn|µ,Θ=1 (x1, . . . , xn) fµ|Θ=1(µ)dµ

=

(
1√
2π

)n ∫ ∞

−∞
exp

(
−1

2

n∑

i=1

(xi − µ)2

)
1√
2πτ2

exp

(
− µ2

2τ2

)
dµ

=
1

τ

(
1√
2π

)n+1 ∫ ∞

−∞
exp

(
−1

2

(
n∑

i=1

x2i − 2µnx̄+ nµ2

))
exp

(
− µ2

2τ2

)
dµ

=
1

τ

(
1√
2π

)n+1

exp

(
−1

2

n∑

i=1

x2i

)∫ ∞

−∞
exp

(
−1

2

((
n+

1

τ2

)
µ2 − 2nµx̄

))
dµ

=
1

τ

(
1√
2π

)n+1

exp

(
−1

2

n∑

i=1

x2i

)√
2π

n+ 1
τ2

exp

(
n2τ2x̄2

2(1 + nτ2)

)

=

(
1√
2π

)n 1√
1 + nτ2

exp

(
−
∑n

i=1 x
2
i

2

)
exp

(
n2τ2x̄2

2(1 + nτ2)

)
.

(b) Calculate the conditional distribution of Θ given X1 = x1, . . . , Xn = xn.
From Model One, we know

fX1,...,Xn|Θ=0 (x1, . . . , xn) =

(
1√
2π

)n

exp

(
−
∑n

i=1 x
2
i

2

)
.

By Bayes’ theorem,

P (Θ = 1 | X1 = x1, . . . , Xn = xn)

=
P(Θ = 1)fX1,...,Xn|Θ=1 (x1, . . . , xn)

P(Θ = 0)fX1,...,Xn|Θ=0 (x1, . . . , xn) + P(Θ = 1)fX1,...,Xn|Θ=1 (x1, . . . , xn)

=
fX1,...,Xn|Θ=1 (x1, . . . , xn)

fX1,...,Xn|Θ=0 (x1, . . . , xn) + fX1,...,Xn|Θ=1 (x1, . . . , xn)

=

1√
1+nτ2

exp
(

n2τ2x̄2

2(1+nτ2)

)

1 + 1√
1+nτ2

exp
(

n2τ2x̄2

2(1+nτ2)

)

Similarly,

P (Θ = 0 | X1 = x1, . . . , Xn = xn) = 1− P (Θ = 1 | X1 = x1, . . . , Xn = xn)

=
1

1 + 1√
1+nτ2

exp
(

n2τ2x̄2

2(1+nτ2)

)

(c) Intuitively, we would prefer Model Two over Model One when x̄ is far from zero. Is this
intuition reflected in your conditional distribution from the previous part?

3
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Yes. When x̄ is close to zero, the exponential term exp
(

n2τ2x̄2

2(1+nτ2)

)
is approximately 1, and

the square root term 1√
1+nτ2

is small for large n, so (Θ = 1) remains small, meaning we favor

Model One. As x̄ moves away from zero, the exponential term grows rapidly, dominating the
expression, so P(Θ = 1) increases and close to 1, favoring Model Two.

4. (Gamma-Poisson) Consider random variables Θ, X1, . . . , Xn such that

Θ ∼ Gamma(α, λ) and X1, . . . , Xn | Θ = θ
i.i.d.∼ Poisson(θ)

(a) Find the conditional distribution of Θ given X1 = x1, X2 = x2, . . . , Xn = xn.
The conditional distribution of Θ given X1 = x1, X2 = x2, . . . , Xn = xn is

fΘ|X1=x1,X2=x2,...,Xn=xn
(θ) ∝ fX1,X2,...,Xn|Θ=θ(x1, x2, . . . , xn)fΘ(θ)

∝
(

n∏

i=1

fXi|Θ=θ(xi)

)
fΘ(θ)

=

(
n∏

i=1

θxie−θ

xi!
1 {xi ∈ N0}

)(
λα

Γ(α)
θα−1e−λθ1{θ > 0}

)

=
θ
∑

xie−nθ

∏n
i=1 xi!

1 {xi ∈ N0}
λα

Γ(α)
θα−1e−λθ1{θ > 0}

∝ θα−1+
∑

xie−(n+λ)θ1 {xi ∈ N0} 1{θ > 0}.

The above is in the form of a Gamma (α+
∑

xi, n+ λ) distribution. Therefore, the exact
distribution of Θ given X1 = x1, X2 = x2, . . . , Xn = xn is

fΘ|X1=x1,X2=x2,...,Xn=xn
(θ) =

(n+ λ)α+
∑

xi

Γ (α+
∑

xi)
θα+

∑
xi−1e−(n+λ)θ1{θ > 0},

where xi ∈ N0.

(b) Find E [Θ | X1 = x1, . . . , Xn = xn].
We know that for Y ∼ Gamma(α, β), E(Y ) = α

β . Since Θ | X1 = x1, X2 = x2, . . . , Xn = xn ∼
Gamma(α+

∑
xi, n+ λ), we have

E [Θ | X1 = x1, X2 = x2, . . . , Xn = xn] =
α+

∑
xi

n+ λ
.

(c) Write E [Θ | X1 = x1, . . . , Xn = xn] as a weighted linear combination of (x1 + · · ·+ xn) /n and
the mean of the marginal distribution (i.e., prior mean) of Θ and argue that the weight of the
prior mean goes to zero as n → ∞.
We can express E [Θ | X1 = x1, X2 = x2, . . . , Xn = xn] as a weighted linear combination of the
sample mean x̄ = 1

n

∑n
i=1 xi and the prior mean α

λ . Specifically, we have

E [Θ | X1 = x1, X2 = x2, . . . , Xn = xn] =
α+

∑n
i=1 xi

n+ λ
=

λ

n+ λ
· α
λ
+

n

n+ λ
· x̄.

As n → ∞, the weight on the prior mean, λ
n+λ , tends to 0, meaning the prior mean becomes less

influential. Conversely, the weight on the sample mean, n
n+λ , tends to 1, meaning the sample

4
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mean dominates as n increases. Thus, as n → ∞, the conditional expectation of Θ approaches
the sample mean x̄, which aligns with the intuition that with more data, the influence of the
prior diminishes, and the posterior is dominated by the data.

5. (Law of total expectation) Let the joint probability mass function (p.m.f.) of (X,Y ) be

pX,Y (k, n) =





1

n+ 1

(
1− 1

n+ 1

)k−1 1

2n
, for 1 ≤ n < ∞ and 1 ≤ k < ∞,

0, else.

(a) Find the p.m.f. pY (n) of Y and the conditional p.m.f pX|Y (k|n).
(b) Calculate E[Y ].

(c) Find the conditional expectation E[X|Y ].

(d) Use parts (a) and (c) to calculate E[X].

(a) We start with a calculation.

pY (n) =
∑

k

pX,Y (k, n)

=

∞∑

k=1

1

n+ 1

(
1− 1

n+ 1

)k−1 1

2n

=
1

(n+ 1)2n

∞∑

k=1

(
1− 1

n+ 1

)k−1

=
1

(n+ 1)2n
(n+ 1) =

1

2n
.

Now we have that pX|Y (k|n) =
pX,Y (k, n)

pY (n)
=

1

n+ 1

(
1 − 1

n+ 1

)k−1
. We are able to recognize

this distributions.

Y ∼ Geom(1/2) and X|Y=n ∼ Geom(1/(n+ 1)).

(b) We automatically conclude from (a) that E[Y ] = 2.

(c) Since X|Y=n ∼ Geom(1/(n + 1)) we automatically conclude that E[X|Y = n] = n + 1. It
follows that E[X|Y ] = Y + 1.

(d) We finally have that E[X] = E[E[X|Y ]] = E[Y + 1] = E[Y ] + 1 = 3.

6. (Expected number of coin tosses) Consider a sequence of coin tosses.

(a) On average, how many tosses of a fair coin does it take to see two heads in a row?

(b) How many tosses on average to see the sequence HTH for the first time?

(c) How does our answer changes if we have an unfair coin?

5
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(a) Let X be the random variable describing the number of tosses needed to see tho heads in a
row. Let A be the even that the first toss is tails, B the event that the first two tosses are
heads and C the event that the first toss is head and the second is tails. Observe that the
following equation is satisfied

E[X] = E[X|A]P(A) + E[X|B]P(B) + E[X|C]P(C).

Now the key observation is that E[X|A] = E[X] + 1, E[X|B] = 2 and E[X|C] = E[X] + 2. We
can now solve the equation

E[X] =
E[X] + 1

2
+

2

4
+

E[X] + 2

4
.

We get E[X] = 6.

(b) We repeat the previous argument. Let x represents the expected number of tosses to get
HTH, y the expected number of tosses to get HTH given that our last toss is H and z the
expected number of tosses to get HTH given that our last toss is HT . We then obtain the
following system of equations. a = a+1

2 + b+1
2 . b = b+1

2 + c+1
2 and finally c = 1

2 +
a+1
2 . Solving

the system of equations gives a = 10.

(c) This is completly analogous to part (a) and (b) only that the probability to get H is now p.
Solving the equations we get that the expected number of tosses to get HH is 1+p

p2
while the

expected number of tosses to get HTH is 1+p−p2

p2(1−p)
.

6
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STAT201A: Introduction to Probability at an Advanced Level (Fall 2024)
UC Berkeley

Problem Set 5

Due: 10:00pm, Wednesday, November 20, 2024 (via Gradescope)

1. (Multivariate normal) Suppose Y ∼ Nn(µ,Σ) in this problem.

(a) If a is any fixed vector in Rn, show that

a⊤(Y − µ)√
a⊤Σa

∼ N (0, 1).

(b) If A is now a random vector that is independent of Y , then show again that

A⊤(Y − µ)√
A⊤ΣA

is distributed according to N (0, 1) and that it is independent of A.

(c) Using the above result, show that if Y ∼ N3 (0, I3), then

Y1e
Y3 + Y2 log |Y3|√

e2Y3 + (log |Y3|)2
∼ N (0, 1).

(a) Suppose Y ∼ Nn(µ,Σ) and a ∈ Rn. Then, since Y is Multivariate Normal,

a⊤Y ∼ N
(
a⊤µ, a⊤Σa

)

⇒ a⊤Y − a⊤µ ∼ N
(
0, a⊤Σa

)

⇒ a⊤(Y − µ)√
a⊤Σa

∼ N(0, 1).

(b) We note that from part (a), when a is fixed, a⊤(Y−µ)√
a⊤Σa

∼ N(0, 1). Hence, its moment generation

function is given by

Ma⊤(Y −µ)√
a⊤Σa

(t) = E

[
e
t
a⊤(Y −µ)√

a⊤Σa

]
= e

1
2
t2 .

Now, when a is a random vector independent from Y , we have

Ma⊤(Y −µ)√
a⊤Σa

(t) = E

[
e
t
a⊤(Y −µ)√

a⊤Σa

]

= E

(
E

[
e
t
a⊤(Y −µ)√

a⊤Σa

∣∣∣∣∣ a
])

= E
(
e

1
2
t2
)

= e
1
2
t2 .
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(c) Let Y = (Y1, Y2, Y3)
T ∼ N3

(
(0, 0, 0)T , I

)
, then W = (Y1, Y2)

T ∼ N2

(
(0, 0)T , I

)
. Letting

a =
(
eY3 , log |Y3|

)
we see that aW . Then,

a⊤(W − µ)√
a⊤Σa

∼ N(0, 1)

=⇒ a⊤W√
a⊤a

∼ N(0, 1)

=⇒ Y1e
Y3 + Y2 log |Y3|√

e2Y3 + (log |Y3|)2
∼ N(0, 1).

2. (Marginally normal but not bivariate normal) Give an example of a 2 × 1 random vector
Y = (Y1, Y2)

T with positive definite covariance matrix such that each Y1 and Y2 is standard normal
but Y is not bivariate normal.
This was covered in lecture 19. See the first slide. Take Y1 ∼d N (0, 1) and X a random variable
taking value−1 and 1 with probability 1/2 in each case. Then Y=XY1 is also a normal. Moreover the
covariance matrix of (Y1, Y2) is the identity matrix, so it is positive definite. However This random
vector is not bivariate normal since Y1 + Y2 is not normal. For instance, P(Y1 + Y2 = 0) = 1/2.

3. (Conditional distribution) Consider three random variables Y1, Y2 and Y3 that are independent
and standard normal. Let

X1 = Y2 + Y3,

X2 = Y1 + Y3,

X3 = Y1 + Y2.

Find the conditional distribution of X1 given X2 = X3 = 0.
This problem is an application of the formulas for conditional normal random variables given

in lecture 19. Since Y ∼d N
(
(0, 0, 0)T , I3

)
, taking the matrix A =



0 1 1
1 0 1
1 1 0


, we have that

(X1, X2, X3)
T = A(Y1, Y2, Y3)

T . Hence

(X1, X2, X3) ∼d N
(
(0, 0, 0)T , AI3A

T
)
.

Here AI3A
T =



2 1 1
1 2 1
1 1 2


. Using the formulas given in lecture we obtain for Z = X1|X2=X3=0,

E[Z] = 0 and Var(Z) = 2− (1, 1)

(
2 1
1 2

)−1

(1, 1)T = 4
3 .

4. (More on jointly Gaussian distributions) Let X and Y be independent standard normal
variables.

(a) For a constant k, find P(X > kY ).

(b) If U =
√
3X + Y , and V = X −

√
3Y , find P(U > kV ).

(c) Find P(U2 + V 2 < 1).

2
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(d) Find the conditional distribution of X given V = v.

(a) We can use the radial symmetry of the joint distribution of two standard independent random
variables. Since the line x = ky goes through 0 it divides the plane in two sections where
the total density is the same. We automatically have P (X > kY ) = 1/2. Alternatively,
X − kY ∼ N(0, 1 + k2) and P (X − kY > 0) = 1/2.

(b) Notice that U ∼ N(0, 4) and V ∼ N(0, 4). Furthermore, Cov(U, V ) = Cov(
√
3X + Y,X −√

3Y ). Using bilinearity properties of covariance this is
√
3V ar(X)−3Cov(X,Y )+Cov(Y,X)−√

3V ar(Y ) = −2Cov(X,Y ) = 0. It follows that the joint (U, V ) is uncorrelated bivariate
normal and that P (U > kV ) = 1

2 by radial symmetry of uncorrelated bivariate normal.

Alternatively, you can check that U−kV ∼ N(0, (
√
3−k)2+(1−k

√
3)2) and thus P (U−kV >

0) = 1
2 .

(c) U, V ∼ iidN(0, 4) so U/2, V/2 ∼ iidN(0, 1). It follows that

(
U

2

)2

+

(
V

2

)2

∼ Exp

(
1

2

)
.

Then

P (U2 + V 2 < 1) = P (

(
U

2

)2

+

(
V

2

)2

<
1

4
) = 1− e−

1
2
( 1
2
)2 = 1− e−

1
8 .

(d) Cov(X,V ) = Cov(X,X −
√
3Y ) = V ar(X). It follows that

Corr(X,V ) =
Cov(X,V )

SD(X)SD(V )
=

V ar(X)√
V ar(X)V ar(V )

=
1√
4
=

1

2
.

Hence (X,V ) ∼ BV N(0, 0, 1, 4, ρ = 1
2) which implies that (X, V2 ) ∼ BV N(0, 0, 1, 1, ρ = 1

2).
Hence X|(V2 = v

2 ) ∼ N(ρv
2 , 1− ρ2) = N(14v,

3
4).

5. (Wigner’s surmise) Let X =

(
X1 X3

X3 X2

)
with X1 and X2 independent N (0, 1) and X3 another

independent N (0, 1/2). Let λ1 and λ2 be two eigenvalues of X and s = |λ1 − λ2|.

(a) Prove that s =
√
(X1 −X2)2 + 4X2

3 .

(b) Find the density of s.

(c) Plot the density function of s. What do you observe respect to the eigenvalues of the random
matrix X?

Start by noticing that since all the entries of the random matrix are continuous, the probability of
the eigenvalues to be equal is 0.

(a) Since this is a 2× 2 matrix an explicit calculation of the characteristic polynomial gives

p(t) = t2 − (X1 +X2)t+X1X2 −X2
3 .

The roots are

λ1 =
X1 +X2 +

√
(X1 +X2)2 − 4X1X2 + 4X2

3

2
and λ1 =

X1 +X2 −
√
(X1 +X2)2 − 4X1X2 + 4X2

3

2
.

This gives s =
√

(X1 −X2)2 + 4X2
3 .

3
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Figure 1: Wigner’s surmise

(b) Notice that X1 − X2 ∼d N (0, 2) and X3 ∼d N (0, 2). Hence s ∼d

√
2
√
U2 + V 2 where U

and V are independent standar normals. We get that s ∼d

√
2χ(2), so s has the same

distribution as a reescaled by
√
2 chi-2 distribution. The pdf of a chi-2 distribution is given by

p(x) = xe−x2/2Ix≥0. We conclude that the density function of s is given by p(s) = s
2e

s2/4Is≥0.

(c) Using python we obtain a nice graph. The observation is that while the probability of the
eigenvalues being far away decreases exponentially, the probability of them being arbitrarily
close goes to 0.

6. (1D Gaussian process) In this problem, you will implement a 1D Gaussian process that pre-
dicts outputs based on noisy training data. You will be given (noisy) 1D training data pairs
Dtrain = {(x1, y1) , (x2, y2) . . .}. Your task is to predict the output for a set of test queries
Dtest = {x∗1, x∗2, . . .}, conditioned on the training data. Implement two separate kernel functions,
namely the

• Squared Exponential Kernel: This is the kernel we discussed in class.

k (xi, xj) = σ2
f exp

(
−(xi − xj)

T M (xi − xj)

2

)

where σf is a scale factor for the kernel and M is a metric measuring distance between two
input vectors. In the 1D case, M = 1

l2
where l is the length scale of the kernel.

• Matérn Kernel: This kernel is used commonly in many machine learning applications.

k (xi, xj) =
21−ν

Γ(ν)

(√
2νr

l

)ν

Kν

(√
2νr

l

)

where ν and l are (positive) parameters of the kernel and r = |xi − xj |. Kν is a modified bessel
function and Γ is the gamma function. Good parameters settings for ν are 0.25 - 3. You can
use scipy.special.kv() in Python or besselK() in R for implementing Kν .

(a) Implement the squared exponential and Matérn kernel functions to compute similarity between
any pair of inputs. The output for each function should be a kernel matrix K.

(b) Using your kernel functions, implement a Gaussion process regression function to predict the
posterior mean and variance of test data y⃗∗.

4
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(c) The simulation function and plotting function are provided in the file ps5 GP 1D.ipynb. Vary
the kernel parameters (e.g., σf , l, and ν) and observe how they affect the predictive mean and
variance. What impact do these parameters have on the smoothness and uncertainty of your
GP predictions?

Note: It’s recommended to use Python (Jupyter notebook) and submit a pdf file including
code, plots and comments. If you prefer using another coding language, please make sure the
data simulation is the same with the provided code.

5
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STAT201A: Introduction to Probability at an Advanced Level (Fall 2024)
UC Berkeley

Problem Set 6

Due: 10:00pm, Friday, December 6, 2024 (via Gradescope)

1. (Branching process) A branching process starts with one individual, i.e. X(0) = 1, who repro-
duces according to the following principle:

# of children 0 1 2

probability 1
6

1
3

1
2

Individuals reproduce independently of each other and independently of the number of their sisters
and brothers. Determine

(a) the probability that the population becomes extinct;

The probability generating function of the number of offspring is

ϕ(s) =

2∑

k=0

skpk =
1

6
+

1

3
s+

1

2
s2.

The probability of extinction is the smallest solution s to the equation

s = ϕ(s).

Solving this equation, the probability of extinction is 1
3 .

(b) the probability that the population has become extinct in the second generation, i.e. P(X(2) =
0);

P(X(2) = 0) = P(X(2) = 0 | X(1) = 0) · P(X(1) = 0)

+ P(X(2) = 0 | X(1) = 1) · P(X(1) = 1)

+ P(X(2) = 0 | X(1) = 2) · P(X(1) = 2)

= 1 · 1
6
+

1

6
· 1
3
+

(
1

6

)2

· 1
2

=
17

72
.

(c) the expected number of children given that there are no grandchildren.

E[X(1) | X(2) = 0] = P(X(1) = 1 | X(2) = 0) · 1 + P(X(1) = 2 | X(2) = 0) · 2

=
P(X(2) = 0 | X(1) = 1) · P(X(1) = 1)

P(X(2) = 0)
· 1

+
P(X(2) = 0 | X(1) = 2) · P(X(1) = 2)

P(X(2) = 0)
· 2

=

(
1
6 · 1

3

)
17
72

· 1 +
(

1
36 · 1

2

)
17
72

· 2

=
6

17
.

1
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2. (Random walk) Random walk on {0, 1, 2, 3}. Consider the Markov chain (Xn) with transition
matrix

P =




1
2

1
2 0 0

1
2 0 1

2 0
0 1

2 0 1
2

0 0 1
2

1
2


 ,

started with X0 = 0. Define Tj as min {n ≥ 1 : Xn = j}. Find explicitly the following distributions
and expectations.

(a) The distribution of X2.

P 2 =




1
2

1
4

1
4 0

1
4

1
2 0 1

2
1
4 0 1

2
1
4

0 1
4

1
4

1
2




P (X2 = 0) = 1
2 , P (X2 = 1) = P (X2 = 2) = 1

4 , P (X2 = 3) = 0.

(b) The limit distribution of Xn as n → ∞.

By solving πP = π, we have π = (14 ,
1
4 ,

1
4 ,

1
4). Since the MC has finite state space S and

it’s irreducible and aperiodic, in limiting distribution theorem, we know for i, j ∈ 0, 1, 2, 3,
limn→∞ [Pn]ij =

1
4 . Therefore the limit distribution of Xn is also π.

(c) E[T0]

Define hk = E [min{n ≥ 0 : Xn = 0} | X0 = k]. By one-step analysis, we derive the following
system of equations 




h0 = 0,

h1 =
1
2h0 +

1
2h2 + 1,

h2 =
1
2h1 +

1
2h3 + 1,

h3 =
1
2h2 +

1
2h3 + 1.

Solving this system, we find 



h0 = 0,

h1 = 6,

h2 = 10,

h3 = 12.

Finally, the expected value of T0 is given by:

E[T0] = 1 +

3∑

k=0

hkP (X1 = k) =
1

2
× 0 +

1

2
× 6 + 1 = 4.

(d) E[T3]

2

page 119 — back to Homework
6



Define gk = E [min{n ≥ 0 : Xn = 3} | X0 = k]. Similar to (c), by one-step analysis, we derive
the following system of equations





g0 =
1
2g0 +

1
2g1 + 1,

g1 =
1
2g0 +

1
2g2 + 1,

g2 =
1
2g1 +

1
2g3 + 1,

g3 = 0.

Solving this system, we find 



g0 = 12,

g1 = 10,

g2 = 6,

g3 = 0.

Finally, since it definitely takes more than one step from 0 to 3,

E[T3] = E[min{n ≥ 1 : Xn = 3}|X0 = 0] = E[min{n ≥ 0 : Xn = 3}|X0 = 0] = 12.

(e) P[T3 < T0]

Define fk = P (T3 < T1 | X1 = k). We can derive the following system of equations by condi-
tional probabilities 




f0 = 0,

f1 =
1
2f0 +

1
2f2,

f2 =
1
2f1 +

1
2f3,

f3 = 1.

Solving this system, we find 



f0 = 0,

f1 =
1
3 ,

f2 =
2
3 ,

f3 = 1.

Finally,

P(T3 < T1) = P (T3 < T1 | X1 = 1)P (X1 = 1) + P (T3 < T1 | X1 = 0)P (X1 = 0) = 1/6.

3. (The average number of jobs) Jennifer is employed for one day at a time. When she is out of
work, she visits the job agency in the morning to see if there is work for that day. There is a job
for her with probability 1/2. If there is no work, she comes back the next day. When she has a
job, she will be called back to the same job for the next day with probability 2/3. When she is not
called back, she goes to the job agency again the next morning to look for a new job that she had
not had previously. Approximate the average number of jobs Jennifer works in a year.
There are multiple solutions to this problem. A short approximation consist in calculating the
average number of days on the same job and the average number of days without a job. Let X be
the random variable representing the number of days on a fixed job, X has geometric distribution

3
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with parameter 1/3. Let Y be a random variable representing the number of days without job, Y
also has geometric distribution but starts at 0, with parameter 1/2. We get E[X] = 3 and E[Y ] = 1.
Hence E[X + Y ] = 4. We obtain 365/4 ≈ 91.25.

4. (Rain or no rain) Suppose that at day 0 it is not raining. Then each new day, if it rained
yesterday, it will rain with probability 0.7; if it did not rain yesterday, it will rain with probability
0.2.

(a) Find the stationary distribution.
This is an irreducible finite state Markov chain. Hence an stationary distribution exists and
is unique. It is enough to find πr and πn, the stationary distribution for rain and not rain
respectively, by solving the system of equations −0.3πr + 0.2πn = 0, 0.3πr − 0.2πn = 0,
πr + πn = 1. We get (πr, πn) = (2/5, 3/5).

(b) How many days should we expect to wait to have rain for the first time?
Suppose we start from a non-rainy day. Then by considering non-rainy days as failures and
rainy days as successes. Then for X the random variable giving the first day with rain, X is
geometric with parameter 0.2 = 1/5. Hence E[x] = 5.

5. (The game of roulette) A gambler plays the game of roulette, betting X dollars on red or black.
The gambler wins X dollars with probability p = 18/38 or loses the bet with probability q = 20/38.
Suppose that the gambler starts the game with $500 in his pocket and upper limit on winnings is
$1000.

(a) Compute the probability of the gambler’s ruin for X = $10.

This problem can be solved by considering a Markov chain on {0, 1, . . . , N}, where N is a
positive integer; 0 and N are absorbing boundaries; and for j = 1, . . . , N − 1,

P[Xt+1 = j − 1 | Xt = j] = q = 1− p,

P[Xt+1 = j + 1 | Xt = j] = p.

Let R denote the event that you hit the boundary 0 before hitting the boundary N . Define
uj := P[R | X0 = j]. Then, u0 = 1 and uN = 0, while for j = 1, . . . , N − 1,

uj = P[R | X0 = j]

= P[R | X0 = j,X1 = j − 1]P[X1 = j − 1 | X0 = j]

+ P[R | X0 = j,X1 = j + 1]P[X1 = j + 1 | X0 = j]

= (1− p)uj−1 + p uj+1.

Now, rewrite the left hand side as pµj + (1− p)µj and rearrange terms to get

p[µj+1 − µj ] = (1− p)[µj − µj−1].
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Define r := 1−p
p and ∆j := µj − µj−1. Then, we obtain

∆2 = r∆1

∆3 = r∆2 = r2∆1

∆4 = r∆3 = r2∆2 = r3∆1

...

∆N = rN−1∆1.

Further, for all j = 1, . . . , N , we have ∆1 +∆2 + · · ·+∆j = µj − µ0 = µj − 1, where we have
used the boundary condition in the last equality. Hence,

µj = 1 +∆1 +∆2 + · · ·+∆j = 1 +∆1[1 + r + · · ·+ rj−1].

Since µN = 0, we obtain ∆1 = −1/[1 + r + · · ·+ rN−1], so

µj = 1− 1 + r + · · ·+ rj−1

1 + r + · · ·+ rN−1
=





1− j

N
, if r = 1,

rj − rN

1− rN
, if r ̸= 1.

(1)

Using N = 100 and X0 = 50 in (1) gives P[R | X0 = 50] ≈ 0.995.

(b) Compute the probability of the gambler’s ruin for X = $100.

Similarly, this is equivalent to having N = 10 and X0 = 5 in the ruin problem, and we
immediately obtain P[R | X0 = 5] ≈ 0.629.

(c) Compare the above results with the probability of ruin in the case the gambler bets everything
on a single turn of the wheel.

If the gambler bets everything on a single turn of the wheel, the probability of ruin is q =
1− p = 20/38 ≈ 0.526. This probability is lower than either one of the cases above.
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STAT201A: Introduction to Probability at an Advanced Level (Fall 2024)
UC Berkeley

Final Practice Problems

1. (True/False) Determine whether each of the following claims is true or false. If true, provide an
argument or proof; and if false, give a counterexample.

(a) Suppose X and Y are distributed Uniform in [0, 1]. Then, (X,Y ) is uniform on [0, 1]2.

(b) For every random variableX, one can find a function g such that g(Z) has the same distribution
as X (here Z ∼ U(0, 1) ).

(c) For every random variable X, one can find a function h such that h(X) ∼ N(0, 1).

(d) For any random variables X and Y,Var[X] = Var[Var[X | Y ]].
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2. (Short questions, no explanation is needed.) A random variable X has moment generating
function MX(t) < ∞ for |t| < ϵ for some ϵ > 0.

(a) Suppose MX(t) = e3t+t2 . What is the distribution of X? Explain.

(b) Find MX(t) for X = W1 + · · ·+Wk where the Wk are IID with P (Wk > w) = e−w for w > 0.

(c) Suppose X1, . . . , Xn are independent normal
(
µ, σ2

)
random variables. Let X̄n := 1

n

∑n
i=1Xi.

What is the distribution of
∑n

i=1

(
Xi − X̄n

)2
?

(d) Suppose U1, . . . , Un are independent uniform [0, 1] variables. Determine a constant c, where

(
∏n

i=1 Ui)
1/n d−→ c.

(e) Suppose Xi for 1 ≤ i ≤ 6 is the number of dice showing face i when a Poisson(µ) number of
fair six-sided dice are rolled. Describe the joint distribution of (X1, . . . , X6).
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3. Suppose a coin (about which you know nothing) has been tossed n times (n is a large number) and
it shows heads 75% of the time. What probability should one assign to the coin showing heads in
the next toss? Answer this question using the following model. Let X1, . . . , Xn+1 be the results of
the n+ 1 coin tosses (Xi = 1 if the ith toss is heads and Xi = 0 if tails). Assume that

X1, . . . , Xn, Xn+1 | θ ∼ Ber(θ) and θ ∼ Unif(0, 1)

(a) Calculate the conditional density of θ given X1 = x1, . . . , Xn = xn.

(b) Calculate the conditional distribution of Xn+1 given X1 = x1, . . . , Xn = xn.

(c) What happens to P {Xn+1 = 1 | X1 = x1, . . . , Xn = xn} when n is large and (x1+ · · ·+ xn) /n =
0.75?
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4. Let Fn(x) := 1
n

∑n
i=1 1 (Xi ≤ x) be the empirical cdf for X1, . . . , Xn assumed to be independent

with common cdf F (x) := P (Xi ≤ x). Suppose x < y.

(a) Find a simple formula for Cov (Fn(x), Fn(y)).

(b) Find the conditional distribution of nFn(x) given nFn(y) = k for each 0 ≤ k ≤ n.

(c) Suppose F is continuous. What is the distribution of F (max1≤i≤nXi) − F (min1≤i≤nXi) ?
Explain and evaluate the mean of this distribution.

4126



5. Let X1, X2, . . . be i.i.d. random variables with positive integer values (on the set {1, 2, . . . }).
Assume that P(X1 = 1) > 0. Let Zn = min{X1, X2, . . . , Xn}. Show that

lim
n→∞

P(Zn = 1) = 1.

How does this change if the random variables are not identically distributed?
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6. Consider the following finite-state Markov chain.

(a) Identify the transient states and identify each class of recurrent states.

(b) Is the stationary distribution π = (π1, . . . , π5) unique in above Markov Chain? If it’s unique,
explain the reason and calculate the stationary distribution. If not, give at least two stationary
distributions.

(c) Find the n-step transition probabilities p
(n)
ij = P {Xn = j | X0 = i} as a function of n. Give a

brief explanation of each.

i. p
(n)
44

ii. p
(n)
43 + p

(n)
42

iii. limn→∞ p
(n)
43
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7. You may use the approximation 1
22n

(
2n
n

)
∼ 1√

2πn
and that

∑∞
n=1

1
nα = ∞ for α ≤ 1.

(a) Show that the one-dimensional symmetric random walk is recurrent.

(b) Using item (a), show the two-dimensional symmetric random walk is recurrent.
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8. You may use the approximation 2n

9n

(
2n
n

)
∼ 8n

9n
√
2πn

and that
∑∞

n=1
xn√
n
< ∞ for 0 ≤ x < 1.

(a) Suppose that you have a one-dimensional biased random walk with bias p = 2
3 to the right.

Show that this random walk is transient.

(b) Consider a symmetric random walk on the infinite binary tree with root r (depicted below)
starting at r. Is it recurrent or transient?
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(a) As soon as the exam starts, please write your student ID in the space provided at the top of every page!
(We will remove the staple when scanning your exam.)

(b) There are 8 double-sided sheets (15 numbered pages) on the exam. Notify a proctor immediately if a sheet
is missing.

(c) We will not grade anything outside of the space provided for a question (i.e., either a designated box if
it is provided, or otherwise the white space immediately below the question). Be sure to write your full
answer in the box or space provided! Scratch paper is provided on request; however, please bear in mind
that nothing you write on scratch paper will be graded!

(d) You may use, without proof, theorems and lemmas that were proved in lecture and/or in homework.

(e) You may consult two double-sided “cheat sheets” of notes. Apart from that, you may not look at any other
materials. Calculators, phones, computers, and other electronic devices are NOT permitted.

(f) You have 180 minutes: there are 7 questions on this exam worth a total of 120 points.

Problem Points
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3 16
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6 16
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(g) On questions 1-2, you need only give the answer in the format requested (e.g., True/False, an expression, a
statement.) An expression may simply be a number or an expression with a relevant variable in it. For short
answer questions, correct, clearly identified answers will receive full credit with no justification. Incorrect
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(h) On questions 3-7, you should give arguments, proofs or clear descriptions if requested. If there is a box,
you must use it for your answer; answers written outside the box may not be graded!
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1. True/False [No justification; answer by shading the correct bubble. 2 points per correct answer; total of 14
points. No penalty for incorrect answers.]

Indicate which of the following statements is TRUE or FALSE by shading the appropriate bubble.

TRUE FALSE

j | The c.d.f. FX of a random variable X is a random variable. 2pts

j | If Xn
a.s.−→ X as n → ∞, then limn→∞ FXn(x) = FX(x) for all x ∈ R, where FXn and FX denote 2pts

the cumulative distribution functions of Xn and X , respectively.

j | If X and Y are normal random variables, then (X,Y ) is bivariate normal. 2pts

| j If a square matrix M is positive definite, then there exists a square matrix A such that M = A2. 2pts

| j If X ∼ Exp(λ) for some λ > 0, then e−λX is uniformly distributed over (0, 1). 2pts

j | Let F̂n denote the empirical c.d.f. from X1, . . . , Xn
iid∼ F and define Dn := supx |F̂n(x) − F (x)|. 2pts

Then,
√
nDn

a.s.−→ 0 as n → ∞.

j | It k1, k2, k3 are valid kernels, then a function g defined as g(x, x′) = k1(x, x
′)k2(x, x′)− k3(x, x

′) 2pts
is also a valid kernel.
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2. Short Answers [Answer is a single number or expression; write it in the box provided; no justification necessary.
Total of 30 points. No penalty for incorrect answers.]

(a) Let X ∼ Uniform(0, 2) and Y ∼ Uniform(0, 3) be independent random variables. Find the p.d.f. fZ(z) of 4pts
Z = X + Y .

fZ(z) =





z/6, 0 < z ≤ 2,

1/3, 2 < z ≤ 3,

(5− z)/6, 3 < z < 5,

0, otherwise.

[This follows from convolution: fZ(z) =
∫∞
−∞ fX(x)fY (z − x)dx = I{z ∈ (0, 5)}

∫ min(2,z)
max(0,z−3)

1
abdx.]

(b) Let X,Y
iid∼ Exp(λ) for some λ > 0. Find P[X ≤ 1 | X + Y = 3]. 3pts

1
3 . [This was covered in Lab 8, Problem 2, which showed that the conditional distribution of X given
X + Y = a is uniform over [0, a]. ]

(c) Consider an urn containing N balls, B of which are blue and R are red, with N = B+R. Suppose n < N 3pts
balls are sampled uniformly at random from the urn without replacement. What is the expected number of
color changes in the sequence of observed balls? (Note: If the observed sequence is RBBBRB for n = 6,
the number of color changes is 3.)
2BR(n−1)
N(N−1) . [Let Xi denote the color of the ith ball. Then the number of color changes is given by
∑n−1

i=1 I{Xi ̸= Xi+1}. By exchangeability, for all i = 1, . . . , n − 1, P[Xi ̸= Xi+1] = P[X1 ̸= X2] =
2BR

N(N−1) , so E[
∑n−1

i=1 I{Xi ̸= Xi+1}] = 2BR(n−1)
N(N−1) .]

(d) Alice and Bob are playing a game. Alice initially has 10 marbles and Bob has 7 marbles. In each round, a 3pts
fair coin is tossed. If it shows heads, then Bob gives 1 marble to Alice; if it shows tails, then Alice gives
1 marble to Bob. They keep playing until either one has no marble left, when the game ends. What is the
probability that Alice ends up winning all the marbles?
10
17 . [This problem is essentially the same as Problem 3 from Lab 9.]

(e) Suppose X1, . . . , Xn are i.i.d. random variables with p.d.f. f(x) =

{
2x, if x ∈ [0, 1],

0, otherwise.
3pts

Find the p.d.f. of the second order statistic X(2).

2n(n − 1)x3(1 − x2)n−2I{x ∈ [0, 1]}. [The c.d.f. corresponding to this problem is F (x) = x2, so the
answer follows from the general formula fX(2)

(x) = n(n−1)f(x)F (x)[1−F (x)]n−2, which was covered
in Lecture 15. It should be straightforward to derive this formula from scratch using the approach discussed
in the lecture.]

(f) Let fX,Y (x, y) denote the joint density of random variables X and Y . For U = X2 and V = X + Y , find 4pts
the joint density fU,V (u, v) in terms of fX,Y .

1
2
√
u

[
fX,Y (

√
u, v −√

u) + fX,Y (−
√
u, v +

√
u)
]
I{u ∈ [0,∞)}

[This follows from the fact that the transformation T (X,Y ) = (U, V ) is two-to-one and that | det(J)| =
1

2
√
u

for each preimage.]
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(g) Suppose
(
X1

X2

)
∼ N2(µ⃗,Σ), where µ⃗ =

(
µ1

µ2

)
and Σ =

(
1 1
1 1

)
. Find the mean and covariance of 3pts

Y⃗ =

(
Y1
Y2

)
=

(
1 −1
1 1

)(
X1

X2

)
.

E[Y⃗ ] =

(
µ1 − µ2

µ1 + µ2

)

Cov[Y⃗ ] =

(
0 0
0 4

)

[These results follow from the fact that if Y⃗ = AX⃗ , then E[Y⃗ ] = AE[X⃗] and Cov(Y⃗ ) = ACov(X⃗)AT .]

(h) Let X⃗1, . . . , X⃗n be a sequence of i.i.d. random vectors in R2 with E[X⃗i] =

(
0
0

)
and Cov(Xi) =

(
1 1

2
1
2 1

)
3pts

for all i ∈ {1, . . . , n}. Find limn→∞ P
[
X⃗1+···+X⃗n√

n
≤
(
a
b

)]
, where a, b are real constants. Your answer

may be left as an integral.
1

π
√
3

∫ b
−∞

∫ a
−∞ e−

2
3
(x2

1−x1x2+x2
2)dx1dx2.

[This follows from the multivariate CLT discussed in Lecture 20 and the p.d.f. of a bivariate normal distri-
bution with mean zero and covariance Σ = Cov(Xi), for which |det(Σ)| = 4

3 and the precision matrix is

Σ−1 = 4
3

(
1 −1

2
−1

2 1

)
. ]

(i) Consider a discrete-time branching process {Xn, n ∈ N0} with X0 = 1 and the geometric offspring number 4pts
distribution Pk = q(1− q)k for k ∈ N0, where q ∈ (0, 1). Find the extinction probability.
{
1, if q ∈ [12 , 1),
q

1−q , if q ∈ (0, 12).

[The probability generation function for this case is given by φ(s) =
∑

k=1 q(1 − q)ksk = q
1−s(1−q) .

Letting s = φ(s), we obtain (s− 1)[s(1− q)− q] = 0, so the two roots are s = 1 and s = q/(1− q). The
smaller non-negative root corresponds to the extinction probability.]
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3. Tail bounds [Total of 16 points.]
Let X1, . . . , Xn be independent random variables taking values in {0, 2}, with P[Xi = 0] = 3

4 and P[Xi = 2] =
1
4 , for all i = 1, . . . , n. Let Sn = X1 + · · ·+Xn.

(a) Find an upper bound on P[Sn ≥ n] using Markov’s inequality. No justification required. 3pts
1
2 .

(See Lecture 5) We have that E[X1] = 0 · 3
4
+ 2 · 1

4
= 1

2 . Hence E[Sn] = n/2. Markov’s inequality gives

P[Sn ≥ n] ≤ E[Sn]

n
=

n/2

n
=

1

2
.

(b) Find an upper bound on P[Sn ≥ n] using Chebyshev’s inequality. No justification required. 4pts
3
n .

(See Lecture 5) We have that E[X2
1 ] == 02 · 3

4
+ 22 · 1

4
= 1, so Var[X1] = E[X1]

2 − E[X1]
2 = 3

4 and

Var[Sn] =
3n
4 . Chebyshev’s inequality gives

P[Sn ≥ n] = P[Sn − E[Sn] ≥ n− E[Sn]]

≤ P[|Sn − E[Sn]| ≥ n/2]

≤ Var[Sn]

(n/2)2
=

3n/4

n2/4
=

3

n
.

(c) Find the moment generating function of Sn. No justification required. 4pts

MSn(t) =
(
3
4 + 1

4e
2t
)n

.

(See Lecture 7) Since the random variables Xi are IID we have that MSn(t) = MX1(t)
n. It is then enough

to compute MX1(t).
MX1(t) = E[etX1 ]

= et·0
3

4
+ et·2 · 1

4

=
3

4
+

1

4
e2t.
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(d) Find the best upper bound on P[Sn ≥ n] using the Chernoff bound. Write your final answer in the box 5pts
below, and justify your answer in the space provided.
(√

3
2

)n
.

(See Lecture 8) Chernoff’s bound gives
P[Sn ≥ n] ≤ inf

t≥0
MSn(t)e

−tn.

So we need to minimize MSn(t)e
−tn, to this end we compute the logarithmic derivative to simplify calcu-

lations.
d

dt
ln
(
MSn(t)e

−tn
)
=

d

dt

[
n ln

(3
4
+

1

4
e2t
)
− tn

]

=
2ne2t

3 + e2t
− n.

We want to solve 2ne2t

3+e2t
− n = 0,

2ne2t

3 + e2t
= n ⇐⇒ 2e2t = 3 + e2t

⇐⇒ e2t = 3

⇐⇒ t =
ln(3)

2
.

We can check that
d

dt
ln
(
MSn(t)e

−tn
)

is actually increasing, then ln(3)
2 gives a minima of MSn(t)e

−tn.
Hence,

P[Sn ≥ n] ≤ inf
t≥0

MSn(t)e
−tn

= MSn(
ln(3)

2
)e−n· ln(3)

2

=
(3
4
+

1

4
e2·

ln(3)
2

)n
e−n· ln(3)

2

=
(3
4
+

3

4

)n
3−n/2

=
3n

2n
· 3−n/2 =

(√3

2

)n
.
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4. A run of consecutive heads [Total of 11 points.]
A biased coin shows heads with probability p ∈ (0, 1). Let Xn denote the number of tosses until a run of n
consecutive heads is obtained.

(a) Find E[X1]. No justification required. 3pts
1
p . [This follows from the fact that X1 ∼ Geometric(p).]

(b) For n ≥ 2, find an equation involving E[Xn] and E[Xn−1]. No justification required. 4pts

E[Xn] =
1
p + 1

pE[Xn−1]. [This result follows from E [Xn] = E [E [Xn|Xn−1]] = p(E [Xn−1] + 1) +
(1− p)(E [Xn−1] + 1 + E [Xn]), simplifying which yields the answer.]

(c) Find a closed-form expression for E[Xn] for n ≥ 1. No justification required. 4pts
1
pn

−1

1−p . [Parts (a) and (b) imply E[Xn] =
∑n

k=1
1
pk

=
1− 1

pn+1

1− 1
p

− 1 =
1
p
− 1

pn+1

1− 1
p

=
1
pn

−1

1−p .]

[exam continued on next page]137



Your SID Number: Page 8

5. Uniform distribution over a triangle [Total of 18 points.]
Consider a solid triangle ∆ ∈ R2 with corners at (0, 0), (a, 0), and (0, b), where a, b > 0, as shown in the figure
below. Suppose (X,Y ) is uniformly distributed over ∆.
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<latexit sha1_base64="wU9N8iAZUxUZhrRaMUhOas7zCJM=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZq0H6p7FbcOcgq8XJShhz1fumrN4hZGqE0TFCtu56bGD+jynAmcFrspRoTysZ0iF1LJY1Q+9n80Ck5t8qAhLGyJQ2Zq78nMhppPYkC2xlRM9LL3kz8z+umJrzxMy6T1KBki0VhKoiJyexrMuAKmRETSyhT3N5K2IgqyozNpmhD8JZfXiWty4pXrVQbV+XabR5HAU7hDC7Ag2uowT3UoQkMEJ7hFd6cR+fFeXc+Fq1rTj5zAn/gfP4Axu+M8A==</latexit>a

<latexit sha1_base64="giX4jazC00QEvlGE4BNHI9hZ9xE=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqBP1S2a24c5BV4uWkDDnq/dJXbxCzNEJpmKBadz03MX5GleFM4LTYSzUmlI3pELuWShqh9rP5oVNybpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTdGG4C2/vEpalxWvWqk2rsq12zyOApzCGVyAB9dQg3uoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwByHOM8Q==</latexit>

b
<latexit sha1_base64="fUIy4QXzpf+Y0tBVa2PGE5JPfiA=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4KolI9VjUg8cK9gPaUDbbTbt2swm7E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbF6wHHC/YgOlAgFo2ilZveWS6S9UtmtuDOQZeLlpAw56r3SV7cfszTiCpmkxnQ8N0E/oxoFk3xS7KaGJ5SN6IB3LFU04sbPZtdOyKlV+iSMtS2FZKb+nshoZMw4CmxnRHFoFr2p+J/XSTG88jOhkhS5YvNFYSoJxmT6OukLzRnKsSWUaWFvJWxINWVoAyraELzFl5dJ87ziVSvV+4ty7TqPowDHcAJn4MEl1OAO6tAABo/wDK/w5sTOi/PufMxbV5x85gj+wPn8AWQejwc=</latexit>

�<latexit sha1_base64="pDtm4Zf7rOJ2bU5iVNjBd50GbxQ=">AAAB6HicbVA9SwNBEJ3zM8avqKXNYhCswp1ItLAI2FgmYD4gOcLeZi5Zs7d37O4J4cgvsLFQxNafZOe/cZNcoYkPBh7vzTAzL0gE18Z1v5219Y3Nre3CTnF3b//gsHR03NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+G7mt59QaR7LBzNJ0I/oUPKQM2qs1HD7pbJbcecgq8TLSRly1Pulr94gZmmE0jBBte56bmL8jCrDmcBpsZdqTCgb0yF2LZU0Qu1n80On5NwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rwxs+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuiDcFbfnmVtC4rXrVSbVyVa7d5HAU4hTO4AA+uoQb3UIcmMEB4hld4cx6dF+fd+Vi0rjn5zAn8gfP5A3rdjLk=</latexit>

0
<latexit sha1_base64="pDtm4Zf7rOJ2bU5iVNjBd50GbxQ=">AAAB6HicbVA9SwNBEJ3zM8avqKXNYhCswp1ItLAI2FgmYD4gOcLeZi5Zs7d37O4J4cgvsLFQxNafZOe/cZNcoYkPBh7vzTAzL0gE18Z1v5219Y3Nre3CTnF3b//gsHR03NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+G7mt59QaR7LBzNJ0I/oUPKQM2qs1HD7pbJbcecgq8TLSRly1Pulr94gZmmE0jBBte56bmL8jCrDmcBpsZdqTCgb0yF2LZU0Qu1n80On5NwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rwxs+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuiDcFbfnmVtC4rXrVSbVyVa7d5HAU4hTO4AA+uoQb3UIcmMEB4hld4cx6dF+fd+Vi0rjn5zAn8gfP5A3rdjLk=</latexit>

0

(a) Find the joint density fX,Y (x, y). No justification required. 3pts
2
abI{(x, y) ∈ ∆}. [Since (X,Y ) is uniformly distributed over ∆, fX,Y should be a constant function
over ∆. The normalization constant is determined by

∫
fX,Y (x, y)dxdy = 1, yielding fX,Y (x, y) =

1
Area(∆)I{(x, y) ∈ ∆} = 2

abI{(x, y) ∈ ∆}.]

(b) Find the marginal density fY (y). No justification required. 3pts
2
b

(
1− y

b

)
I{0 ≤ y ≤ b}. [The line going through (a, 0) and (0, b) is defined by the equation y = b− b

ax, so

fY (y) =
∫∞
−∞ fX,Y (x, y)dx = I{0 ≤ y ≤ b}

∫ a−a
b
y

0
2
abdx = 2

ab

(
a− a

b y
)
I{0 ≤ y ≤ b}, which simplifies

to the desired result.]

(c) Find fX|Y=y(x), the conditional density of X given Y = y. No justification required. 3pts

Given y ∈ [0, b], fX|Y=y(x) = 1

a
(
1− y

b

)I{0 ≤ x ≤ a
(
1 − y

b )} [This result follows from combining the

results from parts (a) and (b): fX|Y=y(x) =
fX,Y (x,y)
fY (y) .]

(d) Show E[X] =
a

2

(
1− E[Y ]

b

)
. Justify your answer in the space provided. 5pts

E[X|Y = y] =
∫∞
−∞ xfX|Y=y(x)dx =

∫ a(1− y
b
)

0 x 1
a(1− y

b
)
dx = 1

2a(1 − y
b ). So, by the Law of Total

Expectation, E[X] = E[E[X|Y ]] = E[12a
(
1 − Y

b

)
] = 1

2a
(
1 − E[Y ]

b

)
, where the last equality follows from

the linearity of expectation.

(e) Find E[X] and E[Y ]. No justification required. 4pts

E[X] = a
3

E[Y ] = b
3

In part (d), we showed E[X] = a
2

(
1 − E[Y ]

b

)
. By symmetry, we have E[Y ] = b

2

(
1 − E[X]

a

)
. Solving this

coupled system of linear equations for E[X] and E[Y ] yields the above results.

[exam continued on next page]138
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6. Brownian motion and bridge [Total of 16 points.]
A stochastic process {Xt, t ≥ 0} is said to have independent increments if, for every choice of times 0 ≤ s1 <
t1 ≤ s2 < t2 ≤ · · · ≤ sn < tn < ∞, {Xti − Xsi , i = 1, . . . , n} are jointly independent. Furthermore,
increments are called stationary if, for all 0 < s, t < ∞, Xt+s −Xs has the same distribution as Xt −X0 . Let
{Bt, t ≥ 0} be a Brownian motion.

(a) Show that {Bt, t ≥ 0} has independent increments. Justify your answer in the space provided. 4pts

(See Lab 10) Because the distribution of the increments {Bti − Bsi , i = 1, . . . , n} is a multivariate Gaus-
sian, it is enough to prove that their covariance is 0 to verify independence. Given a < b ≤ c < d we
want to compute Cov(Bd −Bc, Bb −Ba) by using the bilinearity of the covariance and that the kernel of a
Brownian motion Cov(Bs, Bt) = min(s, t) (See Lecture 21).

Cov(Bd −Bc, Bb −Ba) = Cov(Bd, Bb)− Cov(Bd, Ba)− Cov(Bc, Bb) + Cov(Bc, Ba)

= min(d, b)−min(d, a)−min(c, b) + min(c, a)

= b− a− b+ a = 0.

This proves that the increments are independent.

(b) Show that {Bt, t ≥ 0} has stationary increments. Justify your answer in the space provided. 3pts

(See Lab 10) Similarly to (a), we know that the increments are Gaussian with mean 0, it is then enough to
verify they have the same variance.

Var(Bt+s −Bs) = Cov(Bt+s −Bs, Bt+s −Bs).

Using part (a) with a = c = s and b = d = t+ s we obtain
Var(Bt+s −Bs) = t.

Since the result doesn’t depend on s we conclude that the Brownian motion has stationary increments.

(c) Show that Xt = Bt − tB1 is a Brownian bridge for t ∈ [0, 1]. Justify your answer in the space provided. 4pts

(See Labs 10 and 11) Since each Xt is a linear combination of the Bt we get that {Xt, 0 ≤ t ≤ 1} is a
Gaussian process. Hence, it is enough to compute it’s kernel (i.e. Covariance function) to determine if it is
a Brownian bridge.

Cov(Xt, Xs) = Cov(Bt − tB1, Bs − sB1)

= Cov(Bt, Bs)− sCov(Bt, B1)− tCov(B1, Bs) + stCov(B1, B1)

= min(t, s)− st− st+ st = min(t, s)− st.

This is precisely the kernel of a Brownian bridge (See Lecture 21).

(d) Find the conditional density fB3|(B1,B2)=(x,y)(z) of B3 given (B1, B2) = (x, y). No justification required. 5pts

fB3|(B1,B2)=(x,y)(z) =
1√
2π

exp
(
− (z − y)2

2

)
.

(See Lecture 19 and Homework 5) Intuitively, By parts (a) and (b) the distribution of a Brownian motion
at time 3 will only depend on the information we have at time 2 and not at time 1, we should have that B3

has normal distribution centered at 0 with variance given the the distance between 2 and 3, hence N (y, 1).

Formally, by part (a), B3 − B2 is independent of B2 = B2 − B0 and of B1 = B1 − B0. since, con-
ditioned to (B1, B2) = (x, y), B3 = B3 − B2 + y we have that B3 given (B1, B2) = (x, y) is distributed
as B3 −B2 + y without any conditional. By part (b) we know that the distribution of B3 −B2 is the same
as B1 −B0 = B1 ∼d N (0, 1). We conclude that B3 given (B1, B2) = (x, y) is distributed as N (y, 1).

An alternative solution consists in using the conditional distribution formulas for multivariate Gaussians
given in lecture 19.

[exam continued on next page]139
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7. Random walk on an undirected binary tree [Total of 15 points.]
Consider a perfect rooted binary tree of depth d, which has n = 2d leaves. Let V denote the vertex set. Shown
below is an example for d = 3.

<latexit sha1_base64="gYxoWmKUlxwgHDwXXyx54P8h/Ck=">AAAB7nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5SJJYBG8sI5gOSI+xt5pIle3vH7l4gHPkRNhaK2Pp77Pw3bpIrNPHBwOO9GWbmBYng2rjut1PY2d3bPygelo6OT07PyucXHR2nimGbxSJWvYBqFFxi23AjsJcopFEgsBtM75d+d4ZK81g+mXmCfkTHkoecUWOlrsAZCuIOyxW36q5AtomXkwrkaA3LX4NRzNIIpWGCat333MT4GVWGM4GL0iDVmFA2pWPsWypphNrPVucuyI1VRiSMlS1pyEr9PZHRSOt5FNjOiJqJ3vSW4n9ePzXhnZ9xmaQGJVsvClNBTEyWv5MRV8iMmFtCmeL2VsImVFFmbEIlG4K3+fI26dSqXr1af6xVmrU8jiJcwTXcggcNaMIDtKANDKbwDK/w5iTOi/PufKxbC04+cwl/4Hz+ALpNjyE=</latexit>

level 0

<latexit sha1_base64="jATAXkM/ejCP47iR1UeADhyaRgo=">AAAB7nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5SJJYBG8sI5gOSI+xt5pIle3vH7l4gHPkRNhaK2Pp77Pw3bpIrNPHBwOO9GWbmBYng2rjut1PY2d3bPygelo6OT07PyucXHR2nimGbxSJWvYBqFFxi23AjsJcopFEgsBtM75d+d4ZK81g+mXmCfkTHkoecUWOlrsAZCuINyxW36q5AtomXkwrkaA3LX4NRzNIIpWGCat333MT4GVWGM4GL0iDVmFA2pWPsWypphNrPVucuyI1VRiSMlS1pyEr9PZHRSOt5FNjOiJqJ3vSW4n9ePzXhnZ9xmaQGJVsvClNBTEyWv5MRV8iMmFtCmeL2VsImVFFmbEIlG4K3+fI26dSqXr1af6xVmrU8jiJcwTXcggcNaMIDtKANDKbwDK/w5iTOi/PufKxbC04+cwl/4Hz+ALvRjyI=</latexit>

level 1
<latexit sha1_base64="9RIW4BVF6KUKLOEfCZ8I7zVpeO0=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lyqB4LXjxWsK3QhrLZTtqlm03Y3RRK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzwlRwbVz32yltbe/s7pX3KweHR8cn1dOzjk4yxbDNEpGop5BqFFxi23Aj8ClVSONQYDec3C387hSV5ol8NLMUg5iOJI84o8ZKXYFTFMQfVGtu3V2CbBKvIDUo0BpUv/rDhGUxSsME1brnuakJcqoMZwLnlX6mMaVsQkfYs1TSGHWQL8+dkyurDEmUKFvSkKX6eyKnsdazOLSdMTVjve4txP+8Xmai2yDnMs0MSrZaFGWCmIQsfidDrpAZMbOEMsXtrYSNqaLM2IQqNgRv/eVN0vHrXqPeePBrTb+IowwXcAnX4MENNOEeWtAGBhN4hld4c1LnxXl3PlatJaeYOYc/cD5/AL1VjyM=</latexit>

level 2
<latexit sha1_base64="+7d4O/40pRQcbkdUN6PWnjXLSdQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0kqVI8FLx4r2A9oQ9lsJ+3SzSbsbgol9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7AST+4XfmaLSPJZPZpagH9GR5CFn1FipI3CKgtwMyhW36i5BNomXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4HzUj/VmFA2oSPsWSpphNrPlufOyZVVhiSMlS1pyFL9PZHRSOtZFNjOiJqxXvcW4n9eLzXhnZ9xmaQGJVstClNBTEwWv5MhV8iMmFlCmeL2VsLGVFFmbEIlG4K3/vImadeqXr1af6xVGrU8jiJcwCVcgwe30IAHaEILGEzgGV7hzUmcF+fd+Vi1Fpx85hz+wPn8Ab7ZjyQ=</latexit>

level 3

<latexit sha1_base64="ng59BwMw0Bf1UbTbh3mKo6b6v6M=">AAAB63icbVA9SwNBEN2LXzF+RS1tFoNgFe5SRMuAjWUUkwjJEfY2e8mS/Th254Rw5C/YWChi6x+y89+4l1yhiQ8GHu/NMDMvSgS34PvfXmljc2t7p7xb2ds/ODyqHp90rU4NZR2qhTaPEbFMcMU6wEGwx8QwIiPBetH0Jvd7T8xYrtUDzBIWSjJWPOaUQC7daw3Das2v+wvgdRIUpIYKtIfVr8FI01QyBVQQa/uBn0CYEQOcCjavDFLLEkKnZMz6jioimQ2zxa1zfOGUEY61caUAL9TfExmR1s5k5DolgYld9XLxP6+fQnwdZlwlKTBFl4viVGDQOH8cj7hhFMTMEUINd7diOiGGUHDxVFwIwerL66TbqAfNevOuUWs1ijjK6Aydo0sUoCvUQreojTqIogl6Rq/ozZPei/fufSxbS14xc4r+wPv8ARwtjj8=</latexit>

Root

1 2 3 4 5 6 7 8

9 10 11 12

13 14

15

In this problem, we will analyze the following random walk {Xn, n ∈ N0} on the tree: From a vertex v ∈ V
of degree deg(v), one moves to a specific neighbor with probability 1

deg(v) . (The degree of a vertex refers to the
number of edges attached to the vertex. The root has degree 2, while all other internal nodes have degree 3. All
leaves have degree 1.) Let P denote the transition probability matrix for this Markov chain.

(a) Show that πv = deg(v)
2(2d+1−2)

for v ∈ V is a stationary distribution of the Markov chain. 4pts

We need to prove both that πP = π and that π is a probability measure. We start by verifying πP = π.
Each vertex v has deg(v) vertex neighborhood {v1, . . . , vdeg(v)}. Additionally the transition probabilities
P (vi → v) = 1

deg(vi)
. We get

deg(v)∑

i=1

πviP (vi → v) =

deg(v)∑

i=1

deg(vi)

2(2d+1 − 2)
· 1

deg(vi)

=

deg(v)∑

i=1

1

2(2d+1 − 2)

=
deg(v)

2(2d+1 − 2)
= πv.

Let’s verify it is a probability measure, i.e. we want to verify that
∑

v∈V πv = 1.
∑

v∈V
πv =

∑

v∈V

deg(v)

2(2d+1 − 2)

=
1

2(2d+1 − 2)

∑

v∈V
deg(v)

=
1

2(2d+1 − 2)
· (2#{Edges})

=
1

2(2d+1 − 2)
· 2 ·

(
2 + 4 + · · ·+ 2d

)

=
1

2(2d+1 − 2)
· 4 ·

(
1 + 2 + · · ·+ 2d−1

)

=
1

2(2d+1 − 2)
· 4(2

d − 1)

2− 1
= 1.

(b) Can there be other stationary distributions? Shade the correct bubble. j Yes |No 2pts
This finite state Markov chain is irreducible so a stationary distribution must be unique.

(c) For u, v ∈ V , does limn→∞[Pn]uv exist? Shade the correct bubble. j Yes |No 2pts
If YES, what does it converge to? If NO, leave the box blank.

This Markov chain has period 2, hence it’s not aperiodic and we don’t have convergence.
[Q7 continued on next page]140
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(d) Let A denote the set of 2d leaves and define TA = min{n ∈ N0 : Xn ∈ A}. We wish to compute 7pts
E[TA | X0 = Root], the expected time of hitting A given that the walk starts from the root. Let hi,j denote
the expected hitting time from level i to level j of the tree. Then, note that h0,d = E[TA | X0 = Root].
Find a system of equations relating hi,j , together with a suitable boundary condition that will allow us to
find h0,d. No justification required.

hd,d = 0 (1)

h0,d = 1 + h1,d (2)

hi,d = 1 +
1

3
hi−1,d +

2

3
hi+1,d, for i ∈ {1, . . . , d− 1} (3)

Let Xi,j the random variable denoting the hitting time starting from level i to level d of the tree, then
E[Xi,d] = hi,d. Let A the event in which we move a level up as a first move and B = Ac the event in which
we move a level down as a first move. For i < d Conditioning on A and B we have that

E[Xi,d] = E[Xi,d|A]P(A) + E[Xi,d|B]P(B).

Notice that E[Xi,d|A] = E[Xi−1,d] + 1 and E[Xi,d|B] = E[Xi+1,d] + 1 Additionally, Xd,d = 0, if i = 0,
then P (A) = 0 and P (B) = 1 and if 0 < i < d, then P (A) = 1/3 and P (B) = 2/3 and Xd,d = 0. We
obtain the equations (1), (2) and (3) respectively.

Intuitively, this system of equations allow us to calculate h0,d since it provides a recurrent formula. We
have that hi,d = 3hi+1,d − 2hi+2,d − 3 for 0 ≤ i ≤ d − 2, since hd,d=0. Let gi,d = hi,d + 3i − 3d, we
recover the relations gd,d = 0, g0,d = g1,d − 2 and

gi,d = hi,d + 3i− 3d

= 3hi+1,d − 2hi+2,d − 3 + 3i− 3d

= 3(hi+1,d + 3(i+ 1)− 3d)− 2(hi+2,d + 3(i+ 2)− 3d)

= 3gi+1,d − 2gi+2,d.

This relation gives gd−i,d = (2i − 1)gd−1,d for 0 ≤ i ≤ d. In particular we have g0,d = (2d − 1)gd−1,d

and g1,d = (2d−1 − 1)gd−1,d. Using equation (2) gives (2d − 1)gd−1,d = (2d−1 − 1)gd−1,d − 2 and
gd−1,d = −1/2d−2. Hence g0,d = −(2d − 1)/2d−2 = 1/2d−2 − 4 and finally h0,d = 3d− 4 + 1/2d−2.

[End of Exam!]141



STAT201A: Introduction to Probability at an Advanced Level (Fall 2024)
UC Berkeley

Practice Problems for the Midterm Exam

Note: You are not expected to solve all these problems in just 80 minutes.

1. Determine whether each of the following claims is true or false. Provide reasons in each case.

(a) It is often said that Bin(n, p) is well-approximated by the N(np, np(1 − p)) distribution.
When n = 3710 and p = 0.2, this would mean that Bin(3710, 0.2) is well-approximated by
N(742, 593.6). Therefore

P(Bin(3710, 0.2) ≥ 941)

P{N(742, 593.6) ≥ 941}
should be close to 1 (you might note here that 941/3710 ≈ 0.254 ).

(b) Suppose X has the Negative Binomial distribution with parameters k and p (for example,
X can be thought of as the distribution of the number of independent tosses of a coin with
probability of heads p required to get the kth head). Let FX(·) denote the cdf of X. Then
FX(X) has the uniform distribution on (0, 1).

(c) SupposeX has the geometric distribution with parameter p(X can be thought of as the number
of independent tosses of a coin with probability of heads p to get the first head). Then

P{X > 3.5 + 1.5 | X > 1.5} = P{X > 3.5}

(d) We can generate a random variable having any specified distribution by first generating a
uniformly distributed random variable on (0, 1) and then by applying an appropriate transfor-
mation to the uniform random variable.

1142



2. Short questions.

(a) There are 8 parents, 24 students and 3 teachers in a room. If a person is selected at random,
what is the probability that it is a teacher or a student?

(b) Find the probability to see 3 or less tails in 4 flips of a coin.

(c) Suppose that A and B are independent, P(A) = 1/3 and P(B) = 1/7. Calculate P(A ∩Bc).

(d) Suppose a box has 4 red marbles and 3 black ones. We select 2 marbles. What is the probability
that second marble is red given that the first one is red?

(e) Suppose the random variable X has possible values {1, 2, 3} and probability mass function of
the form P(X = k) = ck. Find c. Find E[X]. Find Var(X).

(f) Let X be a random variable with exponential distribution with parameter 2. Find
P(X > 14 | X > 4).

(g) Russel has a biased coin for the which the probability of getting tails is an unknown p. He
decide to flip the coin n and writes the total number of times X he gets tails. How large should
n be in order to know with at least 0.95 certainty that the true p is within 0.1 of the estimate
X/n? What if he wants 0.99 certainty?

(h) Let X and Y be independent random variables with exponential distribution with parameter
λ, find P(X > Y ).

(i) Let X be a random variable with m.g.f. MX(t) = e5t − e3t. Find a formula for the moments
of X.

(j) Let X be a non-negative random variable with E[X] = 2 and E[X2] = 5. Use Markov’s
inequality to find an upper bound for P(X > 10). Use Chebyshev’s inequality to find an upper
for P(X > 10).
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3. Consider the urn setting that we discussed in lecture. We have an urn with R red balls and N −R
white balls. We draw balls in sequence from the urn without replacement.

(a) Calculate P(F ) where F denotes the proposition that the first red ball is drawn before the
third white ball.

(b) Calculate P(E) where E denotes the proposition that, when we draw n balls, our sample
contains at least one red ball and at least two white balls.
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4. Take random variables X1, X2, X3, . . . such that each of them has mean µ and variance 1.

(a) Suppose that Xi are negatively correlated, i.e. Cov(Xi, Xj) < 0 for all i, j. Set Sn = X1+ · · ·+
Xn. Show that (IMPORTANT: Xi are not independent!)

Var

(
Sn

n

)
≤ 1

n
. (1)

(b) Assume instead that Xi are positively correlated, i.e. Cov(Xi, Xj) > 0 for all i and j. Is (1)
still true? Either give a proof or provide a counterexample.
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5. (a) In Bernoulli (p) trials let Vn be the number of trials required to produce either n successes or
n failures, whichever comes first. Find the distribution of Vn.

(b) Suppose n balls are thrown independently at random into b boxes. Let X be the number of
boxes left empty. Find expressions for E[X] and Var(X).
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6. Suppose X and Y are independent random variables with X having the Exponential distribution
with rate parameter λ and Y having the Standard Cauchy distribution. Let

U :=
Y
√
X√

1 + Y 2
and V :=

√
X√

1 + Y 2

(a) Find the joint density of U and V .

(b) Find the marginal densities of U and V .

(c) Are U and V independent? Why or why not?
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1. True/False [No justification; answer by shading the correct bubble. 2 points per answer; total of 12 points. No
penalty for incorrect answers.]

Indicate which of the following statements is TRUE or FALSE by shading the appropriate bubble.

In this problem, let (Ω,F ,P) denote a probability space.

TRUE FALSE

| j If Ai ∈ F for all i ∈ N, then ∩∞
i=1Ai ∈ F . 2pts

j | Let X be a non-negative random variable and c > 0 some constant. Chebyshev’s inequality always 2pts
gives a stronger bound on P[X > c] than that given by Markov’s inequality.

j | If X1, X2, X3, . . . are i.i.d. random variables, then the sample average Sn
n := X1+···+Xn

n satisfies 2pts
limn→∞ P

[∣∣Sn
n − E[X1]

∣∣ < 0.01
]
= 1.

j | Let X1, X2, X3, . . . and X be random variables on the sample probability space, and suppose 2pts
Xn

a.s.−→ X as n → ∞. Then, limn→∞Xn(ω) = X(ω) for all ω ∈ Ω.

j | Let X1, X2, X3, . . . and X be random variables on the sample probability space. It is possible to 2pts
have limn→∞ E

[
(Xn −X)4

]
= 0 while Xn does not converge in distribution to X as n → ∞.

| j For all random variables X with E[X] = µ < ∞, their moment generating functions MX(t) satisfy 2pts
etµ ≤ MX(t) for all t ∈ R.

[exam continued on next page]149
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2. Short Answers [Answer is a single number or expression; write it in the box provided; no justification necessary.
Total of 21 points. No penalty for incorrect answers.]

(a) Given a probability space (Ω,F ,P), suppose A,B ∈ F . If P[A] = 1/2, P[B] = 1/2 and P[A∩B] = 1/5, 3pts
what is P[Ac ∩Bc]?
1
5 . [Note that P[Ac ∩Bc] = P[(A ∪B)c]], while P[A ∪B] = P[A] + P[B]− P[A ∩B] = 1

2 +
1
2 − 1

5 = 4
5 .

Hence, P[(A ∪B)c] = 1− P[(A ∪B)] = 1
5 . ]

(b) Suppose X1, X2, X3, X4 are i.i.d. Normal(0, 1) random variables. Find P[X3 < X1 < X2 | X4 > 0]. 3pts
1
6 . [This problem is similar to Q1(a) of Lab 2. Independence implies P[X3 < X1 < X2 | X4 > 0] =
P[X3 < X1 < X2], while exchangeability implies P[X3 < X1 < X2] =

1
3! .]

(c) Let X1, X2, . . .
iid∼ Bernoulli(13). To what does 1

n

∑n
i=1 I{Xi ≤ 1

2} converge almost surely as n → ∞, 3pts
where I{Xi ≤ x} denote indicator random variables.
2
3 . [SLLN implies 1

n

∑n
i=1 I{Xi ≤ x} a.s.−→ F (x) as n → ∞, where F denotes the c.d.f. of Bernoulli(13),

and F (1/2) = 2/3.]

(d) Let X ∼ Poisson(λ), where λ > 0. Recall that E[X] = λ and Var[X] = λ. Find limλ→∞ P[X−λ ≤
√
λ]. 4pts

Write your answer as an integral; you do not need to evaluate it.
∫ 1

−∞

1√
2π

e−x2/2dx.

[
This follows from X−λ√

λ

d−→ Normal(0, 1) as n → ∞, which in turn follows from

the CLT, together with the fact that a sum of independent Poisson random variables is also Poisson with

rate given by the sum of individual rates.
]

(e) Let X ∼ Normal(0, 1) and Y = 1
2 |X|. Find the pdf of Y . 4pts

fY (y) =

{
4√
2π
e−2y2 , y ≥ 0,

0, y < 0.[
fY (y) = fX(2y)

∣∣∣d(2y)dy

∣∣∣+ fX(−2y)
∣∣∣d(−2y)

dy

∣∣∣ = 4fX(2y).

]

(f) Consider the linear transformation
(
U
V

)
= 1√

2

(
1 1
−1 1

)(
X
Y

)
+

(
0
1

)
. Find the joint density fU,V (u, v) 4pts

in terms of fX,Y . (Hint: Note that 1√
2

(
1 1
−1 1

)
is an orthogonal matrix.)

fU,V (u, v) = fX,Y

(
1√
2
(u − v + 1), 1√

2
(u + v − 1)

)
.
[
MT = 1√

2

(
1 1
−1 1

)
and its inverse is MS =

1√
2

(
1 −1
1 1

)
. Hence,

(
X
Y

)
= MS

[(U
V

)
−
(
0
1

)]
= 1√

2

(
U − V + 1
U + V − 1

)
. Also, note that | detMT | = 1.

]

[exam continued on next page]150
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3. Lazy random walk [Total of 20 points.]
A particle takes a lazy random walk in an infinite 1-dimensional lattice Z := {. . . ,−3,−2,−1, 0,+1,+2,+3, . . .},
starting at the origin at time 0. Then, at every 1

n second, it moves one step to the right with probability p, moves
one step to the left with probability q, or stays at the current position with probability 1− p− q.

(a) What is the conditional probability that the particle moves to the right given that it moves? No justification 3pts
required.
p

p+q .

(b) What is the expected waiting time (in seconds) until the particle makes its first move? No justification 3pts
required.

1
n(p+q) . [The number of trials until the particle moves is distributed as Geometric(p + q), which has mean
1

p+q . One trial is made every 1
n second, so the expected waiting time in seconds is 1

n(p+q) . ]

IMPORTANT: For the remainder of this problem, parts (c)-(f), assume p = λ
n and q = µ

n , where λ and
µ are positive constants, and consider the limit as n → ∞. In this limit, let R (respectively, L) denote the
total number of right (respectively, left) steps taken in the time interval [0, t] measured in seconds.

(c) What is the distribution of R + L? Write your final answer in the box below, and justify your answer in 6pts
the space provided.

Poisson
(
(λ + µ)t

)
. [First, note that this problem is a slight variant of the convergence result covered in

Lecture 11 (see pages 2-3 of Lecture 11 Notes). At every 1
n second, the probability that the particle moves

is p + q = λ+µ
n . Let Yn denote the number of times the particle moves in 1 second, which has n trials.

Then, Yn ∼ Binomial(n, λ+µ
n ), and it was proved in lecture that Yn

d−→ Y ∼ Poisson(λ+ µ) as n → ∞.
Hence, in the time interval [0, t], the total number of moves is distributed as Poisson((λ+ µ)t).]

(d) Are R and L independent? Shade the correct bubble. |Yes j No 2pts
[Recall Poissonization of the multinomial covered in Lecture 11 (pages 3-4).]

(e) What is the expected position (which is given by R−L) of the particle at time t? No justification required. 3pts

(λ−µ)t. [Again, by Poissonization of the multinomial (in fact, binomial in this case), R ∼ Poisson(λt) and
L ∼ Poisson(µt), and they are independent (independence is not needed to solve this problem, however).
In summary, E[R− L] = E[R]− E[L] = λt− µt = (λ− µ)t.]

(f) In the n → ∞ limit described above, let X denote the waiting time (in seconds) until the particle makes a 3pts
move to the right. What is the distribution of X? No justification required.

X ∼ Exp(λ). [This follows from Application 1 (page 5) of Lecture 7.]

[exam continued on next page]151
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4. High-Dimensional Random Vectors [Total of 22 points.]
Let X⃗ = (X1, . . . , Xn) and Y⃗ = (Y1, . . . , Yn) denote random vectors in {−1,+1}n, where X1, . . . , Xn and
Y1, . . . , Yn are i.i.d random variables with P[Xi = −1] = P[Xi = +1] = P[Yi = −1] = P[Yi = +1] = 1

2 for all

i = 1, . . . , n. The Euclidean norm ∥X⃗∥ is defined as
√
X⃗ · X⃗ =

√
X2

1 + · · ·+X2
n.

(a) Find E[∥X⃗ − Y⃗ ∥2]. No justification required. 3pts

2n.
[
E[(Xi − Yi])

2] = 1
2(2)

2 = 2, so E[∥X⃗ − Y⃗ ∥2] =∑n
i=1 E[(Xi − Yi)

2] = 2n.
]

(b) Find Var[∥X⃗ − Y⃗ ∥2]. No justification required. 3pts

4n.
[
E[(Xi−Yi)

4] = 1
2(2)

4 = 8. Hence, Var[(Xi−Yi)
2] = E[(Xi−Yi)

4]−(E[(Xi−Yi)
2])2 = 8−22 = 4.

By independence, Var[
∑n

i=1(Xi − Yi)
2] =

∑n
i=1Var[(Xi − Yi)

2] = 4n.
]

(c) Let µ = E[∥X⃗ − Y⃗ ∥2]. Find Hoeffding’s bound on P
[ ∣∣∥X⃗ − Y⃗ ∥2 − µ

∣∣ ≥ εn
]
, where ε > 0 is a constant. 4pts

No justification required.

2e−ε2n/8. [(Xi − Yi)
2 ∈ {0, 4}, so using (bi − ai)

2 = (4 − 0)2 = 16 in Hoeffding’s inequality gives
P
[ ∣∣∥X⃗ − Y⃗ ∥2 − µ

∣∣ ≥ εn
]
≤ 2e−2ε2n2/(16n) = 2e−ε2n/8.]

(d) For any fixed non-zero vector v⃗ ∈ Rn and any constant c > 0, prove that P[|v⃗ · X⃗| ≥ c∥v⃗∥] ≤ 2e−c2/2. 6pts
(Hint: Use Hoeffding’s inequality. Alternatively, you can also prove this result using the Chernoff’s in-
equality together with the identity 1

(2k)! ≤ 1
2kk!

for k = 0, 1, 2, . . . .)

Approach 1. Proof using Hoeffding’s inequality: Define Yi := viXi and Sn := v⃗ · X⃗ =
∑n

i=1 Yi, and note
that Yi are bounded random variables; more precisely, P[−vi ≤ Yi ≤ vi] = 1. Since E[Yi] = 1

2(vi−vi) = 0,
we have E[Sn] = 0. Hence, Hoeffding’s inequality implies that for any ε > 0,

P[|Sn| ≥ ε] ≤ 2e−2ε2/
∑n

i=1(2vi)
2
. (1)

Noting
∑n

i=1(2vi)
2 = 4∥v⃗∥2 and setting ε = c∥v⃗∥ in (2) yields the desired result.

Approach 2. Proof using Chernoff’s inequality: Chernoff’s inequality implies that for all t > 0,

P[v⃗ · X⃗ ≥ c∥v⃗∥] ≤ E[etv⃗·X⃗ ]

etc∥v⃗∥
.

Since X1, . . . , Xn are independent,

E[etv⃗·X⃗ ] =

n∏

i=1

E[etviXi ] =

n∏

i=1

1

2
(etvi + e−tvi) =

n∏

i=1

∞∑

k=0

(tvi)
2k

(2k)!
,

where the last equality follows from the fact that odd terms cancel when you Taylor expand etvi + e−tvi .
Now, the algebraic identity mentioned in the hint gives

∑∞
k=0

(tvi)
2k

(2k)! ≤ ∑∞
k=0

(tvi)
2k

2kk!
= et

2v2i /2, which

implies E[etv⃗·X⃗ ] ≤ et
2∥v⃗∥2/2. In summary, we have

P[v⃗ · X⃗ ≥ c∥v⃗∥] ≤ e
1
2
t2∥v⃗∥2−tc∥v⃗∥.

Now, define g(t) = e
1
2
t2∥v⃗∥2−tc∥v⃗∥ and note that g′(t) = g(t)(t∥v⃗∥2 − c∥v⃗∥) = 0 at t = t∗ := c/∥v⃗∥ > 0

(since c > 0). Furthermore, g′′(t) = ∥v⃗∥2g(t) + g′(t) > 0 at t = t∗, implying that g(t) is mini-
mized at t = t∗. Finally, since g(t∗) = −c2/2, we have P[v⃗ · X⃗ ≥ c∥v⃗∥] ≤ e−c2/2. By symmetry,
P[v⃗ · X⃗ = a] = P[v⃗ · X⃗ = −a] for all a ∈ R, so P[v⃗ · X⃗ ≤ −c∥v⃗∥] = P[v⃗ · X⃗ ≥ c∥v⃗∥]. Hence,
P[|v⃗ · X⃗| ≥ c∥v⃗∥] = P[v⃗ · X⃗ ≥ c∥v⃗∥] + P[v⃗ · X⃗ ≤ −c∥v⃗∥] = 2P[v⃗ · X⃗ ≥ c∥v⃗∥] ≤ 2e−c2/2.

(e) Let Θ denote the angle between X⃗ and Y⃗ . Prove that P[ | cosΘ| ≥ ε] ≤ 2e−ε2n/2, where ε > 0 is an 6pts
arbitrary constant. [Hint: Use the result from part (d) and recall that X⃗ · Y⃗ = ∥X⃗∥ ∥Y⃗ ∥ cos(Θ). Remark:
This result shows that the probability of two independent random vectors in {−1,+1}n being orthogonal152
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quickly approaches 1 as n → ∞.]

Approach 1. Proof using Law of total probability: Note that ∥X⃗∥ = ∥Y⃗ ∥ =
√
n, which implies X⃗ · Y⃗ =

n cosΘ. Hence,

P[| cosΘ| ≥ ε] = P
[ 1
n
|X⃗ · Y⃗ | ≥ ε

]
= P[|X⃗ · Y⃗ | ≥ εn]

=
∑

v⃗∈{−1,+1}n
P[|X⃗ · Y⃗ | ≥ εn | Y⃗ = v⃗] P[Y⃗ = v⃗]

=
∑

v⃗∈{−1,+1}n
P[|v⃗ · X⃗| ≥ ε

√
n∥v⃗∥] P[Y⃗ = v⃗]

≤ 2e−ε2n/2
∑

v⃗∈{−1,+1}n
P[Y⃗ = v⃗]

= 2e−ε2n/2,

where the third line follows from the fact that ∥v⃗∥ =
√
n for any v⃗ ∈ {−1,+1}n, while the fourth line

follows from the result from part (d).

Approach 2. Proof using Hoeffding’s inequality: Note that ∥X⃗∥ = ∥Y⃗ ∥ =
√
n, which implies X⃗ · Y⃗ =

n cosΘ. Using Zi := XiYi and Sn := X⃗ ·Y⃗ =
∑n

i=1XiYi, and note that Zi are bounded random variables;
more precisely, P[−1 ≤ Zi ≤ 1] = 1. Since E[Zi] = 0, we have E[Sn] = 0. Hence, Hoeffding’s inequality
implies that for any ε > 0,

P[|Sn| ≥ εn] ≤ 2e−2ε2n2/
∑n

i=1 2
2
. (2)

Noting
∑n

i=1 2
2 = 4n yields the desired result.

[End of Exam!]153



Stat 201A: Lab 1

Conceptual review

• What is a probability space? Give an example.

• What is a random variable X? How to characterize it?

• How are Bernoulli distributions related to binomial, geometric,
negative binomial ditributions?

Problem 1

(a) Three events A, B and C satisfy the following: A and B are inde-
pendent, C is a subset of B, C is disjoint from A, P(A) = 1/2,
P(B) = 1/4 and P(C) = 1/10. Compute P(A ∪ B ∪ C).

(b) Suppose that a rapid COVID test is 99% accurate when some-
one doesn’t have COVID but only 90% accurate if someone has
COVID. Suppose that 1% of the population has covid. If someone
tests positive, what is the probability they have covid?

154



stat 201a: lab 1 2

Problem 2

Consider the experiment of drawing a point uniformly at random
from the unit interval [0, 1]. Let Y be the first digit after the decimal
point of the chosen number.

(a) Explain why Y is discrete and find its probability mass function.

(b) Find the expectation of Y. Find the variance of Y.

Problem 3

We have a system that has two independent components. Both com-
ponents must function in order for the system to function. The first
component has 8 independent elements that each work with prob-
ability 0.95. If at least 6 of the elements are working then the first
component will function. The second component has 4 independent
elements that each work with probability 0.90. If at least 3 of the
elements are working then the second component will function.

a. What is the probability that the system functions?

b. Suppose the system is not functioning. Given that information,
what is the probability that the second component is not function-
ing?
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Problem 4 (Illustration of different distributions)

See lab1_code.Rmd

Problem 5 (Inverse Transform Sampling)

(a) Prove that for any random variable X ∈ R, the random variable
F−1

X (U) has the same distribution as X, where F−1
X is the inverse

of the cumulative distribution function FX of X, and U is uni-
form on [0, 1]. For simplicity, prove this for continuous random
variable X.

(b) Consider an exponential distribution with rate parameter λ =

0.5, where X ∼ Exp(0.5). Using the inverse CDF method, sim-
ulate the exponential random variable X = F−1

X (U), where U is
uniformly distributed on [0, 1].

Hint: The CDF for exponential distribution Exp(λ) is

FX(x) = 1 − e−λx x ≥ 0

(c) (Bonus) Simulate any distribution you like using inverse trans-
form sampling.
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Stat 201A, Fall 2024: Lab 2

Conceptual review

• When is a sequence of random varibales exchangeable?

• How are the Markov inequality, Chebyshev inequality and the
Weak LLN related?

Problem 1

(a) Let X1, X2, X3 be independent Exp(λ) distributed random vari-
ables. Find the probability that P(X1 < X2 < X3).

(b) We deal five cards, one by one, from a standard deck of 52.
(Dealing cards from a deck means sampling without replace-
ment.)

(i) Find the probability that the second card is an ace and the
fourth card is a king.

(ii) Find the probability that the first and the fifth cards are
both spades.

(iii) Find the conditional probability that the second card is a
king given that the last two cards are both aces.
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Problem 2

Chebyshev’s inequality does not always give a better estimate than
Markov’s inequality. Let X be a random variable with E[X] = 2 and
Var(X) = 9. Find the values of t where Markov’s inequality gives a
better bound for P(X > t) than Chebyshev’s inequality.

Problem 3

A cereal company is performing a promotion, and they have put a
toy in each box of cereal they make. There are n different toys alto-
gether and each toy is equally likely to show up in any given box,
independently of the other boxes. Let Tn be the number of boxes we
need to buy in order to collect the complete set of n toys.

(a) The random variable Wk is the number of boxes we need to open
to see a new toy after we have collected k distinct toys. What is
the distribution of Wk? Prove that Tn = 1+W1 +W2 + · · ·+Wn−1.

(b) Calculate the limits limn→∞
E[Tn ]

n ln(n) and limn→∞
Var[Tn ]

n2 .

(c) Use Chebyshev’s inequality to estimate P(|Tn − E[Tn]| > εn).

(d) Show that for any ε > 0 we have

lim
n→∞

P
(∣∣∣ Tn

n ln(n)
− 1
∣∣∣ > ε

)
= 0.

This is a weak law of large numbers for the coupon collector’s
problem.

(e) Using the union bound for the event Ecn log(n)
i that the i-th coupon

was not picked in the first cn log(n) trials, prove that
P(Tn ≥ cn log(n)) ≤ n1−c.
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stat 201a, fall 2024: lab 2 3

Problem 4

Cantelli’s inequality provides a sharper one-sided bound compared
to Chebyshev’s inequality. Let X be a random variable with mean µ

and variance σ2, and let b > 0.

• Chebyshev’s inequality (one-sided):

P(X ≥ µ + b) ≤ σ2

b2

• Cantelli’s inequality:

P(X ≥ µ + b) ≤ σ2

σ2 + b2

(a) Prove Cantelli’s inequality using Markov’s inequality.

Hint: Let Y = X − µ. For any u > 0,

P(Y ≥ b) = P(Y + u ≥ b + u) ≤ P
(
(Y + u)2 ≥ (b + u)2

)
.

Then use Markov’s inequality and find u that minimizes the
resulting bound.

(b) Cantelli’s inequality implies

P(|X − µ| ≥ b) ≤ 2σ2

σ2 + b2

Comment of the value of this inequality compared to Cheby-
chev’s.
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Problem 5

The standard Cauchy distribution has the probability density func-
tion:

f (x) =
1

π (1 + x2)

(a) Does the Weak Law of Large Numbers hold for the Cauchy dis-
tribution? Explain why or why not.

(b) Simulate N samples from the standard Cauchy distribution for
N = 102, 103, 104, 105. Calculate the sample averages as N in-
creases. How do the results relate to your explanation in (a)?
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Conceptual review

• How are the LLN and CLT different? How are they related?

• How are the exponential and gamma distributions related?

Problem 1

Noodle decide to improve her ability to calculate integrals. Each
day she flips a coin until she gets tails. If she gets tails in 3 or less
flips, she will calculate 10 integrals. If she needs strictly more than
3 flips to get tails she will calculate 60 integrals. After a full year
passes, estimate the probability that Noodle has solved more than
6000 integrals.
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Problem 2

Here is a limit theorem that one can prove without complicated tools.
Suppose that X1, X2, . . . are i.i.d. random variables with distribution
Exp(1), and let Mn = max(X1, . . . , Xn). Show that for any x ∈ R we
have

lim
n→∞

P(Mn − ln(n) ≤ x) = exp(−e−x).

This is called the Gumbel distribution.

Problem 3

Prove that the Exponential Distribution is the only distribution on
(0, ∞) that satisfies:

P(X > a + b|X > b) = P(X > a), ∀ a, b > 0.
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Problem 4

In the lectures, we used the MGF to prove the following results re-
garding convergence in distribution.

• Let Gn ∼ Geometric
(

λ
n

)
, where λ > 0, and n = 1, 2, 3, . . ..

Define Xn = Gn
n . As n → ∞, Xn converges in distribution to an

Exponential distribution with rate λ:

Xn
d−→ Exp(λ)

• Let Fr,n ∼ NB
(

r, λ
n

)
, where λ > 0 and n = 1, 2, 3, . . .. Define

Xn = Fr,n
n . As n → ∞, Xn converges in distribution to a Gamma

distribution with shape r and rate λ:

Xn
d−→ Gamma(r, λ)

1. Apply MGF and use similar strategies discussed in the lecture to
prove the following.
Let Wn ∼ Bin

(
n, λ

n

)
represent a binomial random variable with

probability λ
n , then Wn converges in distribution to a Poisson dis-

tribution with parameter λ:

Wn
d−→ Poi(λ)

.

2. Conduct simulations to show the convergence in distribution for
three results above.

Problem 5

The MGF of a random variable X is given by

MX(t) =
c

1 − t
− 2

1 − t
for |t| < 1

1. Find the value of c.

2. Find E[X].

3. Find E[X2].
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Conceptual review

• If X and Y are independent continuous random variables with
probability density functions f and g. What is the probability
density function of X + Y?

• What is the statement of CLT for Binomail distribution?

• What does the Kullback–Leibler divergence describes?

Problem 1

1. Roll a fair die 720 times. Estimate the probability that we have
exactly 113 sixes.

2. You flip a fair coin 10,000 times. Approximate the probability that
the difference between the number of heads and number of tails is
at most 100.
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Problem 2

Suppose we have a biased coin and we do not know the true prob-
ability p that it lands on heads. How can we estimate p? Can we
estimate the error of our approximation?

Problem 3

Mitchell and Alex are competing together in a 2-mile relay race.
The time Mitchell takes to finish (in hours) is X ∼ Unif(0, 2) and
the time Alex takes to finish his mile (in hours) is continuous Y ∼
Unif(0, 1). Alex starts immediately after Mitchell finishes his mile,
and their performances are independent. What is the distribution of
Z = X + Y, the total time they take to finish the race?
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Problem 4

Suppose p1, . . . , pk be a set of nonnegative numbers that sum to one.
Suppose f1, . . . , fk are another set of nonnegative numbers that sum
to one. The Kullback-Leibler divergence between these two sets of
numbers is given by

KL( f ∥p) :=
k

∑
i=1

fi log
fi
pi

1. Show that KL( f ∥p) is always nonnegative.

2. Show that KL( f ∥p) = 0 if and only if fi = pi for each i = 1, . . . , k.

3. Suppose that a coin toss can give three different results: H (heads),
T (tails) and edge (when the coin just stands on its edge). Suppose
that a person A assigns probabilities

pA
1 = 0.499, pA

2 = 0.499, pA
3 = 0.002

to the three outcomes and another person B assigns probabilities

pB
1 = pB

2 = pB
3 =

1
3

to the three outcomes. Suppose that an experiment is performed
by tossing the coin a bunch of times and this led to the observed
proportions

f1 =
14
29

, f2 =
14
29

, f3 =
1

29
of the three outcomes. Calculate the Kullback-Leibler divergences
KL
(

f ∥pA) and KL
(

f ∥pB). Which of KL
(

f ∥pA) and KL
(

f ∥pB) is
smaller and does that seem reasonable?

Problem 5

Compare real binomial probabilities with entropy and normal ap-
proximations for n = 100 and p = 0.5 and p = 0.05, using plots to
visualize. You may play around with different n, p and k to compare.
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Conceptual review

• When to use Poisson approximation instead of normal approxima-
tion for a Binomial distribution?

• How are the binomial and multinomials distributions related?

Problem 1 (Poisson approximation)

1. A large company has a large fleet of cars. On average, there are 3
accidents each week. What is the probability that at most 2 acci-
dents happens next week?

2. Every evening Murdoc goes to the local casino. There is a 1%
chances that he wins $10000 and 99% he loses $100. Define a ran-
dom variable Xk representing the winning/losing outcome of
Murdoc after each day k. After a full year passes, estimate the
probability that Murdoc wins at least least $1000.
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Problem 2 (Exchangeability and multinomial distribution)

Suppose an urn contains 2 green, 3 red and 4 yellow balls. Six balls
are chosen with replacement. Find the probability that green ap-
peared 1 times, red 2 times, and yellow 3 times. Six balls are chosen
without replacement. Find the probability that the 3rd ball chosen is
green, given that the 5th ball chosen is yellow?

Problem 3 (Poisson distribution)

1. Let X ∼ Geom(1/3) and Y ∼ Poisson(2) be independent random
variables. Calculate P(X = Y + 2).

2. Suppose that X ∼ Poisson (λ). Find the probability P (X is even).

3. Let X ∼ Poisson (µ). Compute E
(

1
1+X

)
.
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Problem 4

Let N ∼ Poisson(λ), and let X1, X2, . . . be a sequence of i.i.d. geomet-
ric random variables with parameter p, where Xi ∼ Geometric(p).
Define SN = X1 + X2 + · · ·+ XN . N is independent of the Xi ’s.

1. Find the probability generating function (PGF) of SN

Hint: Use the compounding theorem discussed in Lecture 11. The
PGF of a Poisson random variable N ∼ Poisson(λ) is given by

GN(t) = eλ(t−1)

and the PGF of a geometric random variable X ∼ Geometric(p) is

GX(t) =
p

1 − (1 − p)t
, |t| < 1

1 − p

2. Suppose p = 0.5, λ = 1. Calculate the probability P (SN = 1).

3. (Bonus) Verify the PGF of a Poisson random variable and a geo-
metric random variable through explicit calculation.

Problem 5

Recall: When N ∼ Poisson(λ) and (X1, . . . , Xm) | N ∼ Multinomial (N, p1, . . . , pm),
the joint distribution of X1, . . . , Xm follows independent Poisson dis-
tributions, i.e., Xj ∼ Poisson

(
pjλ
)
. We can show this result through

simulation.

1. Simulate 10,000 samples of the Poissonized Multinomial and Inde-
pendent Poisson distributions with λ = 10 and p = (0.3, 0.5, 0.2).

2. Visualize and compare the joint distribution of X1 and X2 from
two data simulation procedure using either a 2D density plot or an
overlayed scatter plot.
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Conceptual review

• Given X and Y continuous random variables with joint density
fX,Y. How to compute E[g(X, Y)]?

• Given a univariate real function f , how to find the tangent equa-
tion to a point in the curve (x, f (x))? What is the equivalent if f is
bivariate?

• Explain the relations between geometric, exponential, gamma,
Poisson and beta distributions.

Problem 1

Suppose the joint density of X and Y is given by

fX,Y(x, y) =
1

2π
exp

(
−
(

x2 + y2)

2

)

Find the joint density of U = X + Y and V = X − Y.
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Problem 2

Let X and Y be independent Geom(p) random variables. Let V =

min(X, Y) and

W =





0, i f X < Y
1, i f X = Y
2, i f X > Y

Find the join probability mass function of V and W and show that V
and W are independent.

Problem 3

Let the random variables X, Y have joint density function

f (x, y) =





3(2 − x)y if 0 < y < 1 and y < x < 2 − y,

0 otherwise.

1. Find the marginal density functions fX and fY .

2. Calculate the probability that X + Y ≤ 1.

3. Find the joint density of (W, Z) = (XY, (1 − Y)X).
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Problem 4 (Joint density change Under a Non-invertible transfor-
mation)

In class, we looked at the Jacobian formula for calculating the joint
density of a transformed set of continuous random variables in terms
of the joint density of the original random variables. This formula
assumed that the transformation is invertible. However, the general
method based on change of variant principles works fine. This is
illustrated in the following example.

Suppose X and Y have joint density fX,Y. What is the joint density
of U = min(X, Y) and V = max(X, Y) ?
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Conceptual review

• Let X1, X2, . . . , Xn iid continuous random variables. What is the
density of X(k)?

• How do we get fY|X(y|x) from fX(x) and fX,Y(x, y)?

Problem 1

Let U(1), . . . , U(n) be the values of n iid. U(0, 1) variables arranged in
increasing order. For 0 < x < y < 1, find a simple formula for:

a. P(U(1) > x, U(n) < y)

b. P(U(1) > x, U(n) > y)

c. P(U(1) < x, U(n) < y)

d. P(U(1) < x, U(n) > y)
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Problem 2

Let X and Y independent Exp(λ) random variables. Describe the
distribution of X|X+Y.

Problem 3

Let X ∼ Exp(λ), and let Y ∼ Poisson (X) (that is, given X = x, Y
follows the Poisson (x) distribution).

a. Find P(X ∈ dx, Y = y).

b. Use (a) to find the unconditional distribution of Y.

c. Given Y = y, what is the conditional density of X?.
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Problem 4 (Beta, Gamma distribution)

1. Let B ∼ Beta(a, b). Find the distribution of 1 − B.

2. Let X ∼ Gamma(a, λ) and Y ∼ Gamma(b, λ), with X and Y
independent. Is the ratio X/Y independent of the sum X + Y ?

3. The F-test is a very widely-used statistical test based on the
F(m, n) distribution, which is the distribution of X/m

Y/n with X ∼
Gamma

(
m
2 , 1

2

)
, Y ∼ Gamma

(
n
2 , 1

2

)
. Find the distribution of

mV/(n + mV) for V ∼ F(m, n).

4. Let U1, . . . , Un be i.i.d. Unif(0, 1). Find the mean and variance of
the j th order statistic U(j).

Problem 5

Fred is waiting for a bus, but the waiting time X depends on some
environmental factor Y, which affects the bus schedule. The envi-
ronmental factor Y represents the bus delay rate and is not fixed but
follows a Gamma distribution. Specifically,

• Given the environmental factor Y = y, the waiting time X follows
an exponential distribution with rate y, meaning X | Y = y ∼
Exp(y).

• The environmental factor Y itself is random and follows a Gamma
distribution, Y ∼ Gamma(α, β), where α is the shape parameter
and β is the rate parameter.

Find the overall distribution of the waiting time X.
(Hint:

∫ ∞
0 yαe−cydy = Γ(α+1)

cα+1 ).
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Conceptual review

• Can you explain what E[X|Y] represents? Why do we have E
[
E[X|Y]

]
=

E[X]?

• What is the purpose of the loss function in risk minimization?

• What is Wald’s identity and the law of total variance?

Problem 1

Let X1, X2, . . . be i.i.d. exponential random variables with param-
eter λ. Let N be a Geom(p) random variable (with 0 < p < 1)
independent of the Xi random variables. Define the random sum
SN = X1 + X2 + · · ·+ XN .

1. Find the mean E[SN ]

2. Find the probability distribution of SN .
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Problem 2

1. Suppose that X is a discrete random variable. Find an estimator d
that minimizes the risk for the loss function 1{X ̸=d}.

2. Suppose that X is a continuous random variable. Prove that the
mean absolute error minimizer is given by the median.

3. What loss function should we use so that the estimator d that
minimizes the risk is given by the γ quantile?

Problem 3

Jack and Jill are playing a game. Each will start with $ 5 and $ 10
respectively and play a game by making a series of $ 1 bets until one
of them loses all their money. For each bet they flip 1 fair coin. If it’s
tail, Jack wins. If it’s head, Jill wins.

1. Find the probability that Jack wins the game.

2. Find the expected length of the game.
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Problem 4 (Law of total variance)

We have a sample of 100 normally distributed payments, with mean=1000
dollars and standard deviation= 100 dollars. 10% of these payments
were made in error and should be refunded their full payment
amount. The other 90% will have a refund amount of 0 dollars. What
is the variance of the refunded amount?

Problem 5

Let Y be the number of heads in n spins of a coin, whose probability
of heads is θ. Suppose our prior distribution for θ is Uniform∼ [0, 1],

1. Derive the posterior distribution of θ | Y = y .

2. Show that the posterior mean of the posterior θ | Y = y always
lies between the mean of the prior for θ and the observed relative
frequency of heads y/n.

3. Show that the posterior variance of θ | X is always less than the
prior variance.
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Conceptual review

• Review of Gaussian Process.

• Review of Branching Process.

Problem 1

1. Given n independently sampled values from an unknown distri-
bution. We believe this unknown distribution to have CDF F, how
do we use the Kolmogorov–Smirnov test?

2. How many points do we need to sample to get a 99% confidence
level of the empirical distribution to be at distant at most 0.01 to
the real distribution?

3. After sampling a big number of values from an unknown distribu-
tion, we guess it to be Exponential(0.1). The real distribution turns
out to be Exponential(0.05). Suppose that we sampled 100 values,
what is our confidence level for our guessed distribution? What if
we had sampled 10 000 values?

Problem 2

1. Suppose that {Bt}t for t ∈ [0, 1] is a Brownian motion. What is the
distribution of the process Xt = Bt − tB1? what about Yt = e−tBe2t ?

2. Suppose that {Bt}t for t ∈ [0, 1] is a Brownian bridge. Let Z a
standard normal independent of {Bt}t. Show that Xt = Bt + tZ is
a Brownian motion.
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Problem 3

The growth dynamics of pollen cells can be modeled by binary split-
ting as follows: After one unit of time, a cell either splits into two or
dies. The new cells develop according to the same law independently
of each other. The probabilities of dying and splitting are 0.46 and
0.54 , respectively.

1. Determine the maximal initial size of the population in order for
the probability of extinction to be at least 0.3.

2. What is the probability that the population is extinct after two
generations if the initial population is the maximal number ob-
tained in (a)?

Problem 4

The following model can be used to describe the number of women
(mothers and daughters) in a given area. The number of mothers is a
random variable X ∼ Poisson(λ). Independently of the others, every
mother gives birth to a Poisson(µ)-distributed number of daughters.
Let Y be the total number of daughters and hence Z = X + Y be the
total number of women in the area.

1. Find the generating function of Z.

2. Compute E(Z) and Var(Z).
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Conceptual review

• When is a Markov chain reducible, when is it irreducible? Give
examples.

• Explain the difference between recurrent and transient Markov
chains.

• How to find a hitting probability, a hitting time, a stationary distri-
bution?

Problem 1

Consider a two state Markov chain with all transition probabilities
equal to 1/2.

1. Is this Markov chain irreducible?

2. Is it recurrent? transient?

3. Find the stationary distribution.

4. Now suppose that for one state both transitions probabilities are
1/2 but for the other point the probability to stay is 1. Find all
hitting probabilities and the hitting times.
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Problem 2

Three cards labeled 1, 2, 3 are laid in a row in that order, forming the
three-digit number 123 when read from left to right. A swap consists
of picking two distinct cards, and then swapping them. After two
swaps, the cards form a new three-digit number n when read from
left to right.

1. Find the probability p that the digit in any given place will be the
same as it was at the start

2. Compute the expected value of n.

3. How to generalize this to x cards and y swaps?

Problem 3

Consider the Markov chain shown below

1. Is this chain irreducible?

2. Find the stationary distribution for this chain.
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Problem 4

Consider the Markov chain shown below.

Assume X0 = 1, and let R be the first time that the chain returns to
state 1, i.e.,

R = min {n ≥ 1 : Xn = 1}
Find E [R | X0 = 1]
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Teaching Staff

Course admin 
e-mail: 

stat201a-fa24@lists.berkeley.edu  

Your e-mail must be sent from a Berkeley  
e-mail address; otherwise, it will get rejected 
automatically.

Instructor :
Prof. Yun S. Song (yss@berkeley.edu) 

Office Hours: TuTh 5-6pm, 304B Stanley

GSI (20hr/week): Gabriel Ramirez Raposo (raposo@berkeley.edu) 

Office Hours: M 4-5pm, Th 11:30am-12:30pm, 
444 Evans


GSI (10hr/week):
Fanding Zhou (zhoufd@berkeley.edu) 

Office Hours: W 5-6pm, F 10-11am, 444 Evans
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Please use this e-mail or 

Ed Discussion for most 

course-related correspondence.

Use this e-mail only if you need

to communicate with me about

a private matter.
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Time and Place

‣M: 12-2pm (Evans 330) by Gabriel


‣M: 2-4pm  (Evans 340) by Gabriel


‣M: 4-6pm (Evans 330) by Fanding


‣You may attend any section, provided that there is space.  Students registered 
for the section will have priority.

3

‣Time: 3:30-5:00pm


‣Place: Stanley 106

Lecture:

Discussion Sections:
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Registration

4

‣ Available seats: 90


‣ Current enrollment size: 83


‣ More than 25 Concurrent Enrollment students have applied, but 
unfortunately we can accommodate only 7 of you.  Priority has been given to 
graduate students.
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Requirements
‣ We will use bCouses to share course material and post announcements.


- https://bcourses.berkeley.edu/courses/1537153


‣ Prerequisites:

- Undergraduate probability (at the level of Berkeley’s Statistics 134)


- Multivariable calculus (at the level of Berkeley’s Mathematics 53)


- Linear algebra (at the level of Berkeley’s Mathematics 54)


‣ Textbook:

- There is no required textbook for the class. You may use the following books as general 

references:


• An Intermediate Course in Probability, 2nd edition by Allan Gut. (Available in bCourses)


• Stochastic Processes: Theory for Applications by Robert G. Gallager.

5

Send us e-mail if you need 
to be added to this site.
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Grading and Exams
‣ Grades will be determined as follows:


• Homework: 50% (there will be six homework assignments)

• Midterm: 20%

• Final: 30%


- NOTE: We will drop the lowest Homework score.

- No additional allowances will be made for late or missed homework: please do not 

contact us about missed homework or late submissions.

‣ If you are on the waitlist (Concurrent Enrollment), you should submit Homework.


‣ Exams:


- Midterm is on Thursday, October 17, in class.  No makeup exam will be offered. 


- The Final is on Friday, December 20, 7–10 pm. We are unable to accommodate exam 
conflicts.
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Course Policies
‣ It is required that you read the Course Policies detailed in bCourses.


‣ Please use Ed Discussion for all technical questions.  


- Please read the Ed Discussion Etiquette section.


- Posting can be made anonymously to students, but will not be anonymous to instructors.


- Think first before posting a question!  A few students tend to abuse Ed Discussion by 
asking an excessive number of questions.  


‣ For personal administrative questions,  please either use a private post on Ed Discussion (visible 
to course staff only) or send email to the course administrative account: 
stat201a-fa24@lists.berkeley.edu


‣ Gradescope: 


- All homework will be submitted through Gradescope.


‣ Please DO NOT post any material (lecture notes, discussion section material, exams, homework, 
solutions, etc) on the internet.
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Collaboration

‣ You are welcome to work on homework problems in study groups of two to 
four people.


‣ However, you must always write up the solutions on your own. 


‣ Similarly, you may use books or online resources to help solve homework 
problems, but you must always credit all such sources in your writeup and 
you must never copy material verbatim.


‣ We believe that most students can distinguish between helping other 
students and cheating. 
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Advice

‣Take longhand notes:


- You might think that it's old school, but taking longhand notes can facilitate your learning, 
as supported by this study:


• The Pen Is Mightier Than the Keyboard: Advantages of Longhand Over Laptop Note 
Taking 
https://doi.org/10.1177/0956797614524581


- Please read this NPR article and listen to the accompanying 3-minute interview, if you 
prefer a quick summary:


• https://www.npr.org/2016/04/17/474525392/attention-students-put-your-laptops-away


- We are confident that the pen is also mightier than screenshots!   Taking longhand notes 
will help you summarize and process the lectures better.
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Academic Dishonesty

‣ We have a zero-tolerance policy for cheating.  Consequences of cheating include: negative points for 
the corresponding assignment, a failing grade in the class, and/or a referral to the Office of Student 
Conduct.


‣ Your attention is drawn to  Berkeley Honor Code: 


- “As a member of the UC Berkeley community, I act with honesty, integrity, and respect for 
others.”


‣ In particular, you should be aware that copying or sharing solutions, in whole or in part, from other 
students in the class (or any other source without acknowledgment) constitutes cheating. 

‣ Three types of students I have encountered:


1. Students who value integrity more than their grades, and don’t cheat.  


2. Students who acknowledge that cheating is wrong, but might give in to temptation.


3. Students who think that cheating is okay and that it would be to their disadvantage if 
they did not cheat.
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Introduction
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Probability

‣ Probability is ubiquitous.


‣ Mathematics


‣ Statistics (estimation and inference from data, prediction)


‣ Physics (statistical physics, quantum physics)


‣ Chemistry


‣ Climate Science


‣ Economics and Finance


‣ Biology (cellular dynamics, signaling, development, evolution) 


‣ Medicine (clinical trials, drug discovery)


‣ Computer Science and Engineering
12

‣Why should you learn probability?
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Probability

‣ A:  Over the past decade, we have seen a tremendous increase in the use of probability theory in 
computing.  Examples include:


- Machine Learning and Artificial Intelligence


- Massive data analysis and data mining 


- Randomized numerical linear algebra


- Graph theory


- Cryptography


- Program verification


- Packet routing in networks


- Design of ethernet cards


‣ These successful applications rely on algorithms that involve clever probabilistic and statistical ideas.
13

‣ Q:  Why should computer scientist care about probability?
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Randomized Algorithms
Design (Randomized)


‣ Make random choices during execution. 


- e.g., Monte Carlo


‣ Pros:


- Can be significantly more efficient than 
the best deterministic solution


- Often simpler and easier to implement


‣ Cons:


- The answer may be incorrect with some 
probability (acceptable if it’s small)


- Efficiency is guaranteed only with some 
probability.

14

Analysis (Probabilistic)


‣ View the input as being randomly selected.


‣ “Hard” instances may appear with relatively 
small probability.


‣ So, often “hard” problems are easy to solve in 
practice.


‣ Computational complexity concerns the 
worst-case scenario.  Some NP-hard problems 
might admit algorithms that are extremely 
efficient on almost all inputs.


197

197



The Probabilistic Method
‣ Key Idea: Prove existence by showing that  

15

ℙ[a randomly chosen object has the required property] > 0

Theorem:  If , then there exists a 2-coloring of  (a complete graph with 

 vertices) edges such that it contains no monochromatic  subgraph.
(n

k) < 2(k2)−1 Kn

n Kk

K11
K5

Is it possible to color the 
edges of  using two 
colors such that there exists 
no monochromatic 

K11

K5?
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Card Shuffling
‣ Suppose you have a deck of  distinct cards.  How many times do you need to shuffle the deck 

for the cards to be “well mixed”?
n

16

‣ More precisely, you want the order of cards, , to be close to being uniformly distributed 
over the space of  permutations of the cards.

(X1, …, Xn)
n!

‣ Random-to-top: Pick any card and move it to the top of the deck.


‣ Random transposition: Pick two cards uniformly at random and swap them.


‣Riffle shuffle:  

O(n log n)
O(n log n)

O(log n)
For  about 7 riffle shuffles are “sufficient.”n = 52,

…

…

k shuffles

199

199



Ising Model on a 2-dimensional Torus

17

http://pi.math.cornell.edu/~mec/Winter2009/Victor/part1.htm
Discretized 2d Torus

Neighbors

Neighbors

red = a neighbor of black 
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Ising Model on a 2-dimensional Torus

18

+ + –

–

–
+

+

+

–+
+
–

–

+
–

+

–

–

–

+ –

–

+

–

– ℙ(S) = 1
Z(T) exp 1

T ∑
i,j neighbors

SiSj

Si ∈ {−1, + 1}, ∀i

• Computing the normalization constant , called the partition 
function, is hard.


• How can we sample from ?

Z(T)

ℙ(S)

red = a neighbor of black 
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Ising Model on a 2-dimensional Torus

19

T = 2.5 T = 2

T = 10Markov chain Monte Carlo

Samples from the target distribution

ℙ(S) = 1
Z(T) exp 1

T ∑
i,j neighbors

SiSj
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Topics covered in this course
‣ Basic probability theory (review of undergraduate probability + some new material)


‣ Tail bounds: Markov, Chebyshev, Chernoff, Hoeffding


‣ Convergence of random variables


‣ Law of Large Numbers (weak and strong)


‣ Generating functions


‣ Proof of the central limit theorem


‣ Transformation of several random variables


‣ Multivariate Normal


‣ Gaussian processes


‣ Branching processes


‣ Poisson processes


‣ Markov chains
20203
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Homework #1

‣ Homework #1 is available on bCourses.


‣ Due in ~2 weeks:  Friday, September 13, 2024, 10pm via Gradescope.
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Lecture 1 1- 1

Consider two coin tosses
. ProbabilitySpace (52

,
I

,
)

Possible outcomes &HH
,
HT, TH,

TT3 =: t R =sample space ,
the set of all outcomes.

I = a 5- Algebra Cala 5-field) on
Some events A set of subsets of a satisfying&

E : = first toss is H = SHA
,
HTS <- certain propertiesI

E i = " T = STT
,
THE<- ⑪ = probability measure

E2 := Second toss is H = EHH
,
TH3 CIL Def ! ( Measurable sets(

Eri = ... T = ETT ,
HTScr

o-algebra of
&Given a set S ↑ Pls) (Power set

EnEi = P , ENE, = - is called a o-alg
I
Caka &-field) on S if

EU Ec = EHH
,
HT

,
THY

a ,
5 F

E
, nEz = EHH3 6) At Att
E , UEz)" = ETTY = EinEz" (DeMorganis law) C) AiEF ,

iEN => Are I

closed under countable unionProbability evet

a b(p =gE) Identically AGF is called F-measurable
DIE,] = 1-p / RtE2T = 1 - 9

distributed
e

.g. 1) T
= 54

,
53 the smallest F-alg

⑪[EnEr] = r (r=pg) independent) 2) = P(S) the largestT-alg
In general , or 1 min &p, 93 (Power set

,
the set of all subsets

since EIvEr <E,Ez of 5)
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1-2

Pet Measurable Space IS, 29 (Not Gebesque measurable)
A

Consider a measure i on (R
,
P(R) satisfyingLet (Measure) a set aFalg on

i) X([a,b])
= S-a

,
for bya

Let (S
,#) be a measurable space . ii) X (c+ A) = X(A)

,
for ERR

,
AEPCR)

A non-negative set function

u :*- [0 ,
0] - a subset VEPCR) for which XCV)

is called a measure on (S,) if cannot be defined consistantly.
(M(6) = 0 Ce.g. Vitaly set]5 ( F (Aie ,

iE IN) st AirAj = &,
for iFj ,

2

M(Ai) = MCAL 2 Consider a unit ball B C3 and

drop a pt u.a.r. on B
.

For
any subset

countably additive oro-additive A CB can we define
Remarks : #[cA] = Volume (A) ?
1) (S ,
#

,
M) is called a measure space. T

2) IfMs) =
1, M is called a probability No ! (Banach-Tarski Paradox

measure. often denoted by I. Some AEPCB1 are not Lebesque measurable·
&

3) Specifying (SF) constrains theS

possible measure that can be defined
on it,
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Problem of the Day

1. Bob chooses a die first.


2. Alice then chooses a die from the remaining two dice.


3. Each person rolls their die and the person with a higher number wins the round.


4. 11 rounds will be played with the same chosen dice.


5. Who has the advantage?

3
3
3
6

3
3

2
2
5
5

2
5

1
4
4
4

4
4

A B C

207
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Answer: A B
↓

Event "A beats B" = 2 (6
,
5)

,
16, 2)

,
13

, 2)3 Probabilistic Rock-paper-scissors

& [16 ,5t] =j : - =
2

= # [(6 ,2)] # (Alice wins= "(p)(the Game
1P[(3

,
21) = E. = where p = prob of winning a single round.
&IA beats B] = 0

.
58

·If Bob Chooses A
,
Alices can choose [

25

"B beats C" = & (5,
4)

,
25

,
1)

,
12, 113 => p

=

3 (
B C ·↑ 4

#[Bbeats (j = 1 + 2 (5) =
(

"(beats A" = [C4, 33 ·
C A

#beats Al = 5 . 5 = 25 20 . 69
=> p

=

2
= (Alicewis 15
-

Non-transitive A # D Suppose a rounds are played instead

Dice ⑮a
~tin P(Alice

wins the Game) ?
208
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2-1
Lecture 2

Let (Random Variable) 2) Fx(x) = 2 R(X=2)
Given a probability space (2,

F
,
B)

,
g[ (by -- additivity)

a RV is a function X:->R St. 6) Ex is right-continuous : Sim Exly) = Ex()
"XIx" : = Eweel X(w) EF Fxx Yu

for all x E IR
. (F-measurable) 1 ⑨

Ef (Distribution) -

S

Given a RV X, its (cumulative) distribution
function FX is defined as

Ex =X
2) Discrete RV:
either finite or countably infinite. Xn Binomial (2, p), Range(X) = 50.

1, .... his

M For AEF , FACW) = Se it w X-Poisson(X)
, Range(X) = 50, 1

,
2, ... 3

Indicator RV
2 Recall the coin toss example .

2) Continuous RV : ExG is its Vic ER
X(w) = #Heads in WeR

. We will consider
(X=0) : = 3 TTS S Its RVs with densities

: Ex() =Sf(g) dy& Disjoint since X is

(X= 1) : = SHT,
THYL

a function. *
(X[1) : = ETT

,
HT

,
THY =f density function.

(X = 2) := EHH3
209
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2-2

2 X ~ Normal (1, 52) Def : (Expectation)-

f(x) - g :-> R .
(e .g. g(x) = x

X
n Discrete RV :* E[g(X)] =2gx P[X= x)

,

xERange(X)
-

> PDF O X
a Continuous RV : ~ &

More generally ,
for AIR, Elg(X] = 1904 fxxdx ,

WIIXA] =Sd provided that EL/S(1] <S

"XA" = Sw =2) X (c) = A3
2 Xn Uniform [O

, 13, absolutely convergent
Why is this condition needed ?

fxx) = 5 % x = [0 , 1], Consider the discrete case:

Ex
↑

otherwise. What does it mean by
-

- & an converges to C ?
n=)
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2-3

An = a+ An + G+ 94 + A5- Theorem (Riemann rearrangement theorem)
Se nth partial Sum If I an converges butI land diverges,
Sz N then" for any given re[-N,

0]
,
- a

S3 Sn= S am permutation #I- I S
.t .

m=1

S1
,
Sa

,
Sy

, --.,
Sn.... him Sn = C

& Onch) = U
.

n=1

-N

For any E30 ,
I an int NCESSO => Need ELIGC/] < * for

St
. ISu-cIXE VINCE) EIg(X) to be well defined .

&

SX Def (Mean) EIX]U &

① Def (Variance) E[(X-E[X])2]

.IYn2 NLE)
Claim (Linearity of Expectation)

⑨ full inside this Let X,
,

.

. .,
Xn be RVs defined on the

neighborhood same probability space CO
,4) and

>
u

E[Xi]
,
Vil

, ..,
n are we defined. Then

↓ I s i is ' for all constants (, ...,
In,

ETCXi) = C : EIXi] ·
211
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2-4

E[(X- E[X])] = EIX=2XE[x] + E[x]2]
2
Conditional probability

linearity of E = = E[X]-2E[X] EIX] + (E[X]) S (2, ,)
= E[X] - lE[x])2

B A

Elef (Covariance) Suppose
#(B) > 0

A measure of association blu X &Y.

Let X
,
Y be RVs on the same

probability space .

Then Given thatB happens ,
what is

Cov(X,Y) = EL(X-EE]) (Y-ELYD)] The probability that A also

linearity of E== E[XY] - EIXJETY] happens ?
Want to consider a new

Exercise: Show probability Space (B,
F ,

B)
·I

Var(X+Y) =Var(X) +Var(Y) + 2 Cor [X
,
Y) How should we defineIs so

that it is consistent with ?

For all El
,
Ez E# sit.

ELBFP and EzB4, we want

PIE ,nB] # (Ein B)
=

PLENB] PB(E2 1B)

=> PB = c I
& constant

.
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2-5

#(B) = 1 = = Let (Independence of RVs)
=> For all A

,
BEI sit

. IIBJJO, RVs X
,
Y on the same prob space

Ch
,
F

,) are said to be independent (1)iff
RIAIB] := BlAnB]= AnB] C[(X (x) n (Y- z)] = IX[x] IEYY]

,IIB] V
,YeR .

If A
,
B are independent, then Equivalent conditions : Vx

,yeR
#[AlB] =PLA] & Discrete Case: #[ (X= <c) <(=y)] =EIX=c] EY=y]
PLAnBJ =PLAJPIB] · ( Continuous case : fx

,
y
(x

, y) = fx (x) f y (y) I
Diff (Independence of Events

5 more in later lectures
.

Events E...., En are independent iff RVs X, ...,
Xn on the same prob space

for every k=2,...n and for
every

CQ,, 1) are said to be mutually iff
K-subset Ei, . . .,

2
,3C El

, ...,
n 3

, R[(Xil]= IX:<x],K

RIMEij 3 = [Eij] · Vxy - --

,kn E IR .j=1 I

2) = 3. Need to check Reark : (Mutual 1) = (pairwise H)
#[EinEznEs] = FLE] PLEc] PIEs] #
#[EinEr] = BLE,]PIEz] See HW1

,
Q2

#[E, nEs] = PLE]l[E3]
# [EzREs] = PLEz]IIEs]

213

213



2- 6

Remarks Ehm (Law of Total Probability)
1) XLY - EIXY] = ELX] ELY] Suppose Bi, ...,

BueF is a partition of>
2 .g. # Sit

.
#[BiJ > 0 V :. Then, for any AF,

1y) I[(X= ( ) r(Y= y)] XI/Y Since DIA] = 2 FLAlBi] RIBi]
-1

,
0 1/3 IT=n= 1)] = 0 # i= 1

0
,

I I 1/3 # [x= 1] DIY= 1) = G B5
1

,
0 1/3 = AEIXY] = 0

EIX] = 0 3 EIXY] = 0 = ELX] ELY] Ba
B4

B6

ELY] = 5 By --

,
Bu a partition of he

2) XIY => Cor(X,
Y) = 0

=> (B, RA), ...,
(BunA) a paration of

A

[Var(x+Y) =Var(X)+Var(i)]
= PAT=LAMBi] (by additivity of measure

# = RIAIB.:]EIBi] (by definition of
let (Partition)

i=1 conditional prob

Al
, -...

An F partitions BeF if
R
Remark ! A similar result applies

1) B= AvAzU ---An to a countably infinite partition
2) AirAj = of If ifj A of Me.
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Problem of the Day
- Urn

13579

a
Draw a ball uniformly at random (n.a.V.)
record the number on the ball
return the ball to the urn

d) repeat i times.

Let Su = Sum over the observed
numbers

&

El FISn is divisible by 5] ?

215
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Lecture 3

Problem from Lecture 2
Law of Total Probability=>#I Su is divisible by 5]

- Urn =CIISn is divisible by 5/Xn =a][Xn= a) a)
aER- zu

13579 Sn-1+a is divisible 5 I
a Sn-1 mod 5

a
Draw a ball uniformly at random (n.a.V.) B ↳record the number on the ball
return the ball to the urn 7 3

d) repeat i times. 9 1
Let Su = Sum over the observed -

numbers =Sn = mod 5]
-El FISn is divisible by 5] ? Call this event EK.

Xi = # from the ith draw Eo
,
E
, ..., En partition a =>

Su = X, + ... +
n

Let R = 5 1
,
3

,
5

,
7 ,93 =) = 5

1
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Problem of the Day ⒔Can Alice do better than

Alice and Bob play the
random guess ?

following guessing game.

1) Bob writes down two
different numbers on two

-

cards :separate
Say

X Y Y
,
Y > 0

2) Alice picks one of theIcards uniformly at random and
looks at the number.

3) Alice wins if she correcty
guesses which of the two
cards has a larger number.
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↳
test result 3-1

Bayes' formula #( + 1 D)) = EPR

Let By
, ...,

ButI be a partition of ⑪C (D) = FNR

22
.

Then
,
for

any AEI
with

RCA) > o EIDI +]:+ID]IID]-
DLBilA] = EBA] posterior REIDJIID] + REID'] RID]

DIA]

= AlBiJ1[Bi] (I-FNR)P
=-

DIA] Cl - FNR)p + FPR (t-p)

[AlBi][Bi] = (1-FNR)P
= -

RIAIBj]PLBj] FPR + P(1-FNR-FPR)
=1 If FPR = FNR = 0.01

.

them
2 Suppose you get tested for a I (D(+)

&

disease and the test result comes X

back "t" 0
. 5 -

E

-@ Should you worry ? -Suppose disease prevalence = P -

"D" = event of having the disease -

RID] = P (prior) 0 . 1 -

I S
DIDC] = 1- P 8 0 . 005 %d P218

218



3-2
XnBernoulli(p)

,
0 < p < 1

Success Fail Var(sa) = Var(Xi) (by 1 of Xy ..

., Xu)i=1

#[X = 1) =
P, #IX = 03 = 1-p .

= up(l-p)
E[X] = 1 . p + o(1-p) = P · 100011000 ... 1010 /

Var(X) = E[X2] - E[X]
?

= p -p2 = p(l-p) W, = 3 We= 4 Wi= 1
Bernoulli process

independent and identically distributed Wi-waiting time between the

X
,
X2

, . . ., Xu n Bernoullic) (1-1)th & ith successes

WiWz
,
Wa, ... are

· 100011000 ... 1010 / Wi-Geometric (p) Vi
RIW = k] = Cl-p(1-1p ,

k = 1
,
2

,
3, ...2

Sn = total number of Is EIW) = 2kCrp)+ y == X 1 + ... + Xn k=1

Su ~ Binomial(n
, p) Var[W] = ELW2] - Etw]

<

n-k#[Sn= k] = (4) p" (1-p)
= ((tpp) - (i
= EP

EISn] = E[X +... + Xn] p2
n

by linearity = & EEXi) = up Thesemomentscanbecomputeaeonctionsmore

of E i=1 (Later lectures)
219
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3-3

rEIN = 31 ,
2

,
3, ...3 fixed positive int

. Fr ~Negative Binomial (r, P
Tr = Total waiting time to the Wa can compute EIFr] & Var[Fr]

with success Without using the prob . mass function
Tr = Wi + Wet- .. +Wr directly &

where W,
...,
Wr d Geometric (p) E[Fr] = ELTr] - r

rth success
=

F -v = r(001011000 1 ... 00 I

1
Var[Fr] = VarITr-r]

r-1 successes
= Var [Tr]
- = ~Var [WI]

= r( -P)DITr =n] = (n-pr
+ (1-4)"

-

p
To

= (1) prchph-r NB distribution is wideyused in single-cell genomics
Fr = # failures before th

success

Fr + r = Tr

#[Fr = k] = u + k -

1)pr(1-p)"( r- 1

= (r+ 1+ )p ( +p)"
220
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Pi
,
Pa

,
Po EIR2

3-4

g(xx + (-x)) I
↳

i
A

Convex hull of [P ,
Pe

,
P33

x9gx()· =((,y)t(R2)(x,%)= X ,P + XcPa+ /zPs]
xi + 12+ 3 = 1

,
Xi20

x xx+ (1-x)x 2

-

-
#A weighted Sum OX1/

Pet (convex function)
It function 9 : (a,

b)-> R is M ↳
said to be conex if

X ,x+ 423+ %33

& (xx , + (1-x)x) < xg() + (t x)9p)g(X , x + X2x + 433)
F (2,=(a ,

b) and VOX1 ·

= X , 9(4) + x29(2) + X399)3

V, ,y EIR and V[Xi=1 ,
Xie [0, 1]

G is called strictly convex if the i= 1

equality holds only for X = 0
,
X=/ & Strictly

or x =3
. only for is nex equalityhosa:

(The graph of g over (a
, b) contains ( o r 2)( = (2= x3

.No straight lines. 221
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3-5

It o Jensen's in equality-

Em /Jensen's Inequality Induction on U.
A convex function g: (a

, b)-> R
· Base case :

n=2
.

True by CVX def.Ysatisfies
g(xicci) [[X :gki), · Induction Hyp : Assume true for

i= all n= 2
,

. . -

>
K

· Show for n= K+ 1 :
ViVXy . ---

,
In Satisfying X=1 X: 20 · g(Xi) = g(xixi + (x+42+)S

Ellary Let X be a R-valued
discrete RV and g a convex =g((1- xix) xii + xx+, )4x+)-

function. Then
& (l -x(+)

g(E[X]) [E[g(X)] Def of convexity of 97
K

If g is strictly (UX and X is (1-Xk)g(i)+Xnot constant
, then

g(E[X]) < Elg(X)] . ↓ By induction hyp.

# Let bi = (Xi) in ↓ (l-Xk+ 1)7 gp(i)] + <,190-

Jensen's inequality. I 1-xk+)

(Holds forcts RVs also) = x : g(x() It
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3- 6

Suppose IP&Q are two probability #t (KL Divergence)
measures on (E2H) ,

and let The Kullback-Leibler divergence
X be a discrete RV Sit

, of I from Q is defined as

DIX = x] = qx ,
x Range(X) KL(IIIQ) = H(PQ) - H(I)

QIX = x] = gx ,
x Range(X)

== [pabg(7

Pet (Shannon entropy)
==

Ep [lo)
H(p) = - [PD log pxc) dx = - Elitloy p(X))

x For continuous RV , replace
P(x) with pdf and

↳e (cross entropy) 2 with Jdx
3Cross entropy of Q relative to # :

Has lots of applications in

H(Q) = =[pxlog gad machine learning (e .g .,
loss function,

EM algorithm,
VAE)

=

= E[logg(X)]
223
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Lecture 4 4 - 0

Problem from Lecture 3 Ans Yes ! Here is a strategy,
Alice and Bob play the Suppose Bob's numbers are X7Y.

following guessing game .
Let A = number Alice picked.
Generate a random number RER

1) Bob writes down two If MJ A
,
call the other card as

different numbers on two having a larger number.

separate cards : If RA
,
call A to be the larger number.

Say
X Y YY > 0

IIR(X] =a PIXRCY]= b FIRSY] = c

S me
2

2) Alice picks one of the b ↓ ↓Icards uniform at random and Alice can't compute these probabilities sincelylooks at the number.
she doesn't know how Bob generated X and Y.
Nevertheless

,
she can show :

3) Alice wins if she correct #[Correct] = [Correct /A =X]C[A=X]y b+ c E
guesses which of the two
cards has a larger number. + IP[Correct/A=Y]HIA=Y]

atb E
⒔Can Alice do better than

= ((a+ b+ b+c) = 2 +3)random guess ? since b 0.224
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Lecture 4 4 - 1

Problem of the Day #hm (Tail Sum Formula)
Let X be a RV with range

sampling without replacement 50
,

1
,
2,... 3 .

Then
,

EtX] = @ RIX = K]
- Urn k= 1

lit
I 234 . 00 Ru

E[X]
= RIX= k]

k=p
These all non-negative

Suppose you sampleIn = RIX= 1] numbers
,

so can be

numbers U .
9 .

%. from
+ R[X=2] + DIX=2)

summed in any order

El
,
2

,
000

, hi without replacement. + [X=3) + 1 [x=3) + [X=3)
What is the expected sum

+ R(x=4) + [x=4) + [x=4] + [X= 4)of the top K-1 numbers?
i i i "
Il 19 1) 7/

Aut ! Use the Tail Sum formula. D[X11) REX2] [[X23] IX24]
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4-2

Evidence Lower Bound CELBO) Claim

X = observed data
z= latent variable EKL iff pa = &D Yx

g = a distribution over Z

log-likelihood I-bg is a cux function
,

So Jensen's inequality for RV
↓ o parameters G(x) lies
by p(X (0) = 2(g ,

X
,
0) + KL(g(19)

,

Z =

FX) imp
where

2(3 ,
X

,
% = EgGg[P]Y CELBO)-byEn[]-Eterg)

1 L(g(1p) = EgGloy [PLXO] #[] = P = 28x = 1

=> LHS = 0

Key Facts In fact
, -log is a strictly2) 2(9

,
X

,
0) is a lower bound cux function

,
So equality in

on the log-likelihoodSince (A) holds iff ph = g() V
KL(g(p) 20 for all p and go

2) ELBO is much easier to
Remark : In general,

computed optimize than logp(X10) · kL(plig) + kL(q1lp)
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4-3

Hypergeometric Distribution 1) Sample a balls n
.
a

.
r. with replacement.

sample space e= I
Iml= 2.

often used in enrichment analysis Let X(W) = #blue balls in were

ef N = total #genes assayed Then
,
X-Binomial (n

, p) where p =B
.

M = #genes involved in a
N

particular biological pathway Pe[X= 1) = (M)p"(l-p" ke50,
1

, 2, . . ., 23
u = # significant genes
k = # significant genes in the

pathway 2) Samplea balls u
.
a

.
r
·

Without replacement.
Q: Is the pathway over-represented? Let X(W) = #blue balls in were

Can we provide a quantitative #2[X= ] = 0 if > B or n-KR

measure of enrichment ?
For maxio

,
n-R3 = K ? B ?

Mathematical Model 17
n- k

- -
ada

L
B blue balls

W =
G⑨ ...

⒗R red balls B...
⒕ N = B + R

sample size >N Fatw3] =
int !

N !
=> G

(N-n) !227
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4 -4

key observation Another W'EL with Exchangeability
K blue balls and n-k red Permutation : one-to-one map
balls has PLIEw'3]= PcIEw3] . ↑: El , 2, ..., n3- 51 , 2, ...,4)
Permutation invariant. There are u! distinct permutations of 51.....h3

There are (i) distinct sequences ⒗ & &

With 1 blue balls and n-K red balls fixed point · #(2) = 2
& &

=> Q2[X= x) = (M)9 n= G · · ·
D D

=
(3)(N=) 6⑧ 6

(i)
&

Let A Sequence (X,, .
.

-,
Xn) of 2

RVs m the same probability
This distribution is called space is said to be exchangeable

Hypergeometric (N ,
B

,
n) if (Xic)

,
---

>
Xncu) has the same

joint distribution as (X, . .

.,
Xn)

Note : Qu[X= 1] + (4)p" (l-p)
n-k

for all permutations # of [1, ..., 43 .

as B-X
,
N - 0 sit . B - p

. 2. n=2
,
discrete RVs.(

N
(
#[X = a

,
Xz= b) = [x= a

,
X, = b)

V a
,
b ER

.
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4-5

Claim If (X,
,

.

. .,Xu) is exchangeable, Since [(Xi = c)
,
ce Range(xi)3 partitions&

then all subsequences (X(, . . .. Xim) for any Acq ,

of a given th me 51
,
2

, --

,
43leng &An(Xi= c)

,
Ce Range(Xi)3 partitions Ahave the same joint distribution.

e .g. U=3
,
discrete RVs 2

(X
,
X2

,
Xs) exchangeable => Xi = 1

-#[X =a
,
Xe=b

,
X=c] = [X= a

,
X3= b

,
Xz= 3)

= I[Xz= a
,
X

,
= b

,
Xy = c] = [X2= a

,
X3=b

,
Xi= C]

=#[Xz= a
,
Xz=b

,
Xi =C] = R[Xz= a

,
Xi= b

,
Xz=]&sum over E

&[X1 = a
,
Xz=b) = [Xi=a

, Xz = b] Xi = 2
Xi= 4

= DTXz= a
, Xi = b) = [Xz= a

, Xz= b]
=⑪ [Xz = a

,
Xz= b) = [X3 =a

,
X =

=b] => DIA] =RIU An(Xi=]
V a

,
b ER

.Sum over b =

#[X ,
= a] = [ [Xz= a) = [Xs= a] byIadditivity= An(Xi=

Va E IR

Why are these statements true? This procedure is referred to
as marginalizing out Xi

229
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Lecture 5 5-0

Problem from Lecture 4 #hm (Tail Sum Formula)
Let X be a RV with range

sampling without replacement 50
,

1
,
2,... 3 .

Then
,

EtX] = @ RIX = K]
- Urn k= 1

lit
I 234 . 00 Ru

E[X]
= RIX= k]

k=p
These all non-negative

Suppose you sampleIn = RIX= 1] numbers
,

so can be

numbers U .
9 .

%. from
+ R[X=2] + DIX=2)

summed in any order

El
,
2

,
000

, hi without replacement. + [X=3) + 1 [x=3) + [X=3)
What is the expected sum

+ R(x=4) + [x=4) + [x=4] + [X= 4)of the top K-1 numbers?
i i i "
Il 19 1) 7/

Aut ! Use the Tail Sum formula. D[X11) REX2] [[X23] IX24]

230
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Lecture 5 5-1

Solution
EIM] =

"

** DIMIa] (tail sum)
Let X1 , . .

.,
Xi denote the sample. a=1

M = min EX, . . .,
X13

Want E[X,
+ - .. + Y - M] = E(Xi) - EIM] = (n -

a
+)

i=1

For A,
, . . .,an distinct elements of E1,...,23,

# [X = a
, Xz

=92
, ..., Xx = &(2) (i) + (4,j) + ... + ) ,) = (ii)

= (i) -- (ii) Hockey-stick identify

N

in I
-

=> (X1,
- -

-, Xx) is exchangeable => EIM]= =
=> X, ...,

Xi are identically distributed

Vi, EIXi] = ELX1] = 2 a FIX =al= 3

[x , + -- + Xx - M) = (H)
I

a= 1 - 2

& [M = a) 0 for a = 1
, ...,

n-K+ 1
·

k+L

&[M2n] = IX, za , ..., Xia] = (u+[ - ]
= (4)(n

-

a
+)

(in)
231
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5-2

Problem of the dayon ends
Example : n= 16

(

a strings - ⑧

&

. -
0G⑨

ends U. a.
r. and continue

Suppose you tie two free

·⑨until no more free ends
remain .

Q ⑨

1) What is the expected
number of loops formed ?

&
6 loops

Min = 1 & in this

max = 2 ⑭ outcome

232
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5-3

Back to X~ Hypergeometric(N ,
B

,
n) How about variance ?

E[X] = 2 kI [X=1) is Var(X) = Cov(I+... + In
,
I t . - + In)K

not straightforward to evaluate. U by bilinearity ofCov
L I if the ith draw = & Van ([i) + 2 CoV(li

, Ij)
Define [i(w) = E is blue for WER by i= 1 i

,j: itj
Indicator RV

O, otherwise exchangeability= nVar (11) + n (n-1) Cor (11
,
F2)

X= E, + 12+ ... + In Var(1) = B(1-(Is
,

...

,
In) is exchangeable !

(See page 4-3 ( Cov(I1,E2) = ELII2] - ELIi]E[I2]
-

=> IIIi = 1]= [I1 = 1] V i
.

ITI1,
= 1) =B = ELI I2]

IP[I1 = 1] = B = [I1] => Cov([
, 2) = >
#N-B) < O

N N2CN-1)

=> EIX] = ELIi] = nELl] => Var(X) =B
i = 1

= NB
- um
N Variance of 1Note that this is the same

as the expectation of Binomial (n,)
Binomial (, )

233
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5-4

Thm (Cauchy-Schwarz Inequality (As Al
Let X, Y be two RVs on the

same probability space .
Then,

(E[XY])2 ELX] ETY]& [A ,vAz] = DIA ,] + PLA2] - RIA, nAz]

I=> [Cov(X,)] <Var(X) Var(Y) IThm UnionBound
,
Bool's inequality) which is used to prove many results

Let Al . .... And I be a collection of
e.g. Cramer-Rao Inequality in theoretical Statistics

events on a probability space Pf For constants a
,
b E IR

(, , ) .
Then

, 0 < EL(aX-bY(2] = EtaX+52-2abXY]

DIA ,
Ar ...An] ETAi] => zab EIXY] [ a2E[X] + BELY2]

Pf Use induction on u
. ↑

Let a=2
,

b : X)

=>2[x] ELY2] EEXY] = 2 EEX] EIY2]
denoted [1 in Q7 of PS#1

.

= E[XY] =FIXEtY2]
Similarly ,

Of ElaX+ by)2] implies
Remark : DI"

2 2- Soz - EXELY2] - ELXY]
S E, Est Es => IEIXY]1 ] EE2]#[ Ai 2 5

.-G2 +Ex-24 squaring yield the desired result Aand so on 234

234



5-5

Concentration Inequalities (Tail bounds) Recall Indicator RV

fyd fxx) For AEF
, IA(w) = 91 ,

if we A
X &"ITIX-ulzc] O

,
if WeA

,[[X]- - (IA= 1) = EW-t/Ix() = 1
.3 = A

!

11/111 1 3 ↓ IIIIII
I 11

11111111
S

So
,
ELIA] = Pla = 1) = PLA]

[ x M-C M M+ c
C

Useful for Pf(Lemma)
- proving convergence results (XIC) = &WES/X(w) 2 3
-

bounding failure probabilities · X (w)< => 1x2c3(w) = 0 => ()
- probabilistic bounds on runtimes X non-neg => X(W) of Wed 3 holds

I
Thm (Markov's Inequality
Let X be a non-negative

· X(w)] => [Exic3(W) =1 (A) holds

RV with ELIX1 <8· Then
,

1

for any constant 930
,

Pf (Markov's inequality
Lemma= Ewee ,

<30
, X(c)2 < [EXc3(c)#IXIc] [ ] ·

Taking expectation yields
Emma ELX][ Etc [EX213]
X

,
a non-neg RV =>

Vwee,
Vaso, = cElIEX1c3]

(c)X(w)2 < Is ] = c[[X2C] D

(A)
235
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5-6

Thm (Generalized Markov'sIneg.) Thm (Weak Law of Large Numbers)
Let X:2 - R be an arbitrary RV&

Let Xi
,
X
, ...

be a sequence of
Then

,
for all constants <0 and K30 did RNs with a finite meanI&

#[IX1 = c < EK] and finite variance &?

Ck
Let Sn= Xi+...+ Xn

.
Then

,
FE30,

# Similar argument as above
hiI -uk [] = 0.
n+6

↑applied to IX wil"IC" ISI2c(W) · sample areavage

Thm (Chebyshev's inequality)
# Var() = E[(2]-EL = Vars I

2
j

For all RVs X with EIX] =M< X Var(Xi) = 52 and X, . .

.,
Xn# =

n

andforallconstant Chebyshev's inequality =>
C2 I-UK3]-0 as n-a

E

Since IX-ulz IX-uR2C2,#[(X-u)Lc] = [IX-uPL (2) Remarks :

Makov's Ineg= &ELE]=
) 1) Finite variance is not required

for WLLN.
ga

El 2) We will later discuss a stronger
version of LLN (SLLN).
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Lecture 6

Problem from Lecture 5 Example : n= 16

N strings
2n ends

- ⑧

&

.

g G

Min = 1

-
&

⑨

in this

ends U. a.
r. and continue

Suppose You tie two free

O ⑨until no more free ends
remain .

& a

) What is the expected
number of loops formed 3

&
6 looOS

D outcome
max = 2 II
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Solution : L = In+ In+
+ ... + In

Let L= # loops formed
.

Suppose currently there are 1 Open EtL] = El [i]
k= 1

strings .

Define IK as :

⑧
·D = FLIk = 1]

k= /
*

· Do g
& &

2K free ends-
& k- 1 ⑤

K
*

T S #[Ik = 1) = - -
& I ⑧ : (2)
⑤ K

: &
[x= 1 8⑧% EIL]= Si

& &

~
& which is th (n)

- : for large n.
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6- 1
Lecture 6

XX,Xe-a Sequence ida RVs Thm (Central Limit Theorem)
mean u = EIXi]. Let X

, Xy, Xz, ... be a sequence of
iid RVs with finite mean M and

LLN States that the finite variance a? Let Su= Xi +...+ Xn.

sample average S Converges
Then

,

to the expectation EIXi] =M as
Mi P(-u)x] = E() ,

VER.

the sample size in gets large. where FGD:t denotes(See Demo)

What can

Wesayaboutaa the C
.
d

.
f. of (Co,

1)
fluctuation 3.

Suppose Var(Xi) = 52<S. Remark : For large m
,
is well

E(f) = M, Var() :E approximated by N(M,)
-M _ -u) standardizedaT mean O

variance 1

239
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6-2

It is clear what it means for a

sequence of real numbers a
,92

,
as, ... to X1

,
X2

,
Xz

,
...

a sequence of RVs
converge to a number C : X another RV↑

lin An = C
n-)x

For any E30 ,
= an integer N(E) > o

St
.
lan-c < E

S
(n = N(z). Wee X

,(w) Xz(w) X z (w) ... Xn(w) - - - X(ro)

--

anN
WI all dis Als ... Aim

lain-(
Ci

&

①
We 921 azz Cas ... Gen -- C2

lazn - (2)# 931 ab2 933 ... Azn -- C3
C - E lasn- C3/

fn2 NLE)
⑨ fall inside this " ! i " ! :

neighborhood WM Am , Ama Ams--
- Amn -- Cm

3 lamn-(m/
↓ I s i is ' U " " : i i i i i

C

However, a RV XiM-R is a F(x = 1[Xn[x]function
,

so we need to define Xn

what it means for a sequence of IP((Xu-X1 < ]
functions to converge.

240
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6-3

Defined on

X1
,
X2

,
Xz, ... a sequence of RVs the same convergence in probability (XnEX as neal

X another RV
3 prob

.

For every 270 ,I space
Pointwise convergence unless said otherwise eim X [] = 0

.

him(w) = XCc)
,
o were u-x

n-x

This notion of convergence turns Ewe((Xncul-Xcrll > 23
out to be too strong. Example: WLLN .

Ent as - a

Almost sure convergence .
(Xn*X as neno)

Ca.
k

. a. strong convergence & Convergence in nth - mean (XnEX as n->c)

convergence with probability 1 (W.p. 1) For r > 0
&

#[hXn= X]= DIEWEer/him Xn() = X (c13] = 1 his El(Xn-X1]= 0
.

n-

m

E I For every 320
,

7 an int NCWs) Sit3 Convergence in distribution
.

(XnEX as - a
WES &

IXn(w) -XIS
,
for all n = NCW

,
2) a.

la
.a. Convergence in Law

RIEWER) Xn(r) = X(c)3] = O Here
,
X does not need to be defined

prob space as Xy
,
Xz,..."Measure zero" on the same

Example : lim #(x) = Fyx) ,
Vx = ((Fx)

-L S
Thm (Strong (LN) Let X,Xz,. .

be a
where ((EX) = ExIR/Fx() is continuous at 123

sequence of ind RVs with finite mean u.
a.S.

Then, & ->Mas n- X. Example :CLT. -u) XN(1n- X.241
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Equal in Equal in 6-4

Distribution vs Probability Fxn1

⑧

Take a fair coin and toss it twice. 2tExu(o) = o
,

One N
Assume the two tosses are independent. 3
-= EHH

,
HT

,
TH

,
TTY ↓ ⒗

Let Xi
, X2 be RVs defined as his Fxn

Xi (2) = 97 if the ith toss shows If -W -
1 -1 T This is NOT even a C.

d
.
f.

Then
, X

,
EX2 (Equal in Law -

or distribution j

But
,
RIX,

= X] = BIEHH
,
TT3] Ex -

= - Fx(0) = 1
So X , and X2 are not equal in -

jprobability. him Fxnk = Exx) -x + 0

Example : Convergence in distribution n-> G

lim Exn>d Fx() at (= 0

Let XI
,
X2

,
Xs, ...

be RVs with n-0

#[Xn=] = 1 But this does not affecta since

and X a RV with DIX= 03 = 1
.

Exx is not continuos at c = 0.

XnEX asa d
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6-5

Thm (Relations between different( X= [10,1]
A

convergence concepts 1-

(x* x) = (XnEX) = (X-X)
(3) (4) 0

-
↑ (2) O ↓

Xz= [to,2] X3= IEE
, 1)(X=X) = (Xn= X) 0 <&S A

(1) & 1- 11

Pf Next lecture. 0-WI
0-

O ! O E !
Converses DO NOT hold in general )) X= Itois X5 = [t5

,] X = [[5
,
1]

Example : 11 11 A
-1-

(XnIX) does not imply (XnX)
-Suppose e = [0

,
1] ·I(ta

,
b]) = b -a

,
Voca < b = 1 O ↳ !

Let X(u) = 0 and define and so on
.

* X2
,
Xs, --- as shown on the right . But for any wee,

there exist

For any Eso,
lim [[IXn-X1) [] = 0. values ofi for
n-2 infinitely manya 1

-

XnEX as n> a
=> time XnCo) XCW)

,
VWES

-

Almost sure convergence does not hold.
243
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Stat 201A Fall 2024

Lecture 6
LLN Demo

September 17, 2024
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LLN

▶ Let I1, . . . , In
i.i.d.∼ Bernoulli(p).

▶ E[Ii] = p for all i = 1, . . . , n.

▶ Let Sn = I1 + I2 + · · ·+ In.

▶ E[Sn] = np, so E[Sn
n ] = p.
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LLN

Sample path of Sn/n as a function of n for p = 0.6
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LLN

Sample path of Sn/n as a function of n for p = 0.6

0 100 200 300 400 500
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LLN

Sample path of Sn/n as a function of n for p = 0.6

0 100 200 300 400 500
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LLN

Sample path of Sn/n as a function of n for p = 0.6

0 100 200 300 400 500

0.
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S n
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LLN

500 independent sample paths of Sn/n for p = 0.6
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LLN

Law of Large Numbers in action for p = 0.6

Red lines correspond to Sn
n = p± 0.05.

Histogram for n =  50
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LLN

Law of Large Numbers in action for p = 0.6

Red lines correspond to Sn
n = p± 0.05.

Histogram for n =  100
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LLN

Law of Large Numbers in action for p = 0.6

Red lines correspond to Sn
n = p± 0.05.

Histogram for n =  250
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LLN

Law of Large Numbers in action for p = 0.6

Red lines correspond to Sn
n = p± 0.05.

Histogram for n =  500
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LLN

Law of Large Numbers in action for p = 0.6

Red lines correspond to Sn
n = p± 0.05.

Histogram for n =  1000

Sn n

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0
50

0

255

255



LLN

Law of Large Numbers in action for p = 0.6

Red lines correspond to Sn
n = p± 0.05.

Histogram for n =  2000
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LLN

Law of Large Numbers in action for p = 0.6

Red lines correspond to Sn
n = p± 0.05.

Histogram for n =  5000
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Lecture 7 7 - 1

Thm Pf of (1) :
Lemma 1

(x* x) = (XnEX) = (X-X) H

(3) (4) OF ELIXn-X1") < ELIXn-X1S] *
1↑ (2) 2 Since IXn-XIV is non-negative.

(X=X) = (Xn= X) 0 <&S
So

,
ifImi ELIXu-X1S] = 0 for RHS

,

(1) &

(No other implications in general.)
then Mi ELIX-X(v) = 0

.

Pf of (2) :

Lemma 1 For or <S, For any 230 and r > o
S

any RV Y satisfies Generalized Markov's Inequality (Note 5-6)
CELlYIr* (E[1Y1S])

Pf of Lemmat :
0 [ I[(xn-X122] [ EXIA

Let g() =k
.

This function is CVX

Since kcla is sux for a21. So
, lim E[In-X1 = 0 for RHS

Jensen's

Inequity) EIg(II)] =>Mi [(X-X12E] = 0

=> CELlYI])* [ELIYIS]
=> CELIyIr])= - (ELlYIS]]-
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7- 2

Lemma 2 Lastly VE)o↓

XnX as n X A
,
<Az

,
a ... An

# if and only if
=> hi)An

,
s)= An

,2)for every 230, n->D

him /IXm-X1 < 3 for all M2n) = 1
.

This completes the proof.
n-2

Pf of Lemma 2 (Optional reading)
CliXn = X) = Eweeltim Xncw) =XcosS Proof of (3)

n->

Suppose XnX as now

3=

Ewee/forevery zaNw 12[(-X((2)
-
> II/m-X( < E

,
Fm2n] -> 1 as - &

*= EW) (m(w)-Xcw
,
Em ( By Lemma 2

G~
themote this set by Ana Since [lXm-X1,Vm2n3 = 1 S/Xm-X1 < 23

(Xn*X as n+ 2) and ICA) ? #(B) if BeMin
# (himXn = X) = 1 Anz) = 1

=>P%An,
a) = 1

,
Vaso

=> i [IXn-X13] = 1
.
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7 - 3

Proof of (4) (Optional reading) XnEX as n->* =

Assume XnX as no him #[11-Xul > 2] = 0

,
- :So

i) Xn(w)
falls here n->0

mem
S

So, (i) & (ii) together implyx'-3 + E Ex(x-2) 1 lim inf Fxn()
If Xn(n) <C)

,
then either n-x

X(w)( x + 3 or IX10) - Xulwil > E < him sup Exn()))
EWee (Xn(a) < (13 < n-> X

Ewea(X (w) < x + E30Ewer((X(w)-Xn(w)k23 [Fy(x+ a)
S
-230

Union Bound
#[Xn[c] <EIX[x +2] + #[IX-Xn/ > 3] If < = C(Ex)

,
then

& #(1) [Fx(x + 2)+ [(X-Xn1>2] him Ex (x - 2) = Fx(x) = hi Fx(x +e)
(i) Similarly

, Xnsw) falls here
2-0 2- 0

- => him Ex(x) = Fy ifECE
S

x- E c + E

If Xn(w) > x)
,
then either

X(c) ) < - & or IXCW) -XnCall > E

=> I [xn >x) <I[Xx - 27+#[IX-Xu( >&]
1- Ex() = 1 - Exx - 2) + [IX-Xnk &]
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7 -4

Def (Moment Generating Function) Thm (Uniqueness) Suppose X,
Y are two RVs

The MGF of a RV X is with well defined MGFs
&

a function My: -> [0
,0) If Mx(t) = My(t) Xte (5,2) for

&

given by some 230 then

Mx(t) = EletX]
,
tER

.

g
XEY

.

Note : If X,
,
.

. ., Xn are # RVs· Thm (Convergence in distribution)
I

and Su = X
,

+ ... + Xn
S
then Suppose Xi

,
Xz, ...

is a sequence

Ms(t) = M (t). of RVs with MGF Mxn(t) On well

k= 1 Xk defined for tECE ,2) for some 230.

Thm If Mx(t) < 0
,
V +E (E,

2)
for some EX0 then If Mxn(t) -> M(t) as n -x

S

1) Mx(t=0

= E[X], for every te -E, 9) ,
then

MCE) = MX(t)
,
where Mx is the MGF

for all k=1
,
2

,
3, --- of a RV Sit

.

2) For t within the radius of
Xn& X as n-X.convergence,

Mx(t) = EX'17=0
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7-5

Application 1 Let X-Exp(X) ,
x o

&

Let G Geometric (p) pdf : Xex
C (20

RIG = k] = Crp)k+ p ,
K= 1

,
2

,
3, - .. fx(x) = E

EIGS= 0 <0

Ma(t) = [etG] = eth (tp)""p EIX] = 1/X
.

= Let]" Mx(t) = EletX] = Set y*d
k= 1 EFor ksk1 t

l-x=+4) et
= E

.

Let EneGeometric (i) ,
where x>0 So

,
XnEX as n- 2-

n = 1
,
2

,
3

,
---

Let Xn=
.

Then EIXu]=

Mx(t) = [etY] = ETeGr]
*

I

1- (1-)e
+/

-> asn-
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Application 2 Let Xn = En ,
where From e NB(V,*)

Recall Bernouilli process
from Lecture3

#(Success) = P ,
#/Failure) = 1- P

To = total # trials until the rth success
Mxn(t) =ETet =[*]

Fr =i failures 27
the ith success

Fr + v = Tr Mxn() -> (*+) asn- 2

Fr ~ NB(r
,p)

MFr(t) ?
Tr = Wi + W2 + - .. + Wr

,
where Let X = Y + Ye + -.. +Yo

,
where

W...., Wr ind Geometric (p) Y, ,
.

. .,
Ye In Exp(x) .

=> Mtr(t) = [ ,Pet pet jo
Then

, Xn Gamma(
Shape rate

MFCt) = EletFr] = EletCr-n]
pdf fx()=

= etrE[etT] Mx(t) = My() = (*)
= [pet] => XnEX as > x
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Lecture S 8-1

Sums of Random Variables Convolution for continuous RVs.
Let X

,Y be discrete RVs on X
,Y continuous RVs :

the same probability space . p.d.f · Exy't)=&fx(x) fy (z -()dxI
Q : Find FIX+ Y= C]

.

RIX+Y= c] =2 D[X=a , Y= b] & i= 1
,
2
, XivExp(Xi) , Milo , xi #Xa(a,b) : a+ b = C

= [P[X= a
,
Y= c- a] X , #X2

a fxi (x) = Exixi, if <0,If XIY
,
then o otherwise.

RIX+Y= c) = & IX=aJELY= c-a] For 270,

fx + x ()= Exp) fxz(z -x)d
This is called convolution.

2 Xi-Geometric(pi) ,
i = 1
,
2 X, Xe = 5 fx, fx(*-x)dx

For C= 2
,
3
,
4-- p,Pa

-x(z-x)

[[X
,
+ Y
=
= c]= DIXia] [Xz= c- a] = jxexze d

a= 1
-x2zy- x(X,

-x)z

= (14, CHP)
***

Pa
= X,x22

- (i-xa)lo
=I
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Empirical Distribution For every given xEIR ,

XI
,
Xz
,
. . .,
Xn ind F,

M

SupposeF(=F[X] is an unknown c .d.f.
#[h Fu = Fic] = 1

Goal : Estimate F : /R- [0 , 1] not a RV-

Deterministic function, Sorted XI
, ...,

Xn : XX12)[ -- [Xcu)
A natural estimator is the empirical order 1 Statistics.

M
distribution Fu

12Fn(x)= I(X :<c)
& 17

F
·

b

This is a

function RVs X,. .., Xn En : RRxa+ [0
,
1] ↳

⑨ ·

where
,
for WES,

I(Xi[x) (w) = &1 ifXie ~Remarks :

·1)XSo
0
-
-

Xci) Xi2) Xiz) X) Yis'X(os is
O

= RIEWER(Xi (w)<3] As the sample size m

= I[Xi <] increases
,

one obtains a

= F(x) 11. more accurate estimate

So
, SLINE for eachER, of F(2) for every c /R.

a. S.

Fl -> F() as n- 0
But as a function of > , how well

-

RV Number
does Fn approximate F ?
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2. Pointwise but not uniform convergence) For every (CERRs
Let fu : to, 1] - R , fub = xh #[h Fu = Fic] = 1

x = 1,
-hi fu = fa=E [, 1) every 230

,
7 an integer N(, W,2)

=>> fu isIts on [0,1) Va
,
but the Swee/ For

. =New,2) = IEG,
w) - Facl < ES

pointwise limit f is not its. Point-wise convergence
Ifnd) - facil = xh In fact

,
one can obtain even

For a given O <<1
,
there does not a stronger result :

exist a positive integer in sit. Thm (Glivenko-Cantelli Theorem
< E for all <[0

, 1)
in converges to 0 at an arbitrarily slow Suppose X. -->Xu d F. Then
rate for i close to 1

. Sup /Ex-Fuelso as new

In other words,

Def (Supremum) Let S <R. #[hiP(F( - Fx) = 0] = 1.
supremum of S = least upper bound of S
Sup(s) in IR. -
If Sup(S)e S , then Sup(s) = max(S). E SW+e) For every 205anintegerNWR
e .g. S = ExER/kck< 13. n2N(w

,2) =

max(S) does not exist. Uniform convergence
sup(s) = 1. P Later in the course.
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Cherroff Inequalities: A one-parameter Fort>o
,
PIX2an] = [etp + (1-pl]"

family of bounds derived as follows :

RAC) =net1) For any +30 and CER
,

RIXIc]= ItX = tc] since exp is

=[etXzetc] monotonically increasing -an
Right tail
I ELEX] By Markov's ineg

SA =0 netp = anCetp + c)
=> DIX[c] <min Mx = et

=acteetc
2) For any so and CEIR, Can check that this minimizes RHSCE)

RIX[C] = ItX[tc] < M DIXLan) [Era (aLeft tail
=>DIX[C] I Min MxC For p= & a= z,[X] En]1

e
+c

These lead to exponentially
This bound is much stronger than

decreasing tail bounds
. Markov's ineg : DIX[in]=

2
.g. Xe Binomial (n

,p) => EIX] = uP
Chebyshev's ineg:IX) =IIX-In2 in)In Bernoullicp)

Mx (t) = [M= chij" = Letp + 1-p1j2 -
> F[IX-Elin]=
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Hoeffding's Inequality : Bounded RVs
Let X, ...,Yn be # RVs with

# [Xi] =M: < x and

Plai[Xi[bi] = 1
for some constants ai

,
bi -R.

Let Sn = X+ -- +Xn. Then

#[ISn-EISub1]s] <zexpl-az]
# See next lecture

.
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Lecture 9 9- 1

Hoeffding's Inequality : Bounded RVs Def (Sub-Gaussian) A RV X with
Let X, ...,

Yn be # RVs with EIX] =MCO is said to be

# [Xi) =M: < x and Pai = Xi[bi] = 1 Sub-Gaussian with variance

for some constants ai
,
biR. proxy of Csub-Gaussian parameter

Let Sn = X+ --+Xm
.
Then

,
for any >0, r0) if

t(X-u)
<EXtER.#[ISn-ElSub1]E] [2 expbi-ai #e

Equivalently,
i=1 Lemma I Let X be a sub-Gaussian RV

with EIX] =M < x and variance proxy u?
2#TIS-Eu] = 2expdi) I Then ,

for all E30,

X tEIR

- i= 1 - PTIX-EE]123)2
First

,
recall Lemma2 (Hoeffding's LemmaWewillpropethisgeneralresor- (x-u)2 Let X be a RV Sit. EtX] =U <O-

C 252
and ItaX[b] = 1 for some constants

V +E IR,
*

Mx(t) = EletX] =Ste a
,
be 1R

,
a< b.

. Then,
did

Elet(-M)] clay
+x-cu- t +t

i
.t. Sub-Gaussian with variance proxy2

+u+ +2 22= (ba)2=> Mx(t) = e 2
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Proof of Hoeffding's Inequality Hoeffding's bound only depends
on the range of Xi

,
not

1) ETetCSn-Mil] = Ettet(i
-

Mil] on its distribution over [ai, bi].

Using more information about XiX1
,

- -

.
Xn independent == Elet(Xi-Mis]

can lead to a sharper bound.

-(b) e. g. Chernoff.

Eli
=(b

=> Sn is sub-Gaussian with
variance proxy 22=i

2) Let X = Sn in Lemma 1
.
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Proof of Lemma 1 :

&Cherring =-EYetY]=My(t)
Note : & (0) = 0 Since ELY] = EEX-M] = 0

.

Assumption of the lemma
↓ original measure.

g'(t) = (+r=2)g() = 0 = t=this Defiaprmeasuryi&"(t) = 5
=

g(t)+ (tr22)g(t)) 0 => g(t) is minimized

at= Note : No = I ↓ expectation wort. Me

g() =e Them,4) = Et[Y]

Similarly, <O, x(t) = Ex[Y2] - (Ee[Y])2
= Varz (Y)#[x-m( -3)El minimedardoeschan = Var(Y- +1)

Since = Ex[(X-2] = (692
# [IXul 2)= I(X-ze) r(X-

u = -2)] Var(z)=E[z2]-(Etz])
Disjoint events > = D[X-M = 2)+[X-Ms -2) 1=[c[X13] =RECEX-(4)

-E5/254+ additivity property 12e = I [ (X- = (4]
MGF MyCt) q(0) = v = dy() and day()1(a)2It2

Proof of Lemma 2: e

Let Y= X-1 and G(t) = log EIetY]
=> 4() -Ete+Y

Note : C(d) = log 1 = 0 since exp is monotonically increasing
271
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Approximating Binomial Distribution Normal Approximation
Reference: Lec Note 8 from Fall 2022 viewed as a function of f

S2 Binomial (n
, p) ,

0 <p> 1
. 1) Taylor expansion of 3KL(f((p)U

SuEIs +... - + In
,
where I.... InBernoullicy) about f = p ,

gives
# [SF= k]= (4)p" (l-p( p"Crpt? K= 0.... in KL(f(p)=(f -P

KI (i1)!

Factorials are cumbersome to work with for someo between f and p
.

key 2) To obtain a normal approximation,tool: StirlingApproximationa need the following quantity to be small.
e (2)ine

(Laplace Method for approximating integrals)
Remainder := /Meg (f-P

Thm (Entropy Approximation) &
n/f-pl

Let SurBinomial (n
,p) and define f= 6 [min(f,p) minCl-f

, 1-p)]
Then

,
for K= 1

,
2, ..., n- 1 from botho and I

-nkL(f(lp) ·If pisanis small
,
then this

e[t-12nfcrf)] Vatnfcry) <(Sn= 1)
upper bound will be small.

I -nkz(flp) >(Sn= k)
· For ulf-pp to be small

, we need
↓

Vattuf(ff) e If-pl to decay faster than is as n -0.

Good News : In ...,
In ind Bernoullica

where KL(f(p) = -flog()-CHf) log () SLLNE+In) p as no
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Normal approximation:

DISu= 1 ~Vatipurp ec
=> nlf-pp =0() - 0 as n - -

n/f-pl accurate for large n.

Accurate if
6(min(f,p) minCf

,
rp1]21 I

-> the normal approx. for PISn
= k] is

In general , Normal approx. is less accurate
than the entropy approximation.

Thm (CLT for Binomial Distribution)
Let Sur Binomial (n , p) for O < P > 1

.

Let

Then
,
Va

,
beR where a < b

, b

u[b] =S to asto

I ↓
np +b

2

R[a]= = 1) - 2 (tk-t()
k= np+antp) [x [[a

,
b]

- which is a Riemann sum
In this range of K I

=0 Converg ing to go de as ne
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Lecture 10
if the

th

person polled 10-1

Application of the CLT for Binomial(n,p) Ij
= E supports Harris= otherwise.

p = proportion of the population In ..., In
ind Bernoullicp)

supporting Kamala Harris. Sn = [1 +... + In ~ Binomial (n, p)
n = # people polled U .

a
.
r
·
from CTEZNIOthe population. as n-S = # people in the sample who #[P-E= PER + E] = PT-E = PrP[E]n

support Harris.
-En= S = estimator of p

. =#]
Q How large should in be sit. z

confidence level or
- z Z

error nominal Coverage Probability (LTE) P(E)-[(-z) = 1-2(z)
M

# (pe[- , in+ 2)) =1 - x 5-34+E 1-2 (2) ? 1- 2 = 87z) [x/2
-

100 Cl-27% confidence interval"UITE pCrp) Since parp)
111

for given 330 and 01 ? 111 FpE[o, 1] ,

1 . /n => the above inequality is satisfied
These intervals need to cover repeated, .
at least 100(1-21% of the time · experiments E=U

.
05

,
<= 0

.
05 = n2385

↳ + !3=0
.0

,
2= 0 .

05 = 129
,
604274

274



Recall from Lecture 7 : aka Continuity Thm10-
Recall that the MGF of G - NCU ,

22) Thm (Convergence in distribution)
ut+ Suppose X ,

Xz
,
...

is a sequenceis given by Mc (t) = [[etX] =
e &

of RVs with MGF Mxn(t) On well

Elet(u)] = 1 +( +(2+.+(t"+.. defined for tECE ,2) for some 230 .

if p is odd

central moment If Mxn(t)- M(t) as n x

=> EL(X-uP] =

G= WPp- ,
if pie is

for every te (2, 9) ,
then

(p-1) !! = (p-1)(p-3) ... 5 . 3. 1 MCE) = MX(t) , where Mx is the MGE

Thm (Sum of Normal RVs) of a RV Sit
. Xn& X as-N.

Suppose X
,
LNCM,5) and X2-NCM2

,
22

with X. #X2
.

Then
,

Thm (Central Limit Theorem)
Xi + X2 & NCM, +Ma,

22 +5) Let X
, Xy,

Xz, ... be a sequence of
Pf
Mx +xe(t) = Mx

,
CE)Mxnt) by HagxXeid RVs with finite mean u and

Mit+ Mat + 5
*t finite variance &? Let Su= Xi +...+ Xn. Then,
I=

e(u ,+M2t +Pri+24 Mi P(-u)x] = E() ,
VER.

= e
↑ -

Lecture 7, MGF of NCMitM2,
TFE Su-ELSn]

uniqueness of MGF
↓ Var(Su)

=> X+ X 2 ~N (itM2,
#5) whereIG1 denotes the C

.
d

.f
. of NCO,

1)·
275

275



10-3

Pf of CLT Mylo =

1LETYT = 0.
&

Let L'(t) = My,
(t)Yi = XM .

Then

,FIS My,(t)

Let En = r-M)= Mi &"(t) =MC_(LC =EE]
-

Want to Show En =>> zm NCO , 1)
as n->G

Mzu(t) = ETY] = /My ,
I Apply [Hopital's rule :

by 1 of Y,, .....Yn

log Mznltnl
ein

2
-

By Continuity Thm
,

MGF of NCo
,
1)

linM(t)= ~hiI
or equivalently limmL()=

n-Δ

implies End >Z as new. =
276

276



10-4

Rate of convergence Extensions of CLT.
1) It but not identically distributedThm (Berry-Escen Theorem RVs satisfying additional conditions

There exists a constant Cs.
t

. if Lyapunov or Lindeberg condition

Xi
,

X2, .
.
An are iid RVs with (stronger)

finite mean M
,
finite variance + and · Special case : (Bounded RVs)

finite 9 = ELIX : -uP] , then XXz,
...

# RVs with EIXi] =Mi <O

VnEN
,

and Var[Xi] = +? <
Sn = Xi + -- -+Xn

,
with partial sum

.

Sup /Fucd-EG1 ICS a) 7 a constant My 0 Sit.
CEIR #[IXiK < MJ = 1 ViEIN.
where Su = X,

+ - .. + Xn, b) Mi Van) =

En=nu) ,
Fre=En[].

Then &2 Since Xy ...,
Xu H.

Remarks :
I

Su-EISn]
1) This implies uniform convergence. lin(n) <=G,

VIER
ht G

2) C does not depend on

the distribution of Xi
.

2) Identically distributed but not
0

.40971c[0
.4748 Stationary m-dependent sequence of RVs
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Lecture 11 11-1

We have used the following theorem Fortunately ,
the Fourier Transform of a

on multiple occasions to obtain RV

X,defineditX) ,
whereitseveral convergence results.

Thm (Convergence in distribution) is finite Vt-R. This function is

Suppose X1
,
Xz

,
...

is a sequence called the characteristic function.

of RVs with MGF My (t) On well

defined for =C-E ,2)
U

for some 370 .
Furthermore

,
we have the following

useful theorem !
If Mxn(t)- M(t) as n x

for every te (2, 9) ,
then Thm (Levy's Continuity Theorem)

MCE) = MX(t) , where Mx is the MGE XnEX as n-0

of a RV Sit
. Xn& X as-N.

#
&Xn(t) ->Yx(t)asn+ 0

,
V +EIR.

However, the MGF Mx(t) pointwise convergence
may not exist for some RVs.

e.g. For X ~ Cauchy distribution, We will study another useful

Mx(t) = 0
,
Xt to convergence result tohay.
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Recall that in Lecture 7 we showed: successes in the original unit interval :
Ynw Biomial(n

, Pul , where in=Let GneGeometric (i) ,
where X3 [[Yn] = upn = X

and define Yn * 11 + ... + In where Is
, ....,
In Bernoulli(pn)

Xn= N

=> MGF : My(t) = [Pret + C1p)]
Then

,

XnE> XnExp(X) as nex
X(et- 1)

Discrete Continuous disas Myn(t) = (1 + yet -1)]"-> e

Y
Subdivide both the parameter and the time

-

Aside: what does this correspond to ?

interval between trials finer and finer. him (I +an if himAn = a

I X I
n->2

U= 1 ↓ ↓ > I See page 126 of Lecture Notes from I
O 1 time Fall 2022

I X/2 I X/2
Ye Poisson(X)

,
X30

u= 2 ↓ ↓

O ↓ 1

< MyCt =EletY]=eth
u=3 ↓ x/31X13 !

x/3
↓ >

= X(et)"=
+ ext

I I

O 55 1
=> YnYu Poisson()) as ne so.

n subdivisionss...*.
↓ ........ .... >

o 1 X = intensity per unit time.
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(Successes) N = # trials
# arrivals in this interval ~ Poisson(Xr) Xi = # times type i is observed.

I I -

(xXx ,
x xxx

,
xx Denote this by X
-

O [ [+ r time
(X

, . .

.,
Xm) /N = x ~ Multinomial (2

, P, ..., Pm)
m

You Poisson ((r) Zu Poisson (XS) NOT 11 given Nen P = 1
, Picto, 1)

-11 I I a

I X(x X
,
XX

,
x X X

, X > n

time
For(9)--- , am)Stj = 2 and Aje50, 1; his

O T Thr El t+S I

YHZ if the intervals do not overlap.
EIX= /N =] = Ca, am) p.P .. pam

-n !

9. ! 92! --- Am !

Poissonization of the Multinomial Now
, suppose the #-trials is a

Consider repeated trials each with RV N- Poisson (x)
,

>30.

in types of outcome.
(For Bernoulli trials

,
m= 2) What is the distribution of (X, ...,Xm) ?

e
.g. m= 6 : roll a die repeatedly
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a = (a, ..

. ., am) , age 50 ,
1

,
2, ... 3

Def (Probability Generation Function)
Let X be a non-negative integer

#T=]=I=IN =]IN=n)
valued RV . Then

,
for It1,

Gy(t) : = EltX]= [X=n]
.

n = 0

-pajne XPoissonxa /

-D
S X(t -1)

Xe 1
Gx(t)=C = e

~ Thm (Uniqueness) Suppose X,
Y

=
Pa .... pam yastant-tamXP- are non-negative RVs. If

A! 92! --- Am! GX = Gy
,

them X * Y
.

=

(p,X)9-pix (pXIAmPX (DMXMm The Let X ...
X be H

,
nona

9,!
e ap8

Am !
C

integer valued RVs. Then
,
the

PGF for Su= X+ - .. + Xn satisfies

=> If Nu Poisson (X)
, Gg(t) = Gx

:
(t)

1) X, ..., Xm are
↑f Gsult) = E(tX+ - - +X) =E[FetXis]

and 2) Xj n Poisson (p,x)
by 1= ELetX=) .
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XPoisson (X)
,
Yo Poisson(u) ,

XHY
x(t-1)M(t

-

1)(u+x)(t- 1)
PfGx+y(t) = e

Uniquess => X+Yw Poisson (M+X)
GSy(t)=" DISN = k)Theorem

A useful theorem : = IS= /N =n][N= n]
Thm (Compounding) Let X1, Xz,

... be nere

a sequence ofiid X, X
,... N = = DISn= k]

integer-valued RVs withonnegative
at

interchange
PGF GX

,
while N is a non-negative the order=RIS]]N

integer-valued RV H of X,
Xz
, · . . of summations
-

with PGF GN. Ok to do

this here. Gg(t) = [Gx(t)]2
Let Su = X1 +... + XN. Then

,

Gsy(t) = Gu (Gy(t)

= (Gx(t)) RIN=n]
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Lecture 12

Transformations of RVs

Probability space (2,
#

,
1) Q What is the distribution of Y= TCX) ?

RV X :2+Rx = R Change of Variable Principle:
T:Rx-> Ry = RM For a given T,

the distribution of TCX)
RV T(X) : e->Ry is determined by the distribution of X.

X
T

For A[Ri
, (technically He[y)

- Rx
- RY RIT(X) =Al = REween(T(X(w) E As

z &
&

x(w)
+(x(w)

= Swee( X(w) eT"(A)3
= IIXET"(A)] (A)

- Discrete Case:

T(X)
PIT()A] = 2 [[X = x)Technical detail :T needs to be a CERx : To eA

measurable function. Continuous Case:

-- algebra on RX ↳ Define Y= TCX)
Measurable spaces (Rx

,
Sox)

,
(Ry

,Soy Sfyly dy = (,x
d

For all AESox, require T
-

(A) [X
(A) =

A
T-(A) := ExERx /TGDEA} is the preimage of A

P .

d
.
f

.
is given by fily) =hi<Y < y +5]

eXXXX N, S

For SK1
,
PTY <Y < y +5]fymy S

Note : This transformation is NOT invertible. Note : RIY= y] = 0 for continuous RV Y.
But preimage +- (A) is well defined.
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1-
2 (Log-normal (⑨

2.g . ) (Cauchy tru(8) Commonly used in economics
,
stock market

~ Uniform(-) , analysis, engineering , biology ,
etc.

Y
A

Xn NCM, 52)Y = tan(Q) = Sinc - O Y = T(x) = gX-For YER,
Ity < tan(Q) <y + dy]= fy(g) dy T

+

(y) = log(y) >

· since
tant ismonotonicaloy 7

=> EItan"(y)<< tan"(y+dy)]
ofTaylor approximation fy (y) = Ex (log(9) decyl

A

=EItan" (y) <@ < tan(y) + dy Eyltant (y))]
~ forty in -

flo,

All moments
, of exist :

nu+n=> fy(y) = +(+yz)y R Elyn] = Synfylyldy = e

Recall ETY"] = 0 for all ne IN = 21 ,
2,3,... 3 However,

In general, if T is invertible

and TH is differentiable
,
the p.

d
.
f. Ele+Y] = g et& fylyidy = 0

,
V +> 0.

of Y= T(X) is given by
d++cy)

=> There does not exist a neighborhood
fy(y) = fy(T"(y))

dy
C-E

,
2)

,
230 where MGF exists.
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Log-normal M- 52
Mode = e & (Chi-square or Gamma)

fy(y) (Non-invertible
X- NCo, 1) ,

Y=T(X) = X 2.
For Y>0,

REy < Y<y + dy] = fycyldy

=[ < X <edy] + RE-Ty < X)=g]

↳
f(-) = fy(ty)X

- 4
=> fy(y)== e

,
fra

This is= or Gamma(
,
2) distribution

My(t) = EletY]=dy
Y

H = (1 - 2+) =dy
du= (l-2t) dy

Figure from Wikipedia -1

for +<
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(Many-to-one T) Suppose TY(g) of each => XP +... +X -X
ye Ry consists of a finite or countably infinite
set of points [Ti" cy)3 Ce. g. Ivy above), Let Rn=+ X2+... + X.

.
Then

where To are differentiable
.
Then,

fy(y) = [fx(Ti) diy
fil)=20

e% (length of a standard Gaussian E
vector in -dim) & r4O

.

EIRn] =E r(etz)/r(e)

=F
X
, . . ..

Xu InNCO, 1)

Sn = Xi + x2 + ... + Xi (Chi Distribution)

Msu(t) = [Mx,
(t)]"= n=2 : Rayleigh Distribution

(l - 2t)4/2
u=3 : Maxwell-Boltzmann Distribution

Yw& or Gamma (2
,
2) Used to describe

fy() =Fhas pdf particle speeds in ideal gas

My(t) = Tt21 + E
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12-5

Quantile Transform For Xm Bernoullicp),
C .

d.f. 8x(u) = Ei ifO< UEl-p,
S
if 1-p<2 < 1,

Let Un Uniform (0
, 1)Exbx Then

, Gx(W) X
1) X either discrete or continuous

o (u) x

For UE(0
,
1)

,
the n-quantile Ex(n)ER2) Ex continuous

of Ex satisfies Fx(Ex(n)) = 2, Then, Fx(X)](
provided that it exists. Fx(x) = IIX[x] =Ewer(X (c) =+

X- Bernoullicp) Ex
M

Xin -> Rx, Ex : Rx-> [0
,
1]

Fx(x) :2 -> [0
,
1)

gx(1-P) is not unique I Fx(X(wi) =15w'e2)X(w) = X (wis=xd
1 - P- #x continuous=> > Inverse exists and
gy()does notexist Ex(u)= Ex (u) for all ne (o, 1)

O ↳ 3

To address these issues
,
define gX as : For UECo

,11
Since Fix" is strictly increasing

Def Quantile Function) For UECo
,

1) , # [E(X) =n] = RIFY (Ex(x) [Fx(m)]
Ex(u) = infExERl Fx() 223 = I X = Fi(a)]

"infimum" greatest lower bound Def
. of CDF = Fx(F+(2) = 4

X

287

287



STAT201A: Introduction to Probability at an Advanced Level (Fall 2024)
UC Berkeley

Lecture 13

It is natural to consider multiple random variables and try to understand their interaction.
For instance, random vectors, random matrices, point processes, among many other interesting
objects. Here we focus on the case of bivariate jointly continuous random variables.

Definition: We say that (X,Y ) are jointly continuous if there exist a joint probability
density function f on R2 such that for every measurable B ⊂ R2.

P
(
(X,Y ) ∈ B

)
=

∫ ∫

B
f(x, y) dx dy.

A function f in R2 defines a joint probability density function (also called joint density function)
if

f(x, y) ≥ 0 and

∫ ∫

R2

f(x, y) dx dy = 1.

Example 1: (Uniform)
Let D be a subset of R2 with finite non-zero area. A random point (X,Y ) is uniformly dis-
tributed on D if it’s joint density is

fX,Y (x, y) =
ID(x, y)

Area(D)
=

{
1

Area(D) , if (x, y) ∈ D,

0, else.

Example 2: (Bivariate normal with correlation 0)

Take (X,Y ) with joint probability density function fX,Y (x, y) =
1
2πe

−x2+y2

2 .

Remark: In the one dimensional case, for continuous random variable, the probability density
function represent the infinitesimal probability of a random variable to take a specific value.
More concretely,

P(X ∈ [x, x+ ε)) ≈ fX(x)ε

Similarly, in the two dimensional case, take a small neighborhood ∆ containing a point (x, y),
we then have

P
(
(X,Y ) ∈ ∆

)
≈ fX,Y (x, y)Area(∆).

Question: Given a joint density for (X,Y ), how can one recover the marginal density for X
or Y ?

Proposition: Let (X,Y ) be jointly continuous with joint density fX,Y and let fX and
fY be the densities for X and Y respectively. Then

fX(x) =

∫

R
fX,Y (x, y) dy,

fY (y) =

∫

R
fX,Y (x, y) dx.

1
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Proof. We will provide a proof for fX , the other case being analogous.

P(X ≤ t) = P(X ≤ t,−∞<Y <∞)

=

∫ t

−∞

∫ ∞

−∞
fX,Y (x, y) dy.

Differentiating both sides of the identity gives the statment of the proposition.

Remark: We can have X
d
= W and Y

d
= Z but (X,Y )

d
̸= (W,Z). This is precisely why it is

interesting to study joint distributions.

Example 3: Let X,W, V be independent Exp(1) random variables and Z be another indepen-

dent Gamma(2, 1). Let Y = X + V . It follows from previous lectures that Y
d∼ Gamma(2, 1).

We then have X
d
= W and Y

d
= Z. However, we always have X ≤ Y , while the event W>Z is

possible with positive probability, so (X,Y )
d
̸= (W,Z).

Question: Given a transformation T and the joint density of (X,Y ), what is the joint density
of (W,Z) = T (X,Y )?

Polar coordinates.
Let (R,Θ) be polar coordinates for the point (X,Y ), then

fR,Θ(r, θ) = rfX,Y (r cos(θ), r sin(θ)).

Proof. On one hand, P(r ≤ R ≤ r + δ, θ ≤ Θ ≤ θ + ε) ≈ fR,Θ(r, θ) δε. On the other hand, by
describing this event using (X,Y ) (Draw a picture) we have that

P(r ≤ R ≤ r + δ, θ ≤ Θ ≤ θ + ε) = P
(
(X,Y ) ∈ ∆

)

≈ fX,Y (x, y)Area(∆)

= fX,Y (r cos(θ), r sin(θ)) rδε.

Putting together both approximations we conclude.

Example 4: As an application of this result for (X,Y ) bivariate normal with correlation 0 (See
example 2) we get that

fR,Θ(r, θ) =
r

2π
e−

r2

2 .

This joint density doesn’t depend on θ: the normal distribution is radially symmetric.

Definition: We say that a function T : R2 → R2 is a linear transformation if

T

(
x
y

)
= MT

(
x
y

)
+ PT .

Here MT is a 2× 2 matrix and PT is a 2× 1 vector.

Example 4: Consider T

(
x
y

)
=

(
x− y

x+ y + 1

)
. Here MT =

(
1 −1
1 1

)
while PT =

(
0
1

)
.

2
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Some properties: (Without proof)

1. T is invertible if and only if MT is invertible.

2. if P is a parallelogram in R2, then T (P ) is also a parallelogram.

3. For every parallelogram P , Area(T (P )) = Area(P ) |det(MT )|.

Remark: Property 1 is giving us a criteria to determine when a linear transformation is in-
vertible (for example, we can calculate the determinant of the 2× 2 matrix MT ). Property 2 is
saying that linear transformation are well behaved from a geometric point of view. Property 3
allow us to understand how areas are deformed through linear transformations.

We want understand how joint distributions change after applying linear transformations. Given
fX,Y , what is fT (X,Y )?

Invertible linear transformations:
Given T a linear transformation with inverse S, let (W,Z) = T (X,Y ). Let P be a small
parallelogram containing a point (w, z). On one hand,

P
(
(W,Z) ∈ P

)
≈ fW,Z(w, z)Area(P ).

Similarly,

P
(
(W,Z) ∈ P

)
= P

(
T (X,Y ) ∈ P

)

= P
(
(X,Y ) ∈ S(P )

)

≈ fX,Y (x, y)Area(S(P ))

= fX,Y (S(w, z))Area(P ) | det(MS)|

We conclude that for invertible transformations T ,

fW,Z(w, z) = fX,Y (S(w, z)) | det(MS)|.

Rotations:
Given (X,Y ) in the plane, we may be interested in the distribution we obtain after rotation by
angle of θ, of the new coordinates (Xθ, Yθ) in counterclockwise direction. This is given by the
linear transformation Tθ.

Tθ

(
x
y

)
=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
x
y

)
.

Using our previous result in this situation provides the following

fXθ,Yθ
(w, z) = fX,Y (w cos(θ) + z sin(θ), z cos(θ)− w sin(θ)).

Sums and differences:
Say we would like to obtain the joint density for (X + Y,X − Y ). This can be obtained using
the linear transformation

T

(
x
y

)
=

(
1 1
1 −1

)(
x
y

)

Again, a direct application of our result for invertible linear transformations provides

fX+Y,X−Y (w, z) =
1

2
fX,Y

(w + z

2
,
w − z

2

)
.

3
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Orthogonal transformations:

Definition: An orthogonal transformation T is linear transformation that preserves the
inner product. So it satisfies

⟨v⃗, u⃗⟩ = ⟨T v⃗, T u⃗⟩.

This definition is quite abstract, so we will give a few facts to get to know them better.

1. It preserves Euclidean norm, ∥v⃗∥ = ∥T v⃗∥. Orthogonal transformations preserve angles,
lengths and areas.

2. For T an orthogonal transformation, PT = 0⃗ and MT is an orthogonal matrix, so MT
T =

M−1
T . In particular det(MT ) = ±1.

3. In two dimensions, orthogonal transformations are rotations, reflections or composition of
rotation and reflections.

Example 5: The following are reflections,

(
1 0
0 −1

)
or

(
0 1
1 0

)
.

Example 6: If (X,Y ) has radial symmetry, so the density function fX,Y (x, y) is of the form
g(x2 + y2), then the joint density is unchanged under orthogonal transformation. For instance,

let (X,Y ) be two independent standard normal random variables. Then
(
X+Y√

2
, X−Y√

2

)
are also

two independent normal random variables.

4
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Lecture 14 14-1

Recall from last lecture :

RVs X and Y have joint density fxis 2 fx
,
x ) = ISO193 · 1S01Eb3

=> for every measurable ACR2
fx(x) = [S01a3

[CXDEA] = SSA Exiscy) didy. E fy(y) = 1
. 302y[b3

Is knowing the value ofFurthermore

... Y
ins

X does not tell us

> i
%

anything about Y

,
and rice Versa.

x
XIY.

Ex, (y) = tim #I(X ,) =N]
&

*↓ (y) Area (1) 24 How about Axis])=2[S+ y2 In 2 ?

The precise shape of O does not matter. xY

r
fx(x)=Ex

,Y(, 2) dy
Independence of X

,Y S -

fx
,y
(, y) = fx(x) fy(y)

,
V(

,y)
= -> IE-UIER]

↑ ↑ Tr

a function of only a function of if only Similarly for fi (y).

XHY
.
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T : IR2-> &2 invertible affine transformation .

14-2

T(X
,Y) = (U

,
V)

,

Scrv) = (X
,Y) e U = X+Y 3 => X= &(u +V)Inverse

(X,Y) 2
T

⑫ V = X- Y Y= I(U - V)
R

S
R ->

Y ~

& - M M Area = 2
h (c)

,
Y(WI) S T(Xiw)

,
Y(w) 2- % Area = 1 2-

1 T (b)
1 - ⑨ & 1 - ⑧

TavET(X,Y)
a 1 b

TCaiTI I L > I L

Affine Linear Translation
↓ 23

-1-12
4

T(X ,Y) = M
+ [x,) + p = [] D = a small region containing (n ,2)J

C
2x2 invertible matrix 2x1 rector RI(U

,
v) = 0] = RI(X

,Y) ESCH)]
ST(xiY) = S(U,v) = (X ,Y) SS SS

S(U ,v) = MITr]- MIPT fr
.
v
(2,2) Area(d) fx

,y
(2(u+ u), (n-v))Areas(0)

Area(D)

= Ms[Y] + Ps Algebraically,
T() = ( :1 ) (*) = (v)

RICUVIEB] = [(X,) @S(B)] M+= (ii)
,
Ms = z(it) ,

MsM+= (oi)
SS for (a,

w dudu = ()) Ex,(y)ddy Ide+ Msl = (f) - 2)) = E

fr
,n

= Ex (S(u) Idet Ms. for (v) = 2 Exx (curul , Enu-v)
293
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14-3

General Invertible Transformations.
T : IR-> IR2 Assume differentiable. Then

,
for any point (a

, b) near (2
,

2),
but not necessarily affine. The Taylor expansion in 2-d gives

T(X,) = (U
,
V), S(u

,
v) = (X

,Y) Si (a,b) Si(u,
r) + (a-H)2Si(u,r) + 1b-USC

ST(X
,Y) = (X

,Y) Gu

a
↳ fur (u,u) Area(h)= In matrix rotation,

v+ E-.... -

v =-----
IT (U,VIE0] = R[(X,)ES(O)] Stay [Sc+SIn a: i 3

= fx
,
y (Scu,

v) Area(Sco

nu+ S What is SCU) ? -

If s is affine
,

then. ↑ Js(u,
v) Jacobian matrix

SCN) is a parallelogram of S at (4, 0)

For general S
,
if 8

,
31

,
then SCW)

an affine transformation.

can be approximated by a parallelogram, ~ Area (S(Δ)
Since S can be approximated by an Hence, -affine transformation on 0.

Let S(u) = /Su ER when D[(X
,Y) - Scl] = Ex

,y
(S(u

,
v) /det Jsc,/ Area (*)

Si : /R-R are differentiable functions. => for (a ,
w) = fx

,
y (Sm,r)/det Jscurl

i= 1
,
2
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,
X , Y

14-4

2) XnGamma(x1
, B) , Yu Gamma(ac,3)

and XIY. Trate => farmvi = f (u) f () ,
VCHER

ne+ u = x+y
,
v=Y (Since F(v) = Fu E

,
Xu

=> x = WV
,
Y = U - X = U(l-V)

S
,
(n,v) = zv

JS(u) = [ ]
=> UNIV

S2(u
,
u) = u(l-v)

Ide+ Js (u
,
u) = 1 -ur -uctu) = 1-2) In Summary,

fr~ (4
,
2) = Ex (nw, ncrve) 2 ISne 10

,213 ISWE 10,73
X+Ye Gamma (d + (2

, B)
-- ~ Beta (d,

d)
XyY= fx(uus fy(uc-ut)

=39-Bu]-B
and X+Y#

Mxi) T((2)
X U ISUE 10

,213 IEUE (0,113

↑+de)wicuj2)=+ I↑(, + (2) M(xi)π(x2)

x[(ne (0
, a)] x ISwE(o, 1)3

p.
d

.
f
·
for Gamma (9+ X

, B) p.d.f · for Beta(x,
&2)

295

295



15-0
Lecture 15

Problem of the day
· Alice and Bob agree to meet

for lunch but both forget
the exact agreed time.

· Each person arrives at the

Cafeteriau.a. r.
between

12 pm and 1 pm ,
and is willing

to wait for 10 minutes.

· Q : What is the probability that
they meet ?
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Lecture 15 15-1

Recall the Beta distribution from
Lecture 14. For 2

, BX >0 , source:

suppose
X-Gamma(a

,
x)

,
Ye Gamma (B,

x) Wilcipedia
↑ "Trateshape

and XIY. (Note Gamma(1
,
X) is the

Then
,

same as Exp(X). (
X+Y #- =: Z

,
Zu Betalx ,B)

A

p.

dif. Does not depend ona

fz() =
N(a+ B) z ( z)p- Z

x 15z(Co, 1)3

M(a)N(B) fz(z) can take on quite different

↑ (4)= -+dt .

Gamma function shapes for different <B values
e

Generalization: Xin Gamma (xi,X) ,
i= 1,

-in

For ne N
,
N(n) = (n-1) ! X. .... Xn Ho.

Then
,
(x + - .. + Xn) # (X, . .

.

,
Xa) and

Elz]= (X, + -- + Xn)
A very useful family of continuous (X, . .

., Xn) -Dirichlet (dy--- , [n) with p .

d
.f.

distributions on [o ,
1]. Xi+ ... + Xu

Application : Bayesian Inferencee. (Later) f(...,n)=
152 o
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15-2

Order Statistics : Claim The p.d.f . of Xan = maxEX, ....,
Xu]

(
, <2

,
---

, (n) = a list of real numbers. is given by fx, = n fe) [Fox]2
The order statistics of ( .... <) is

a Ex,=IX[c]= I (X: <)]permutation of the list sit.

x(x)[(z)[ ... <x(n), = [Fc]n
where <Cys = +j) for some permutation it fx= = n[F]LFOD

A

of E1, . . .,
n3. d

If X
, .. .., kn are all distinct

,
then

<j) = theth smallest element ag E....,3
.

Claim The pdif. of the gth order statistic

Xzj) is given by
Suppose X,

...,
Xn idF

,
some continuous fx

,

" =x() -F]
- 2

distribution
Let fx = dF denote the p.

d
. f. for j= 1

, --., h. PrboffullingtClaim The p .h .f.
of X = minEXy --.,

Xu It
↓ is

>

is given by fx()= fo[l-Fa]The event (X( = x) corresponds to

Et[X>]=[ (X : <x)] at least j of 3X, . . ., X23 falling in (-8,]

# = RIX2] = [l-Fe]"Fxi) =

f =x(l-IX) =n[F]d #[X]= (i) [FacT"[l-FauJ
57298
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15-3

f(x) =&X(j) Uniform order statistics.

=(IF0]"[-FJc+ D[F6]"[l-Fa Suppose U
, . .

.,
Un did Uniform (0,

1).

Then,
fac = 1x10, 13 and F(x)=

j- 1 n-j
=n() -F => fup(h) = n(n)u x = 4)

by telescoping.
A more intuitive derivation.

(n-j+1) - 1

fx,x = him [x < Xj< (x) =
Sto (n-j+1) - 1

S
=
π(n + 1) 25 ( - u)

The leading contribution to Ec <X*+S]
T(j) ↑ (n- j+1)

is given by the following event !

j-1 pts fall here n-j pts fall here
=>Vij ~ Beta (j, n-j+1)

-- General order statistics.

c*S

&

Recall from Lecture 12:
n-j

(I) [FGj5ufeds [1-Fac + Ss] Def Quantile Function) Given a RV X

9 with c.

d
. f

.
Ex

, Ex(u) = infExERIFx(d[23
a choices for the point for UE(0,

1)·

falling in G,+ 5) Furthermore
, for Um Uniform (0, 1)

,
8x(U) * X.

Events with two or more points in
=> For general X, ...,

Xn In Ex,
C

,
x+8) are of higher order in 8

Xg = &x)Wij) ,
where Wijs ~Beta(j , n - j+1)and hence do not contribute to (A).

for j=1, ...,
U.
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15-4

Joint Distribution (Lika-- , Lnn) ~Dirichlet(1, ....
1)

Thm Suppose (X...., Xn) is exchangeable with

joint density fax ....) (which is symmetric in fl
,

---

> futil = n !1 = 13 Itiso
-:4) .

Then
,

the joint density of their The gaps are not independent ,
but

-

order statistics (X(x
, ...,

Xcns) is (Li
, ...,
Ln+) is exchangeable.

(xx -..,xn) = n ! f(x . . .x) 15x·kn]. = L Led ... Ent Vi= 1
,
-..

, n+ 1 ,f(x(
, ..., X(n) L = X ~Beta(1,n) ELLi]=nPf See Gut Chapter 4.

3.

Gaps :
Li La ↳ Ln+ 1 Back to the Alice & Bob problem.
mu ~

La( I↓
Uc Us Wass--- Win ! ~ n= 2

XX I↳+ Ucl Transformation of variables. ipm Wei U(z) 1pmLj = Wij - Wijn) , j= 2, ..., n Ide+ 51 = 1
Lut = ) - Wan 10 min = thr ↳* L = Xi

fin
y ..., (n)

Cli ...,(n) = n ! 15h + --- +12 13 Elio RELn[5]=RHS = the joint density of (W.. ...
Wal

Wit ... + Wntl

where W1. ...,Whil n Exp(X) = Gamma(1
,
x)

=2
Chi

,
La

, ....(n)WW
=

- (2 + 1 =

7
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16-8
Lecture 16

Problem of the day
Sample two points independently
and H

.
a

.
r
·
from a meter stick,

thereby obtaining 3 segments.

Li ↳ ↳3

minem
I

O Im

Q : What is the probability that
the three segments can

form a triangle ?

↳3

↳

21
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16-1
Lecture 16

Linear Model : Common Hypothesis Testing Task :

Y = Bo + B,
X , + ... +Bp- Xp- + E Null Ho : Bj = 0

↑
- response Le .g .,

disease risk) EmN(0,
5

%) Alternative H: Bj + 0

X = (1
,
Xy - .

., Xp-) = Covariates or features key Theorem ! Under Ho,
-

(e .g ., age, BMI, genetic data Bj
5 = (Bo ,B, ..., Bp-1) = unknown crefficients t-distribution

Sears) ~ tu-p with mp

Training Data! E(() ,y(i) ,
i= 1, . . ., n3 degrees of

Y(L
=- (1) - VIle112/kn- p)52) freedomX I

I =

: X =

! where E = Y-XB is the residual.

NX1 nxp
-

Y(h)
-
Ym)

Design matrix

Assumis non-singular , then

Under Ho,N
2

the MLE or least-squares estimate
2) IR-Xa

of is

3) ll # .

= = (X)"XT Y
Today we will show that these facts

imply Sw turp.302
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16-2

Conditional densities of Continuous RVs fXlY =y, is well defined as long as

X
,
Y Its RVs with joint density fxix .

fy (40) > 0.

For a given measurable set At
,

we

Independence :want to findXAlY = 3.)
. XIY fx(Y=y() = fxx,

Subtlety : DIY= g] = 0
,
V yeR. XXER and FYER sit

. fy (yK0.
For SK1

,

RIXeAly< Y <y+ S] = fx
,y (x) ,y) = fx() fy(y)

= RIXEA
,

(10Y (YotS]] Vx
,y EIR.

#[Y Y < %+ 6)

-
SaSExis (2 , 3) dyd's SAfx,308 de

Law of Total Probability :

got fcy fy (7) S fxx = Gfx, (, y) dy

= S ExxBo di =x=g() fy d
fy (3)

Y
conditional density of X given Y= Yo.

denoted
Eyly-g."=
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16-3

ApplicationXY
I NO, Application 2:Y.

Let

Y,

2
+ - -+Y

fr(r= Frly-y() fy() dy K ·
a.

K
.
a. X

Recall : Y2+ -. - + ~Gamma(2)
(R(Y=1) - ((=2) * Define G = Y+... + Yiz.

by 1 of X ,Y
fp(r = J FRI =9 (v) f(g) dg

TCX=* is an invertible and differentiable (RIcg*1 =g)transformation.

Recalling Lecture 12-2
,

we obtain

fx(r) = Exlry) /Ary = 1 fxlya!falt=
=d-

↑ =
Cauchy !
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16-4

Recall N() = Set de Bayes Rule for continuous RVs

↑ (E)=. -Y(x=
x(y) =

fx, (x,y)

fri=(1) fx(x)

= = fix(y=y(x) fy(y)
fx(x)

-

density for t-distribution with 17 by Law of Exlyzy() fy(y)
degrees of freedom. total probability 90 Exly-y (2) fy (2) dyIf k= 1

,
th is equivalent to Cauchy

Whathappensasoa Applications next week.

E [Y2] = 1

SLINEY1 as K

ti -> NC0
,
1) as k+ 0.
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Lecture 17

Problem from Lecture 16 can form a triangle =>

Sample two points independently 4 < (2 + 13 = 1 -2 = 44
andH

.
a

.
r

.
from a meter stick, 22 < L + Ly = 1 -2 => 124

thereby obtaining 3 segments. La < 4 + 22 = 1- = L

Case 1 Need U,<I
,

U-U, , 1-Uz
Li ↳ ↳3 I X

minem O Ui Y !
I

Im Case 2 Need Uz , U-Ua , -Wi
O

I X

j E U
.

i
Q : What is the probability that

the three segments can
case 1

form a triangle ? / #[CU.,
(2) = Shadea

↳3
= I

↳ -
21 ocase
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Problem of the day

Suppose UI
,
Uz

,
...

in Uniform (0, 1)

and define

N = min(n)( + ... + Un > 13.

What is EIN] ?
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Lecture 17 17-1

Bayesian Inference Suppose we want the prior and the

X = observed data 3 continuous posterior to have the same functional
⒔ = unknown parameter(s) RVs form

.
How should we choose face ?

Law of Total Probability :

If fold < &* CHOP" then

fx=x0) fo do fa(x= (d) ga
+x+

((-g)
+ n-x -

Bayes Rule for continuous RVs That is Beta(2
, b) ofConjugateporaLikelihood

fxl-o( fold) prior -> ((X=) ~Beta (C+, B+n) of Binomial
SJ=

(a) =

joEx fold -

* d dimensions: = (X, . . .

,
Xa)

costerior 0 = (0,
,
- -

,
Od)I

If X or # is discrete
,

use ( = :) ~ Multinomial (n
,

0, ..., 0d)

probability mass function instead of QT=...,/ =0) =()0" ... of
(X(Q = 0) ~ Binomial (n

,
0)

-

R[X= x(Q = 0) = (4) x- an- x14x + ... +x = 43 15x 50 --

-43]

x15x 50....,233 Conjugate prior for 0 ?
Si-1fa(x= (0) < FIX=/ = 0] fall A : f Oi Dirichlet (2,..., (a)
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17-2

Gaussian X1, ..., Xn
* Normal (M , 22) Remarks :

Case 1 : a unknown, 2 known 1) Mn->Mi as -D

X = (X, -.

., Xu), M = mean

3 Precisions are additive.

(-

,x)a exp5-axi -u)] /Precision ↑ as 29
·

less informative prior
-fM

=r 4) For a finite n
, if-0

,
then

Conjugate prior : M-Normal (Mo
,
55) Mu->Mit and- &fu (m) < exp3-2 (M -M)23

fu=
(e) < fYIM=(i) full) Case 2: u known

,
or unknown.

More convenient to work with precision/: 52
<expl-zi-M (M-10) 2] fY(x= x -- () =(expE- -1)2]
a expE-ze (M -Mn)2] Conjugate prior : N-Gamma (o ,Pol

where -
convex

Un =(Mot Maximum
fx(X)=Xoo

combination Likelihood
+

= -2+ Estimate fN(x) < fly f(x)
precision &

prior data

ML

a Xt -exp[-x[Botisprecision precision
22=
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17 - 3

(x/ /=) ~ Gamma (In
, Bu)

Double exponential
Xn= 20 + 4 X-Laplace (M,P) , B30

Bu = Bo +E fyx= exp) -(
a EIX] =M

2

Case 3 : both M and 22 unknown.

fX /M=M,
1=x (5) ↑Va(x) = 29

-
S

~ [*
-*yexpExi-*] Model Selection Model 0 US

.

Model 1

# Bernoulli (E) = Prior
Prior odds =

RID = 0S

fi, (Mix) = fu=x (r) fx(x)( RIG = 1]
↑ ↑ X1

, . . . ,Xn/ =0d Normal (0
, 1)

Normal (Mo, ii) Gammal
, B) pdf Fo)=

where X
, . .

.,
Xn/ = 1 In Laplace (0,)

Mo= - (xa
,
b, c are pdf fee

2 = 1 +2 constants sit.
- Model Evidence

B = b- a &
, B, 0 - Marginal Likelihood3 Bayes Factor=

a ,
1, a.
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17-4

Posterior odds = BF x Prior odds
N

fo() =)=
(5) fA1) daData Sampled from NCO

, 1) : A=x

5 - 0
.7

,
-0

.
5

,

0
. 18

,

0
.
35

,
0

.663
ZhgA ,

A =T(z) = e
Z

BF= = 3
.
46

Additional data pt : X6 = 4
FA/ = 0(a) = Fly 0 Cloga) (log

BF= = 0
.
028 = FloyA/D = 0 Clog9)

= 15-clog <]
Now Suppose 2cX

Xi
,
· .

.. Xelgo Normal (0, 92 9 .
30 unkurin f)= 1

,
B=
a) filpe) do

X,
, . .

., Xn/ =1 Laplace Co, B) , P30Unknown FBI =1(B) = 15-logB <3

2Put
priorson a

and

a C cancels out

Example: BF= in the Bayes
log A (D= 0 ~ Uniform(- ,

c) Factor
.

toy B10 = 1 ~
Uniform)- 4)
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Lecture 18 18-0

Problem from Lecture 17 Consider the following polytope in iR"

Suppose UI
,
Uz

,
...

in Uniform (0, 1)
On = &(, ...,Un)ER/0[UiI]

Vi and

3U
, + - . . + Un = 1

and define
Vol((n) I

↓
N = min(n)( + ... + Un > 13. n !

What is EIN] ? #[Uit ... + Un[1] =
What is R[U+ U2 [ 1] ? Define Ex = event U. +.. + UK = 1

Uza IIN = n] = DIEn+ nEn]
1 -

*Area = En

Eny tr

=E-E-

O
1 >U,

What is ItU1
EIN]=

1volum =
e
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18-1
Lecture 18

Conditional Expectation E.

Die 0 fair Die I loaded
· Defining conditional expectation in full Y = # Shown ⑪[Y= ( /X = 1) = P

generality is beyond the scope of StatzolA . X= Die chosen FIY= j(x= 12= EP ,j = 1-15

· We will assume that joint density fx,y) ELIX= 0=It= E
of a pair of RVs (X

,Y) exists.

Def If Y is continuous, E-[Y(x = 1) = 6p + j(z) = 34+p).

E[Y(X= x] = Jyfy(x= (yldy . Remarks
--

More generally ,
for suitable g : R- R1) For a fixed <

,
ELY(X =] satisfies

EIg()(x =x] =gg(y) fy(x=x(y)dy, the usual properties of expectation.
Ce .g ., linearity)

and for suitable h ! IR2 - iR 2) ELYIX=] = 4(x) is a function of <
.

E[h(X,Y)(X=x] = Eth(x ,Y) (X=x]
L 3) ETYIX] = ↑(X) is a RV.

= Shk,y) fy(x=,
1) dy. ↑(X):-> R

.

If Y is discrete, [P(X)](W) = ↑(X(cl)

E[Y(X = x) = [yETY= y(X= x).

and so on.
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18-2

Thm Law of Total Expectation & In the two dice example earlier
,

Law of Iterated Expectation suppose Xm Bernoulli (9)
Tower Property ( E[Y] = ELELYIx]] = E (1-8) + 3 CH+p)g

For any RV Y Sit.
ELIY1] < 8,

ELY] =ELELY IX]]
.

29 Suppose you get a long candy bar

↑ expectation over Y of length e for Halloween and you
Pf

expectation over X share it with two of your friends as follows.

ELELYIX]] = S ETYIX=x] fx da Friend A

=([Syfy(x= (2) dy] fxx)d im Xu Uniform (0,1)

Interchange the ↓ " M

order of = You Friend B

integration Jy[] fy (x=x(y)fx(xdx) dy-
Law of total

= = Syfy (y)dy = ETY]
↓ X

YeUniform (0
,X

probability How much candy do expect to get
I for yourself ?

In thediscreteYIX==
·

ELY] = ELETYIX]) = ELE = (2)=
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18-3

The (Wald's Identity
Suppose X1

,
Xz, ...

is a sequence of
Goal : Find g

* = argmin Rig
iid RVs with EIXi] =M < O

,
and N is a

positive integer valued RV st.
NH X

,
X 2, . . .. MSE

and EIN] < -. Example : (Mean Squared Error Minimizer(
Let SN = X, + - · + XN

.

Then ((Y
, g(x) = (Y- g(x))2

E[SN] =

u EIN] . R(g) = E[(y-g(x))2] = ELETCY-g(x))2(X]]
lit ·

expection over X,Y expectation over X

TISN] =ElN]] Consider h(c) = EICZ-c2] where Z is a RV

uN Since N1X1,
X, · . .

and c is a coust.

= EIuN] =uEINS .

Then
,
h(c) = ELE]-2cE[z] + c 2

Statistical Risk Minimization
h(d = - 2 ELz] +2C

,
which vanishes
atC= E[z]

Y a RV of interest. h"cc) = 2

g(X) , prediction of Y => c
*

= argin h() = EE)

((Y
, g(x) Loss function

R(g) = E[L(Y
, g(x)] Risk

.

= g
*(x) = EtY(X]

↑
expection over the joint distributiona Regression is about modeling this

conditional expectation.
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18-4
MAE

Def (Median) For a RV X
,

a median Thm (Mean Absolute Error Minimizer
of the distribution of X is any value Let z be a RV with a finite
in sit. median m

. Then
,
i minizes

FIX[m] 2 and PIXImTZ2 · h( = EllE-cl].

↑
Not =

-
Remarks : Back to Risk minimization.

Every distribution has at least one median L (Y , g(x)) = 1Y- g(x))Median may not be unique. R(g) = ETIY-g(x))]
2) (Unique median)

x 1234 Any function & Sit. gQC) is

NEX=] to t 0 To a conditional median of Y given X=

RIX = 3]= IX23]= minimizes R(g)
So

,
3 is a median.

For any 270,
DIXL3+ E] < E
#[ X 13-5] < I

=> 3 is the unique median.

29. (Infinitely many medians)

x

P[X=x]
4

*

Any me [ 2
,
3] is a median.
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18-5

Conditional Variance.

Var (Y IX=c) = E[(y- EtY(X=3)
<

/X=x]
Application

= E[y2(X=] - (EEYIX=])2 SupposeXinsequence r
,

Claim (Law of Total Variance) and N is a positive integer valued RV Sit.

NHX
,

X2, · . . .

and EIN] < -·
Var(Y) = E[Var(Y(X))+ Var (ELY(x]) Let SN = X, + - .. + XN

.

Then
7 ↑ T ↑
conditional Variance conditional expectationS
ofY given X I of Y given X. Var(SN) = E[Var(SNIN)] + Var(EISwIN])

expectation over X Variance over X -

Pf Xziid uN

Var(Y) = #[Y2]-([Y])
2

Tower ELELY2IX]] -CETELYIX3]) = 52 EIN]+= Var(N)
Property

= ELETY2IX7]- ELCELYIx])2]
+ ELCEEYIX])2]-CELELY(X3])2
-urCE[Y(X])

linearity
of E

= = E[E[Y4X] - (E[YIX])2]
+ Var (E[Y(X])

= ElVar(y(x)] + Var (EEsIX]) it317

317



19- 1
Lecture 19

Suppose zmN(0
,1)

.
Then

,
for

fixed constants a
,
b eR, Q Does z

, 22 ~ N(0,1) = Zi+zu normal ?

X= az +m ~ N(u , 92) . No
,
not in general # is important.

Def (Jointly - Normal RVs or

Multivariate Normal ( If Suppose E ,
~NCo, 1)

EX-iXn3 is called a set of and Z.HX with DIX= + 1] = REX=- 1]=.

jointly -normal RVs if Define E2= XZ1.

normal
Y = AT) +[

For any a ER,
21-variate ↑ I #[ z2[a]= (Itz2(a(X= 13 +#Izz= alX= -1])

Xn
-

zm- =(D[Z, [a]+[2, 2 -a])
where Ex

, ..., Zm
Id NCO

,
1)
,
and AERMMand = RIZ

, [a] .

(M,-- ,Mn)T EIR are constant matrices. => Z2N(0, 1) -

However, Z,+ Z2 is not

Remark Also
,
Elz , Z2] = EIXZmXJETERS = o

1) Each Xi is a normal RV. -> Cov(E
,
(2) = 0.

2) Being jointly - normal is more strict However, Z, Z2.
than just being normal marginally &

Each (Xi-Mi) has to be a linear

combination of the same set of

iid NCo, 1) RVs
.
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19-2

Covariance Marises Let X = AZ + is
,
and A is invertible

UX1 uX1

Random Vector Y = [) AER, MERV fixed.
E

&

Cov(Y) = EEYTT] - EET) ELIJT ETX) = AEE +u = i
= an uxn matrix whose (i, j)th Cov(*) = A CAT = AAT =: S
entry is Cou(Yi

, Yj). I

Note : Than
,

1) [Cov()]T = Cor(i)) fil = feSA(-) (det (All
i.e ., Cor(J) is symmetric since

Cor(Yi
,Yj) = Cor (Yj , Yil (AYECAT-Ac]· I det (A)

2) Cov(AY+5) =AtIdetCAY)
= #[AY+5) (AT5T]- ELAY+5] ELCAY +51T]
= A LJYT] AT - AEETJETYT] AT det (2)= det (AAT) = det (A) det(T) = (det(1))
= A Cor(T) AT det() = dea)si)

ILet E, . . .. Zu ad N(o ,1) fact = (2)- -i)
z = (21

,
=-

, zn)T XI( , 2) ,
S = AAT.
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19-3

Bivariate Normal (n=2) Theorem (Maxwell)
Let X and Y be # RVs with finite variance

Var(Xi) = 2,
2

and define

Cor(Xi
,Xz) = Cor(X2,Xi) = 9 T, 22 [x] = [SOsno
- 19/ + 1 , 470 ,

30

TheYo>X,
Y are both Normal2 =(S RVs with the same

singular if
det(2) = 0.2 E (1-94) f = 11

variance.

I

=r CI-g(
ClaimLetme
Sit. 6. = Cov(Y) = AAT is invertible.

fx
,x
P,2)= Then

I

&[2(t)=
*~Nu(

,
5)

see demonstrations. Wolfram. com/TheBivariate Normal Distribution

X ,#X 9 = 0 Note : For MER** Rank(M) [min(n,m)
(Not true for general RVs) => (MMT) invertible=> Rank(MMT) = n

nXn => need M2N
.
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19-4

Independence :Suppos i For i, j = 1
,
2, ..., h :

XiXj> Sij = 0
Precision Matrix 1= (Naa/lab) = S Affine transformationon

Y = BX + = = B(Az + i) + 5
A useful result : BEIR*"

,
invertible = BAE + (B +5)

< D) , M= OYSHOYI-BDTM = [A [ Then
, Y-Nu(But , BLBT

where S = (A-BDTC) is the Schur complement of D
Marginal Distribution

-

in M

Example : M= 2
,

K= 1.

Xa ~ NiCMa , Sal
-

Xb ~Nuta (Ms , 23b) M = k = M , + gaw(t)(x2 -Mz)
Conditional Distribution.

-
= M,

+ 95(x2 -M2)(Yal *b=5) ~(, (Mals , Fals), T
-

whereals = Mn + Gab 25s' (i -Mb) The sign of this shift depends on

~

=Ma-Mad Nas (Eb-in)
the sign of 9 and whether (2> M2.

->linear dependence on (b [
.112 = U2-9052 (2) (9002)

Galb = Saa-Gab Job Soba = a- g24
= Nau = ri2C1-g4 [Var(Xi) = 52
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20-1
Lecture 20

Recall covariance matrix for an n-dimensional Theorem

random vector * :
1)

M= AAT where A is
EG

M is positive
Cor(x) = Et(X -i) (X-i)T] , i = EEX] some real square matrix.

semi-definite.

Then
,
for all fixed EIR"

2) M = AAT where A is # M is positive-Cor(X) = ETT-i)T = Ety2]
some real non-singular definite.-

~

scalar Y 30
square matrix.

=> Covariance matrices are positive semi-definite# This direction is easy to show
.

Def (Positive (semit definite matrix) Exercise
.

Let ME Run be a real-valued, => This direction can be proved using
symmetric uxn matrix

.

(M = MT). the fact the eigenvectors of a real uxn

1) M is called positive definite if

5McT > 0
,
VERRY\sS symmetricmatrix canbechosentobea b

· All eigenvalues are real and positive. M= Q X Q T
,
where X= [

*

z. .]· M is non-singular . (det M >0) ith column of Q = Gi
QQ = I eigenvalues

2) M is called positive semi-definite if x: 20 V : = can definepe =[ 0 rn]TMcT20
,

V veR?

All eigenvalues are real and non-negative. M =Q
*A=T

square-root/some eigenvalues can be zero)
A= ME Ame matrix of M

322

322



20-2

LetSo be an uxn positive semi-definite So
, if YwNnCi

,
2)

,
where So is

matrix and let A be its square-root positive definite
,
then

matrix. Then
,

S = Cov(X), E = [*(X -u) ~(n(8 ,
In)

where X = AZ and E = NuCo
,
In Standardization of n-variate normal.

Cov(Y) = A CorCEAT = AlAT = AAT=-
CorCE) = si Core)(T

= [*[[- = [gg22 = I: I=

Moment Generating Function.

More generally ,

· Recall in 1-dim
,
X-N(M,

(2)

ut + 122+
2

tER
, Mx(t) = EletX] = e

& is a covariance S is positive on-dim : X-Nu(u ,
2)

matrix semi-definite EER"
, MeCE) = EleEX]

& is a non-singular I is positive uE+E2E

covariance matrix definite
= e

& true ?

2. invertible G = QXQT why is this univariate normal RV with
- TSj ELETX] = ET ELX) = + M.== of 19-4

Var(E*)
=COCEETEX:>0 Vi=1, . . .n St

x = [..] E[...] "covariance matrix.
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20-3

Multivariate Normal and X distributions. If M=  , where S --gus are

orthonormal.
Def (Idempotent) An uxu matrix M (X-u)+ M(X-i)=C-u]
is said to be idempotent if M2= M.

EI(X-il] = gE[X-i] = E
Fact MeRuxn is a symmetric and idempotent Var [ (X-ul)= Cov()= g = 1

matrix of

MYanifadTi => g (X -n) ~ ((0
, 1)

where The theorem now follows from the fact
vectors in R". that Zi+...+zX if E, ...ErNo, 1). It

The above result has many applications
Theorem Suppose XNNCY ,

In) and M is in statistics.
an uxn symmetric matrix.

2 Xi
, -..,

Xn ind NCU,
57

Su = X+ -+Xn
.

Then
,
the aboveMidempotent => (X-)TMCX-e)~Fr

result can be used to showwith rank
-

Quadratic form

(In fact ,
the converse is also true. ) in (Xi-Si= 1

sample mean
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general P = 1
.

20-4

Multivariate CLT k-dimensional : [TX = j] = Pjc j= )
,

-...

The Let Y, ,
. .

.,
In be a sequence of

Cn
,j= 1Xi = 3

-

iid R-valued random rectors where Cu = (m, . . . ,
Cake Multinomial(n

, P.---

,4)

= [Y)
E[Xi) = i and, E[Cn

,j]=Pj , Var((nj) = npj /1- Pil
ETXis] < -j = /

, ..., K. Cor (Cri
,Crj) = - upipj ,

for itj.

Cor(i) = v Thm (Pearson)
Let 5= Y+.. +Yu (Cri-upX as n+ w

npj
Then

, in-) NC,
V) as new Proof Sketch !

multivariate (LT => as n+&,

If V is non-singular (positive definite) , thenup...., , M)unv (5) ->N , E) as ne

Where M is a lixk matrix with

1-dim ! X
, . .

.,
Xu En Bernoullic). Mij =Gut)= i,

n (P) NO1aThe
Fact ! M is idempotent and symmetric with
-

rank(M)= K-1.

Apply the theorem on page 20-3.
325

325



21 - 1
Lecture 21

Recall Bivariate normal :
(Y, Y2) ~N2 (i, 2) Yj

= (i) 2 = (SO -

⒗

⑧

Y2x
&

,
o ⒗

⑧

⒗
⒗

⑧ ⑨

· What is the -- ⑨

&

⑧

·
⑨

My - conditional distribution
-2-

I

· I
~

of YalYiza ? ! " 3 is is~

&

J

I
Gaussian Processes generalize this concept

u
,
a
S to functions

:EYER forESCR3
YalY, = a ~ Neare

,
S21a) YN S can contain infinitely many

2 - points.
See Lecture 19-4

,
which implies -1 -M211 =M2+-M 0-=

[all = (1-g7 < 22 if 90·
- 1
-

I ...... 13-

25 12 3456 7 gi

How can we visualize Y, ...,Ya for d > 2?
x
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21 -2

index set
↓ · Mean function :

More generally , Y= Y(CIER for ESCR" Can be anything
A stochastic process is a collection of RVs. Popular choices : MG = O FC

[Y()
, CES3 m(x = B

Def (Gaussian Process) A Gaussian Process o Covariance function :
is a stochastic process st. any finite Must be positive semi-definite.
collection [Y()

. ... ,
YCC)3 is multivariate Stationary : Cor (YOD

,
Y(x) = K(x-()

normal
. Isotropic : Cor (Yoc

,
Y(k) = k(1k-c'll)

Y( ~ GPConce
,
KC.,.) ↑Kernel

↑ 4 Note that the RHS depends on

mean function covariance function
CKernel). (x' but not on YD) or Yo

ELY(x)] = m(x)

Cor(Y((
,
Yxx) = 1(

,3) Example :
(Y0)

, -..,
You e NuCin

,
K) · Radial Basis Function (RBF)
K,-· kn) KRBF( ,( = 22 expE-cezkc-x23
: length scale 130= [m] <

K=can 3 - Positive definite
-

- Infinitely differentiable.
- Possibly the most widely used Kernel.
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21 -3

&D How can one sample a function Warning !In can be ill conditioned,
from GP(mc)

,
K ,2) ? leading to numerical issues.

I Discretize S as [x.....,D3 ASolution :
2) Sample YK) N(MC) ,K,(). Replace I with # + 42I

3) For n= 1
,
2,....,

D where I is a constant diagonal
(Y(, - . .

,
Y(+))~X+ (m , 1) En+1 matrix.

or
Call this Kn-

↓ This is similar to the regularization
k(x
,() -- k(

,(n) (((
,xn+1) in Ridge regression.

" Y "~The j 17( ,<. ) --- knin) k(xn
,((n+1)I Interpretation : Noisy observation.

I (()(n+1
,
(n+1)- Each Y(i) is observed with some

Sample Y(CH) from the following conditional additive noise independent of GP.

distribution: Y() = g(i) +YGSnzi) /Y(, - . . ,Y(n) v IN (Mat
,
Uni (

where
-T

- I
Y((1) -(1)

from GP E
,E2. ... IdNCO, T2)

Mn+= M(xn+1) - Cr+
Kn i Y((n) -MC(n)I

called the nugget
:

I of GP

- I
-

Tr = k(++)-En Cn+
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See slides for example samples from
21 - 4

these GPs. Ornstein - Uhlenbeck

Matern Kernel Koul) =Ge
U= p + E where peIN. ( = (0

,
%)

kp+z(x,x) = 22 (p +j) ! This model has applications in
Matern

(2p! 20
j1(-511p]-I

physics, biology , finance , etc.

A polynomial in X exp)() Linear (Non-Stationary
k-x'l of degreei Bayesian Linear Regression
GP with K**C) Kernel is FrT-1 Suppose Yci) = Bo + B, (xi -c)
times differentiable in the where BorN(0,58) , B,No,5) and Bo HB ,I

"mean square
1

sense. Then
,
for #C's

Matern
bin Kp+=( ,x) = KRBF(x) = v

=

exp Cov(Yad
,
Yx() = Cov(Bo+ B , (c) , Bot B.C-2)

P-A = 58 + 52()- c)(x- c)
Brownian Motion (Non-stationary So

, the corresponding Kernel is
2

KBMk(,x) = min (0x) Kninar (, x() = 58+ 5, (x-c) (x- c)
x
,
x e (0

, 8) Prediction

Training data D = S(xi ,Yi) , i = 1 , . .., n3.
Brownian Bridge (Non-stationary How can we predict Yod for a new

KBB (x") = chinGx) -( sample point < ?
xx = [0, 1] Ans: Use the algorithm on page 21-3.

This corresponds to a stochastic process See slides.
Conditioned on Y(o) = 0 and Y(K = 0. 329
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Stat 201A Fall 2024
Prof. Yun S. Song

Lecture 21

Gaussian Processes Demonstration
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Radial Basis Function Kernel
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Radial Basis Function Kernel
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Radial Basis Function Kernel
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Matérn Kernel 
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Matérn Kernel 
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Matérn Kernel 
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Brownian Motion Kernel
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Brownian Bridge Kernel
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Ornstein-Uhlenbeck Kernel
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Ornstein-Uhlenbeck Kernel
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Linear Kernel
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Linear Kernel
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Prediction of Y(x) for a new point x?
Observed data = 
[[1,-1],
[2,0.4],
[6,0.3],
[7,0.8],
[9,-0.5]]
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Posterior Distribution
Observed data = 
[[1,-1],
[2,0.4],
[6,0.3],
[7,0.8],
[9,-0.5]]
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Posterior Distribution
Observed data = 
[[1,-1],
[2,0.4],
[6,0.3],
[7,0.8],
[9,-0.5]]
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Posterior Distribution
Observed data = 
[[1,-1],
[2,0.4],
[6,0.3],
[7,0.8],
[9,-0.5]]
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Posterior Distribution

Nugget term

Observed data = 
[[1,-1],
[2,0.4],
[6,0.3],
[7,0.8],
[9,-0.5]]
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Lecture 22
22-1

Recall the empirical CDF from Lecture 8 : We Uniform (0
, 1) , X-F

,
continuous

Xy
,

Xz
, ·.

.,
Xn F Then

, Glo * X and F(x) U

SUP

En)= EX: 13
Dn = er/Fnk -F(x)

= Sup
neco.2) /Fu(g(m) - F(g(u)

Strong LLN= For every = IR
, =

He co,
1) (En(g(x) - 4)Sup

-
a.S.

Fu () -> F(x) as -50
.

1

Fu(g(u) = 13XigcuS= IEF(i) =43
Define Dn := Sup(En - F())

.
But F(X1)

,
-..

,
F(Xn) in Unif (0 , 1)

which proves the claim. It

Thm (Glivenko-Cantelli) Dno as no

Today we will prove a weaker version Hence
, if we show that DnB0 as new

of this theorem : Dn10 as n-5 . for Uniform10
, 1) ,

then Lemma 1 implies that

it holds true for all continuous F.

Lemma 1 The distribution of Du is the

same for all continuous F. In what follows
,
let U, ..

. .,
On Uniform.

Pf Recall order statistics from Lecture 15.

Recall the quantile function from Lecture 12 Unl < U -- - < Uni
g(u) = inf EceR( F()zu3

Wij = ith smallest element of EU,
. ...
Un]
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22-2

En (2)=En Recall from Lecture 15 that

example for n= 6 W(Beta(k ,
n-k+1)

MFox EIUc]=Cm
(+ m -1)(k+ m-2) - - - k

1 -
F(u) = 2
-

(+m)(n+m- 1) - - - (n+1)

5/6- & Foray EJo,

4/6-- ↳ # [max/E-EtEu]1E]
3/6 - ①- WinsElvin-Etcll = E3]2/6 -

16- ①

S

· Was Was Was Wit z

Ein] #LED-ETUl/[3) By Uniond
=B(/Un-ElUcn]/4224]

Sup 1 Encus-u occurs at eithea 1 ELIWaa-ElUca](4] By Markov's Ineg
.

24

Una or Vis for some ke[n] := E, ...,43 = constantthat desa
F (Uc) = *

,
F(Win) = " ↓u = to asu

maxDn = max [Reins - Unl, -Uca)3 So
,max (Wu-EIUc])E as n
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22-3

Furthermor, #[Uc] = i and where S = (Gilij=1 ,.
-- with

for every ke [n], UnUnif (o , 1)

lE[Uca]- = Int -> 0 as nex
.
Fiji Cov(IUUiS ,

19U = xj3)
= EL1EUis ISU [ nih]

IE[Wc]- - 0 as ne - ELISU[Ui3]ELISU = uj3]
Hence

,
Dnto as ne0. = min [2

,Uj3 - Mill)I

Since 0(k-z) = k- y) + 17- z)
,

* x , y ,z ER.

This proves the Glivenko-Cantelli Theoremi Since

Multivariate CLT (Lecture 20) implies ELISU 4:3 AEU [n;3]

Again,
assume Uniform(0,1) distn

.
Fa = n

,
Vuelo1)

= EIUsui
, Uzuj]=UEminsui ,uib

For any OCH<H2)-- . < Mi < 1
, = minEUi

,Hj]

)[Evi))N,
# TISU = n :3) = EIU hi] = ni

# [15U [u;3] = MiI
as - x

This holds true for all K.

Il
-

a 17-dim So
,
the RHS corresponds to a

I
random vector Gaussian Process with the

Brownian Bridge Kernel (Lecture 21) !Wa SBYm) ,
neco

,
1.3
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22- 4

Hence,
nDn =SupEnl A lot is known about Brownian Bridges

For example,
↳ Sup Thm (Kolmogorov-Smirnov Distribution)

neco)
/Buil as net.

-2142
Bor #Sup (B(u)x] =2

x

The first term ze2 alone is very

1 accurate.

So
,

ifa is large,
-2xhu IP[Du>] 22enThis can be used to finda

asymptotic level - a confidence interval

for estimating FCu) Simultaneously
for all n.

292x = x = x=()

nen(
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Lecture 23 23- 1

Def A random process is a family Let F = EP
,

1- Nob denote the

EXt
,
+ET3 of RVs indexed by some set To offspring number distribution with mean Md.
Xt :2> S

(t) and variance oX.
↑
state space. Bxt id F and 1 from Xt

(t)

Interpretation : Xt "evolves" as time passes
XBitt+... + Bx # [BY= k] = Pic

in a random but prescribed way.
Wald's Identity (Lecture note 18-3)

=> E[X] = uE[Xe+]
Galton-Watson Branching process. = u(uE[Xt-2]) determined by the

Historical context : Model for ↓ initial condition

- Family name propagation (Galton, 1889) ="ut ELXo] Typically, Xo = 1
.

- Free neutrons in nuclear fission reactions 930's) So
,
EIXt] increases geometrically if M > 1

. (Supercritical
Critical mass needed to sustain chain reaction? 11 decreases 14 < 1

. (subcritical

T= No = 50
,

1,2, . . . 3
,
S = No EIXt] remains constant if M = 1 .

(critical

X= # particles at time - Law of Total Variance (Lecture note 18-5)
time

so * Xo = 1 Each particle gives= > Var[X] = 52 E[X++ 3+
2 Var [X]

I a Xi = 3 birth to KENo children = +"+ (out-2
+MVar [Xt-2))

2 a po D X2 = 4 with probability PK, = -[et" +u
+

+ - .. +M2t
-

2]

3- 00Xz = 6 independently of other ↑t
,
if M= 1

,

particles in the past = Evn(t) ,ifand present.
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23- 2

M)1 Def (Extinction Time)-= minEteNNol Xt = 03.
Var(Xt) T= N if there exists no such to

X M= 1
Def (Extinction probability) [IT < N].

E Claim #It > +] = MY by Markov's

⒔Pti> +] = CIXe21] < EIXe] inequality-M1 . = ut 1

2 Hence
,
ifM1,

then extinction occurs with

1 t probability 1
.

key tool for computing the extinction probability is

For all GW processes, the state o the probability generating function (Lecture 11 (

is the absorbing state. Consider a Galton-Watson process EXt, teNNob
(X+ =0 = (++ = 0) with offspring number distribution F=Spi, keNo3

Assumptions : For B - F
,
define

1) There is no single ke No Sit. Pi= 1
. 4(s) = E[sB] = S"PR.

2) 4k0 for some =2 . Assumptions above EG(s) is non-linear

3) MO and 5230
,
both finite. 2) q(0) = Po

,
4(1) = 1

2) g(s) is strictly increasing for SE(0
, 1)

3) Y(s) is strictly convex

353

353



PGF for Xe 23- 3

Claim Let 4t(s) = ElsY] = S" RIX = 1)
Claim Let ex = RIX+ = 0]

,
the prob.

Then, 9+H(s) = 9(4t(s)) = P+ (4(s)) , XteNo of extinction by time t
.

Then,
If Xo= 1

,
then this implies that 4t(s) Ct = q(et-1)

is the t-fold composition of 4 ; i
.
e

., t
et=IX 0

,... =0(X, = 1)O ·et(s)= G(c. . 1 1 2 ... 8
· RIX,

= 1]
# First
,molethatX i = (e) "Pi

time

- * = q(e+-1) I

- vid Note : to = 0 and et = P+ (0). Extinction prob =hiP(0)

X(()y()y(X)
1

A

(1
, 1)

= PtH(s) = E[(+ (s))
*
=]

= 9(9+ (s)
Furthermore, PGF for X1 With variable 4t(s)

9th(s) = EEsYtH)=E·time q(22) ·
q(ei)

In:- 3 = 4(3)

↳ =

(t (9(s)
q(o)

- fixed point

PGF for Xt with variable (15)
sum = Xt+ 1

I
C
.

= 0 &
, &2 S
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23- 4

1 (1
, 1)

A time
q(22) q(s) 8 D

acti
= MI1

I 800 - -.

3 = Po+ 4(3)

q(o)
- 123 ---17

So
, 3 satisfies (*)- Note that [[Xt= 0] = P+ (0) [ 1

(Xt =0) - (X++ = 0)

non-decreasing sequence=>It (0) <4th (0) bounded from above by 1
.

>
=> lim Itlo) exists and it is equal

. .21sC= 0 t-> to 3.

Suppose 20 satisfies (*)
.

Then
,
9t(s)=S

,
VEN.

Monotonicity of 4 => Gt(o) [Pt(s) = s.

Claim The probability of extinction Take the limit of each side as -x

3 =RITSO] is the smallest non-negative
= 3[S .

solution of the fixed point equation
So

,
3 is the smallest non-neg

it
s = 9 (s) . (A)

solution to (A).
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23-5

Thm Unless p.= 1,
the fixed-point

equation has either one or two solutions.

1) Supercritical (u> 1) case has a unique
solution 3 less than 1

.

2) Critical (M= 1) and subcritical (M1)
cases have only one solution 3 = 1

.

Thm Suppose EXt
,
teNo3 is a Galton-Watson

process with offspring number distribution
F = EPK

,
KENNoS

.

1) If < 1
,

then #IT]t]eCFMt as E-N,
where CFE(0,

8) is a constant that depends
on F.

(Geometrically decaying fail
2) If M= 1

,
then RIt) +]e *t as +

(Fat tail)
=> EIT] is infinite

.
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Lecture 24

Problem of the day
A deck of N cards Find a strategy with success

* each with a number probability 37%.

Written on one side,

facing down

Assume :o N is large and all numbers

are distinct.
· The deck is well suffled.

Goal: Get the largest number

Rules :

1) Reveal one card at a time

rstating from top
.

2) Stop at the current card or

reveal the next card.

3) If you pass on a card (i . e.,
do not

stop), then you can't return to it.
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24 - 1
Lecture 24

Def (Discrete - time Markov Chain) Claim (Chapman-Kolmogorov Equation
EXn

,
nENo3 is a Markov Chain if Un

,
mEIN, pinins =S pi p.V NEINo and Y So, .... Su ES ,

P[Xn+ = Sn+1 Xo = So
, ...,

Xn = Sn] Pf

= R[Xn+
= Su+ 1Xn = Sn] pcm

+)= [Xmen = j)Xo = i)

& It random walk Law of = [R[Xm+n = j) Xo = i
,
Xm =k] [Xm=k(X0= i]

1-PP Total Prob KES-
N > #IXmin= j/Xm= k] by Markov Property

-4 -3 + 01234

· Transition probability : R[XmH = j) Xn= i) = pin pi
it follows from [phtnig = [PE

M

]ij· Homogeneous if DIX =/XijOn Alternativelyahical representation of a homogeneous MCT
assume this in what follows.

· Transition matrix & = (ii) ije ,
S S = E0

,
1
, . . ., 23

· For
every it .S

,

[ PIXn = j(Xn = i) = 1 1 8 82. Eng 92 Gr

jes
↓ ↓

=> each now of I sums to 1
.

& 0
. 1

2
T

* n y

T

L-2
T

L-1 Da
· I[Xn = j] = 2 FIX = j(Xn+= i)IXm = i] I 1- 9- 1-82 1-831-82-11-8 ↑

is

fig absorbing boundary absorbing boundary
Row rector in := (RIXu = i)) it ,S

Some questions of interest : Given Xo : it 31,2, ..., L-13,

in=n-=> in = no Ph 1) What is the probability of hitting O before hitting ?

[[Xn = j)Xo = i) = ([Xn+m
= ](Xm= i) = [Pij = pl & Howlong doesittale,aratei visited ?

-step transition probability.
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24 - 2

Classification of States. A Marker chain is said to be irreducible

Def (i+ ]) State j is accessible from state : if its V ije .
S.

if pl > 0 for some meIN.

(There is a path Def (First passage probability)
from i to j in the graphical representation) f(=[X ,

+ j , - - -

, Xu+ +j , Xu = j(X = i]
Cizj) States i

,j intercommunicate if Def (Return probability) fil= fiit j and je
i

.

·> defines an equivalence relation. Def (Mean recurrence time) U:=hi
· The State space S can be partitioned

into equivalence classes of. Def A state it .
S is called

· A subset CCS is called irreducible if 1) recurrent or persistent if fil = 1
.

izs ; for all i
, jeC .

C is a strongly a Null
recurrent if Vi = x These are

connected component (SCC). 1 Positive recurrent if Wi < so class

DAG of SCCs SCC transient 2) transient if fil < 1
.

properties.

SCC Thm
transient

~ L - 1) p= j is recurrent= > VieS st.
it j,

SCC transient SCC transient =
L ~ L 2) j is transient= Vit .S,

SCC SCC

Terminal SCC is recurrent if it contains only a finite #
andtimpin

states. Otherwise
,

it can be either transient or recurrent.
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24 - 3

B A

Suppose S = 51 ,
2, -..,mi Em+, --.

, u3 In Matrix form, H = Chij) satisfies
Transient Absorbing H = R + QH - H = (I-Q)"R if

Transition probability matrix B A (I-Q)- exists.

Lemma Suppose M is a square matrix

4 =BR with him M" = 0
.

Then
,
CI-M) exists

n-6

and (I-M)"=
o
M2

.Def CHitting Probability) For it B and JEA
, El

hij = @ [Enter A through jEAl Xo = i)
(I-M) (I+ M + M2+... + Mnt) = I-MY (A)

Claim hij = Pij+e Piching So
,
detCl-M)det(I+M+ -- - + Mu-1) = defCI-M2) (**)

det is a continuous function =>

j A hi detCI-MH = det[li (FM)=det

↳ => detCI-M2) > 0 for some n

Pf First-step analysis : This result and (**)- det (I-M) 0

=> (I-M) + exists
.hijA Taking u in() gives -RT=M?

Kronecker delta = EEjk ,
if KEA, p" = [Q*= p = g for ike

Gjk= Et ifIse hig ,
ifIE B. 1 transient=>him=tim

So hemma
**

CI-Q)-exists.
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24 - 4

Def (I-Q)"=Q is called the fundamental Def (Stationary distribution) The now rector

matrix of the absorbing Markov Chain. # = Chilies is called a stationary distribution

of the Markov chain with transition
Claim (Hitting Time) Let ti = expected probability matrix I if

number of steps it takes to hot A 1) Hizo Vie S
, iTi = 1

given Xo = zEB. 2) I =x

[E) =CI
(Left eigenvector of I with eigenvalue 1)
If Xowit

,
then Xn-4 VneIN

Pf First
, note that titij , where for ije B,Does every MC have a stationary distin?

ti := Et 1x= j3(Xo = i] When it exists
,

is it unique ?

MEXXX=In s (Perron-Frobenius Theorem)
1) Every MC with finite I has 9 g

= Efij + thing if KE B
stationary distribution It. ]2) If in addition the chain is irreducible,

=S dij Pik +S tij Pik = Sijtgia then it is unique,
and Hi= F it .

S
,

where
In matrix formT= (tijl , wehave Vi=f is the mean recurrence time

So
,
ti = ith now of CI-Q) for state it.S.
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Lecture 25

Problem from Lecture 24

A deck of N cards Find a strategy with success

* each with a number probability 37%.

Written on one side,

facing down

Strategy:
Assume :o N is large and all numbers 1) Reveal a certain proportion , say P,

are distinct. of the cards and record the largest
· The deck is well suffled

.
number Idenoted M) you have seen.

Goal: Get the largest number

2) Then, Stop if you see a number

Rules : larger than M.

1) Reveal one card at a time

rstating from top
. #D What is the optimal p ?

2) Stop at the current card or

reveal the next card.

3) If you pass on a card (i . e.,
do not

stop), then you can't return to it.
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Success found the largest number Case 3 :

Let X,
. . .,

XN denote the numbers. M = X(N-2) XIN-1) and XCN) full here.

Order statistics! -
I I

X < X(z) <... < XCN) & b 1

Case 1: DIM = XcN-2)] = pCrp)2
M = X(N) = Failure # [Success /M = XcN-2)]
- = PIX(N) appears before X(N-1)]=I I

& b 1

General Case :

RIM= XcN] = P RIM= X(N-]= p(14)"
I[Success /M=XcN] = #[Success (M= Xc-1] = it

Case 2: #Success]
M = X(N-1) XCN falls here. I [Success /M =X(N-1]1[M= X(N-1)-I

& b 1 N
~ P(r)" (it) = -plmp

#[M= Xcx -1)] = p(- p)
#[Success /M= XcN- 1] = 1

which is maximized when
p = e
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25-1
Lecture 25

The Long Run Behavior of MC In fact
,
I = aEb[b at is the unique

Consider a 2-state Markov Chain stationary distribution of the Markov chain.

EXn
,
neINoS with S = 21

, 23 (TP = )
and transition probability matrix

↳= [Ia b] :
where a

,
be (0,

1]. In general , every finite-state Markov Chain

has a stationary distribution it and

One can show irreducibility -> T is unique.
ph= [ba]+ -G &Q Under what condition is

Suppose a= 1 = b. Then, him [pij = hi X= j(x = i) = Tj ,
Vi

, jeS ?

p=[+ CT = &[b] , if n is odd,

IE.S is defined as
[6i] ,

if n is even

Def (period) The period dail of a state

For all other cases, ll-a-b) < 1
,

so d(i) = gcdEneN/ [P"Ji > 03·
hi (l-a-b) = 0 e

.g. In the 2-state MC example with
=> For (a

,b)#(1 , 1)
,himp a = b = 1

,
d() = d(z) = 2.

Def A state itS' is & periodic ,
if drik 1

,

=> In the limit as -d
,
the aperiodic ,

if d(i) =
1
.

distribution of Xn becomes independent
claim If two states i

, I intercommunicate (ii)
,

then

of the initial condition Xo.
dci) = dej).
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25- 2

Thm Let C be a class in a Another interpretation of the stationary distribution

finite-state Markov Chain with period d. for an irreducible finite MC.

Then
,

C can be partitioned intod subsets Lemma Consider an irreducible finite MC with

C = Bow Br ... wBay such that all transition matrix I and the unique stationary
transitions from Biscmodd) go to Biticmodd) distribution #

.

Then

B hi I + p + ph+... +p
= [T]n-2 n +1

... B2 H)RXIS
Thm If a MC with finite state space ,

S

is irreducible and aperiodic,
then

= Fraction of time spent in

1) (Regular or ergodic
statei duringSteps 0

,
1

, 2,.. in

- a positive integer K
,

St
. [PJij70,

VijES ECH"( = :]= IX= j/X= i]

2) (Limiting distribution) = "Tij
hi [P]ij = #j , Vizes where

Lemma ->Tj as n+&.

#= Cilies is the unique stationary distribution. Thm (WLLN for irreducible finite MC

(hipu
For

everyE-j]-
n-G

independent of the starting state Xo = i.
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25- 3

A stronger result:

Thm (Ergodic Theorem) Let EX,
neNo3 be Thm (Mean first passage time

an irreducible
, positive recurrent MC on For an irreducible finite Markov Chain

state space s and stationary distribution #t. with the fundamental matrix E = (zij) and

Suppose 9: S-R be a function st
.
[Ilistic

.

the

uniquestationarydistributionThen
,
for any

initial distribution for
,

#j

(X [gli as -

it ,
S

Def (First passage time) For it .S, Suppose a finite MC is not irreducible.

Ti = minEneNol Xn = is Chas more than one SCC)

Def (Fundamental matrix of irreducible MC)( SC S

z = (I- P + 14)
- 1

L - L

SCC SCC

Remarkis well defined I restricted to each terminal SCC

2) If the MC is aperiodic,
then is a valid transition matrix.

Z= I+ (P"- 1T) => There exists a stationary distribution

u= 1 for each terminal SCC.
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25- 4
Forward (Pij)
process Xo -> X.

-

...XXDef Reversibility) The chain EXis Sadthat is,Reversed : Yn < YN-
Process (Gji)
Thm Let EXu

,
OXIN3 be an irreducible

,
(Detailed Balance) Ttjji = Tipij ,

V isj
positive recurrent MC with transition matrix

E= (Pij) and unique stationary distribution +.

Further
, suppose Xnw+ V Ou = N. The Let EX's be an irreducible MC

Then
,

the reversed process [Yn= XN-n
,
onIN3 With transition matrix= (Pij) and

is a MC with transition matrix Q= (gij), suppose- a distribution U = (Wi) Sit.

where gij=P Wipij = Ujji V ijj
Then

,
O is a stationary distribution of

Pf PT-n+= j/% = io
, ..., Yu= in the Chain and EX3 is reversible in

= R[Yo = To
, ...,

Yn= in
,

Yux = j]
#[Yo= io

, ...,
Yn = in] equilibrium

=
R[Xn = 10

, . ..,
XN-n = in,

YN-n -1
= j] & Vipij = [TjPji =

VjPj
=j is

F[XN= 10, ..., XN-n = in] Stationary distn.

= TjPjinPinin---Pixio Reversibility of EXu3 follows from definition.

Tin Pixin--- - Pixio #

= IIXN-n-1
= j) XN-n

= in]= [Yn= j/Yn= in]
I
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Communication Class Property
Theorem 1 (Class property).  Suppose two states  of a Markov chain inter-communicate 
( ), i.e., they belong to the same strongly connected component (SCC) in the graphical 
representation of the Markov chain.  Then,


1.  and  have the same period.


2.  is transient if and only if  is transient.


3.  is null recurrent if and only if  is null recurrent.


4.  is positive recurrent if and only if  is positive recurrent.

i, j ∈ S
i ⟷ j

i j

i j

i j

i j

2

Theorem 2.  All finite Markov chains have the following properties:


1. At least one state is recurrent.


2. All recurrent states are positive recurrent.


3. If the Markov chain is irreducible (i.e., the corresponding graph consists of a single SCC), then all 
states are positive recurrent.
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Existence and Uniqueness of Stationary Distribution

Theorem 3 (Finite state space ).


1.  Every finite Markov chain has a stationary distribution .


2.  Furthermore, if the Markov chain is irreducible, then  is the unique stationary distribution and 

, where  is the mean recurrence time.

S

⃗π

⃗π

πi = 1
ri

, ∀i ∈ S ri

3

Theorem 4 (Countably infinite state space ).  


1.  A Markov chain with a countably infinite state space has a stationary distribution  if and only if 
at least one state is positive recurrent.


2.  Furthermore, if the Markov chain is irreducible, then  (which exists if and only if all states are 

positive recurrent) is unique and , where  is the mean recurrence time.

S

⃗π

⃗π

πi = 1
ri

, ∀i ∈ S ri
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Limit Theorems

Theorem 5 (Limiting distributions).  


1.   For any aperiodic state  of a Markov chain,


 and  where .


2.   If a Markov chain is irreducible and aperiodic, then


.  (i.e., the limit does not depend on the starting state .


3.   If a Markov chain is irreducible and ergodic (aperiodic and positive recurrent), then


.

j ∈ S

lim
n→∞

[Pn]jj = 1
rj

lim
n→∞

[Pn]ij = fij
rj

, ∀i ≠ j, fij =
∞

∑
n=1

f (n)
ij

lim
n→∞

[Pn]ij = 1
rj

, ∀i, j ∈ S i

lim
n→∞

[Pn]ij = 1
rj

= πj , ∀i, j ∈ S

4

For the -step transition matrix  to converge as , aperiodicity is crucial.


Recall that  if  is either transient or null recurrent, while  if  is positive recurrent.

n Pn n → ∞
rj = ∞ j rj < ∞ j
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Markov Chain 1 (periodic)

5

P =
0 1 0 0
1 0 0 0
0 1

2 0 1
2

0 0 0 1
1 2

3

4

1
2

1
21

1
1

‣ States 1 and 2 are periodic, so  does not converge as .

‣ State 3 is transient.

‣ States 1, 2, and 4 are positive recurrent.

‣ {1,2} is a terminal strongly connected component (SCC), so the transition matrix restricted to {1,2} is a valid 

transition matrix for a Markov chain on {1,2}.

‣ By Theorem 3, there exists a unique stationary distribution corresponding to this SCC.  More precisely, 

 is the unique stationary distribution for this SCC.

‣ {4} also is a terminal SCC and the unique stationary distribution corresponding to this SCC is .

Pn n → ∞

⃗π1 = [1/2, 1/2, 0, 0]
⃗π2 = [0, 0, 0, 1]

P2k+1 =
0 1 0 0
1 0 0 0
0 1

2 0 1
2

0 0 0 1
P2k =

1 0 0 0
0 1 0 0
1
2 0 0 1

2
0 0 0 1
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6

P =

1
3

2
3 0 0

2
3

1
3 0 0

0 1
2 0 1

2
0 0 0 11 2

3

4

1
2

1
2

11
32

3

2
3

1
3

Markov Chain 2 (aperiodic but not irreducible)

‣ All states are aperiodic, so  converges as .

‣ State 3 is transient.

‣ States 1, 2, and 4 are positive recurrent.

‣ {1,2} is a terminal SCC, so the transition matrix restricted to {1,2} is a valid transition matrix for a Markov chain on {1,2}.

‣ By Theorem 3, there exists a unique stationary distribution corresponding to this SCC.  More precisely, 

 is the stationary distribution for this SCC.

‣ {4} also is a terminal SCC and the unique stationary distribution corresponding to this SCC is .

Pn n → ∞

⃗π1 = [1/2, 1/2, 0, 0]
⃗π2 = [0, 0, 0, 1]

lim
n→∞

Pn =

1
2

1
2 0 0

1
2

1
2 0 0

1
4

1
4 0 1

2
0 0 0 1

Theorem 5, part 1 applies
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Markov Chain 2 (aperiodic but not irreducible)
‣ Question: Let   denote the distribution of the initial state. Then, what does   

converge to as ?


‣ Answer: Since the chain is not irreducible, the answer depends on the choice of .  For example:


- If  where , then , which is the stationary 

distribution  corresponding to the terminal SCC {1,2}.


- If , then , which is the stationary distribution 

corresponding to the terminal SCC {4}.


- More generally, if  where  such that , then 

.

⃗ν = (ℙ[X0 = i])i∈S ⃗νPn

n → ∞
ν

⃗ν = (a, 1 − a, 0, 0) 0 ≤ a ≤ 1 lim
n→∞

⃗νPn = (1/2, 1/2, 0, 0)
⃗π1

⃗ν = (0, 0, 0, 1) lim
n→∞

⃗νPn = (0, 0, 0, 1) ⃗π2

⃗ν = (a, b, c, d) a, b, c, d ∈ [0,1] a + b + c + d = 1
lim
n→∞

⃗νPn = [(a + b) + c
2 ] ⃗π1 + [d + c

2 ] ⃗π2

7374

374



8

P =
0 1 0 0
1
2 0 0 1

2
0 1 0 0
0 0 1 0

1 2

3

4

111

1
2

1
2

Markov Chain 3 (irreducible and ergodic)

‣ All states are aperiodic, so  converges as .

‣ This Markov chain is irreducible ({1,2,3,4} is a SCC), so all of its states are positive recurrent (by Theorem 2).

‣ By Theorem 3, there exists a unique stationary distribution corresponding to this Markov chain.  More precisely, 

 is the unique stationary distribution.

Pn n → ∞

⃗π = [1/5, 2/5, 1/5, 1/5]

lim
n→∞

Pn =

1
5

2
5

1
5

1
5

1
5

2
5

1
5

1
5

1
5

2
5

1
5

1
5

1
5

2
5

1
5

1
5

All rows are equal to the 

stationary distribution ⃗π

Theorem 5, part 3 applies
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Markov Chain 3 (irreducible and ergodic)
‣ In this case, every row of the limiting transition matrix  is equal to the unique stationary 

distribution 


‣ Hence, given an arbitrary initial distribution , we obtain 
.


‣ In other words, irrespective of how you initialize the chain at time zero (i.e., how you set ), the 
distribution of  will converge to the unique stationary distribution as .

lim
n→∞

Pn

⃗π .
⃗ν = (ν1, ν2, ν3, ν4)

lim
n→∞ ∑

i∈S

νi[Pn]i,j = ∑
i∈S

νiπj = πj ∑
i∈S

νi = πj

X0
Xn n → ∞
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Markov Chain 4 (irreducible and aperiodic, but not ergodic)
‣ A finite Markov chain cannot have a null recurrent state and all states of a finite irreducible 

Markov chain must be positive recurrent (see Theorem 2).


‣ Hence, for a Markov chain to be irreducible and aperiodic but not ergodic, it must have an 
infinite state space.  

10377

377



26-1
Lecture 26

Continuous - Time Markov Chain (CTMMC) PC) = (ijttilijeS Transition probability matrix.
EX+, +203 on finite or countably infinite Since Pijco = Sij , P(O) = I identity matrix

state space .S satisfying Claim (Chapman-Kolmogorov Equation
# [Xtn = in/Xt

,

= ↳
,
Xt = 1
, .

. .

, Xtu = in) For homogeneous MC
= RIXtn = in)Xtn-1 = in] PCEP(ul = PCt+u) , for all t

,30.

for all times Ost<ta< ... tu and If Xi, je ,S

all states i., is ... in E .S. PijCt+ u) =[X+u = j)Xo = i]
Xe =SXu= i) Xn=, X=i)XN Holding Time -
4- ↓ i H5

iii Markov property - R[X+u = j( Xu= k]

43
Ha Hq Homogeneity = = Pij(t) I

- 2-
Hi

Ha " Def SPC3 is called standard if tim P(h) = I
I - I I I Hi * Claim EPCE3 standard =>> PijCt) is a continuous

i I I I I 1 > function of t for all ijjt.S
SO I 2 3 4 : 5 : 6 7 : 8 ! 9 : 10 t Pf (pij(t+h)- Pij(t)) = 1

,EgPikh)Pght)
- Pij(t)

J" JTx 2 Ty 54 55 To J7 Jg
By CK Eg

Jump Times = /(Piich)-1) Pijht) +Es : Ke : Pinchspe
Homogeneous if & Cl-Pii(h) Pijht) +ES: +: Pinch)

-R[Xt+u = j(Xa= i)=[Xt = j(Xo = i) = : Pij(t) 1- 4::(h)

↑ ->O ashtofor all -
,
u6o and all isjetransition

probability
Since him Piilh) = I

40 A
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(lim P(h) = 1)
Thm Let SPC1 be standard transition Kolmogorov Forward Equation By (K Eg.

matrices. Then
,

for all ijes , the d[Pt) = tim PCtth) - P(t) him PCt)P(h) - P(t)

following rates exist: dt
ho

h
=
hig W

def
1) Gi = li 1-PiChe [0, = PCt)Mi[PI-IEPh

2) gijdhih e [0,0 Kolmogorov Backward Equation.
d[Pt) = tim PCtth) -Plthi Ph)Pt-PC

Def 1) With giv = -Gi , Q= (figlijes is called dt h W

the generator of the Markov chain. = [h[Ph-IJP(t) = Q P(E)
2) EXt3 is called Stable if gi0 Vie ,S
3)Ext3 is called conservative if 8= gij Initial Condition : P(o) = I.
for all it.S. Unique solution : P(t) = etQQ
(Every row of Q Sums to Zero).

In what follows
,
we consider Claim & [PCt)]ij = 1 , V itS.

standard
,
stable

,
conservative Markov chains.

jES
By KFE&
-- -

for which we can write Pf APCD= PLEQI = 0 since now sums o

PliCh) = 1 -gih + 0(k) column rector ofIs Q are all zero.
--

Pij(h) = Eigh + o(h) => P(t). 1 = C
,
a constant vector

-

P(a = I = C = 1
.

- Every now sum of
PCt) equals 1

.
I
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Claim (Holding Time) Suppose XIts = :E. S. Then
, Example 1 : Poisson Process

H = inf [u > 0 : Xst+ul + i3 Exp(gi). EX+3 on S = No = 50
,
1
,
2, ... 3

Pf For a
, 6)0,

o -xX E 000 ---

Ia=%8:#[H) a + b /H2 a] = RIH) a+blX(t +u)= i, Vueto,as] ? % 0-xx-O

By the Markov property =DTH) b]
Xt -
a

& homogeneity 5

Exp dist'n is the only continuous distribution
4

with the memoryless property. 3

HExforSome X, = X 2
-x4

I

Need to find 7:
1- FH(u)=[H < u] = [P(u)]ii

o,
, , . . . ... >

=> FH(u) = - [Pcn]i = - [P(u)Q]ii # (xt = j)Xo= 0) = [P(t)]oj
PKFE P'(t) =P(t)Q = [PH300 = [PCH)]00800 = - X[PC)]o0

P(o) == X = Fr(o) = - [IQ]ii = - gii = Gi KFE [Pc01]o0 = [1300 = 1

E => [P(t)Joo = e-Xt
For jzz , [Pct)]oj = [PCE]o; 85 + [PCt)]oj Ejs

-X
[P(O)Joj = 0

=> [PCH]oj = (I-Xt (CanSho,
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Example 2: Birth Death Processes · Closed form solutions are known

EXt3 on S = No for various special cases.

o"-Xo do · Otherwise the system can be solved

1 M.. (X , +Mi) X O numerically
.

Q = 2 M2-(x2+12) A

My-(x3tM3) X3 ump process, jump chain
,
embedded chain.:O ... Discrete-time MC &Yn

,
ne Nob given by

Xt Yn = XJns
5

a
-

where In: the nth jump time (See fig on page 1)

4
Thi The transition matrix P= (Pig) of the3

2
embedded jump chain is given by

I
if FiiF0 ,Fi = E

,
if gii = 0.

, , ,
,, . .. I >

A system of coupled ODEs from KBE Fij =Gij , VijeS sucha

PCt) = -Xo Poj(t) + XoPejC i j .

PijCt) = M ; Pit, j(t) - (i+ xi) Pijht) + XiPi,j (t) , 121 Furthermore
, HuY.

Boundary condition Pijlo = Sig the nth holding time381
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