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STAT201A: Introduction to Probability at an Advanced Level September 13th, 2024

Homework # 1: Basics, Independence, Conditioning, & Exchangeability
Reece D. Huff

Problems (Solutions)

1. (Basic probability) Assume that P(A) = 0.6, P(B) = 0.7 and P(C) = 0.8.

(a) Show that0.3 < P(ANB) <0.6.
(b) Show that0.1 <P(ANBNC)<0.6.

(a) From the inclusion-exclusion principle, we have that
P[AUB] =P[A]+P[B]-P[ANnB] = 0<P[A]+P[B]-P[ANnB] <1
Starting with the right inequality, we have
P[ANB] > P[A]+P[B]-1=13-1=0.3
thus establishing our lower bound. From the left inequality, we have
P[ANB] < P[A] +P[B] = P[AN B] <min{P[A], P[B]},

which directly shows the upper bound. Therefore, we have

[03<P(ANB)<06.]

(b) To prove this inequality, we will use the Bonferroni Inequality (sometimes referred to as Boole’s inequality). It states
that for events Ay, ..., A, in a probability space (Q, 7, ), we have

n
(4
i=1

We will use it to solve for the lower bound, i.e.,

> Z P[A:] - (n - 1).

i=1

P

P[ANBNC] > P[A]+P[B]+P[C]-(83-1) = P[ANBNC]>206+0.7+08-2 = P[ANBNC]=>0.1.
Next, we note that the intersection is upper bounded when A C B C C leading to
P[ANBNC] <min{P[A], P[B],P[C]} = P[ANBNC]<P[A]=0.6.

Thus, we have shown the desired result

[01<P(ANBNC)<06]

2. (Independence) Suppose we roll an unbiased six-sided die n > 3 times. Let E;; denote the event that the ith and the jth
rolls produce the same number. Show that the events {E;; | 1 < i < j < n} are pairwise independent but not independent
as a family.

In this problem, we are asked to show that events E;; are pairwise independent but not independent as a family. For
simplicity, let us consider n = 3. In this setting, the events are pairwise independent if
P(Ei2 N Er3) = P(E12) X P(E13), P(E13 N Ezs) = P(E13) X P(Ez3), and  P(E1z N Ez3) = P(E12) X P(E2s).

Starting with the first, we have

P(E12 N Eq3) = P(Ep2|E13) X P(E3) = = P(E12 N E13) = P(E12) X P(E13) v

N =

X

N =


https://mathmonks.com/inequalities/bonferroni-inequality

It is easy to verify that the same holds for the other two showing that events {E;; | 1 < i < j < n} are pairwise
independent.

Moving onto showing that the events are not independent as a family, we again begin with n = 3. Independence would
imply that

P(E12 N E13 N Eps) = P(E12) X P(E13) X P(E23).
However, starting with the left hand side, we have

1 1 1
P(E12 N E13 N Ex3) = P(E12 N E13|Ez3) X P(Egs) = et e — P(E12 N E13 N Ex3) # P(E12) X P(E13) X P(E23).

Thus, we have shown that the events are not independent as a family.

3. (Expectation, joint distribution, uniform distribution) Let X be a random variable with values {1,2} and Y a random
variable with values {0, 1,2}. Initially we have the following partial information about their joint probability mass function.

|Y=0 Y=1 Y=2

X=1| 1/8
X=2 0
Subsequently we learn that E[XY] = 7 and that Y has uniform distribution. Use this information to fill in the missing

values of the joint probability mass function table.

To begin, we will leverage the uniformity of Y. We have that

2
P(Yzy)=ZP(Y=yOX=X)=% forally € {0,1,2}.

x=1

From the above expression, we have immediately infer

PY=0=PY=0nX=1D)+PY=0nX=2) = %=%+[P>(Y=OHX=2) = P(Y=00X=2)=25—4,
PY=1)=PY=1nX=1D)+PY¥=1nX=2) = %:[P’(Y:lﬂX:l)+0 = P(Y:lﬂX:l):%.
From the uniformity of Y, we also have the relationship,
[P’(Y=2)=P(Y=20X=1)+[P>(Y=20X=2)=%. 1)

Next, we will leverage the expectation E[XY] = 13/9. We have that

2 2

E[XY] = ZZP —xﬂY:y)-x-y:19—3

x=1y=0

N

2

ZZP(X:me:y)
=1

1y

=
Il

=PX=1nY=1)1-1+4PX=1NnY=2)-1-2+PX=2NnY=1)-2-1+P(X=2NnY=2)-2-2
=PX=1nY=D+2PX=1NnY=2)+2P(X=2NnY =1)+4P(X=2NnY =2)
% +2PX=1NnY=2)+20)+4P(X=2NnY =2)
19—3—%:2|P(X—10Y 2)+4P(X =2NnY =2)= 190 (2)
Combining Equation (1) and Equation (2), we have that

2P(X=1n¥=2)+4u3>(x=2nyzz)=19—0 and P(X=1nY=2+P(X=2nY=2)=~

from whichwehave P(X =1NY =2)=1/9and P(X =2NY = 2) = 2/9. Thus our table becomes



|Y=0 Y=1 Y=2
1] 1/8 1/3 1/9
2| 5/24 0 2/9

X =
X =

4. (Conditioning, cumulative distribution function) You flip a fair coin. If you get tails, you choose a uniformly random
number on the interval [0,2]. If you get heads, you choose the number 1. Let X be the random variable describing the
outcome of that experiment.

(a) Using the law of total probabilities, calculate P(X < 1/2) and P(X < 3/2).
(b) Find the cumulative distribution function Fx of X.

(c) Is X a discrete random variable? Is X a continuous random variable?

(a) From the law of total probability, we have that
P(X <x)=P(X <x|H)PH) +P(X < x|T)P(T).
We can apply this to both P(X < 1/2) and P(X < 3/2) to get

P(X <1/2) =P(X <1/2|H)P(H) + P(X < 1/2|T)P(T) =0- = + = P(X <1/2) =

Nl—= N=
=W =
Nl— N
I N[ |oo] -

P(X <3/2) = P(X <3/2|H)P(H) + P(X <3/2|T)P(T)=1- = + — P(X <3/2) =

(b) From our solution to part (a.), we know P(X < 1/2) =1/sand P(X < 3/2) = 7/s. Next, we calculate P(X < 1) as

1 11
P(X <1)=P(X <1|H)P(H) +P(X < 1|:r)[|3>(ir)=1.§+§-E = P(X < 1)=;L

Stitching our results together it is clear that we have

0 when x <0

z when0 < x <1

F =14 -
x(x) §+% whenl <x <2

1 when x > 2

A plot of Fx(x) is below:
Fx(x)
—
-
_ ‘ N

Figure 1: Plot of Fx(x) for0 < x < 2.

(c) X is clearly a discrete random variable as its cumulative distribution function is not continuous.
5. (Bounding even moments) Let X be a random variable. Show that E[X?] > (E[X])?* for all positive integers k.

This result follows directly from Jensen’s inequality. Let X be a R-values random variable and g be a convex function
g : X = R, then we have

S(E[X]) < E[g(X)].
We note that X?* is convex for all positive integers k. Then from Jensen'’s inequality, we have

E[X?] > (E[X])** forall positive integers k.



6. (Continuous distributions, probability density function, independence) Pick a uniformly chosen random point (X, Y)
inside the sector delimited by the x-axis, the y-axis and the parabola given by the equation y = 1 — x2.

(a) Verify that the area of that sector is 2/3.

(b) What is the probability that the distance of this point to the y-axis is less than 1/2?
(c) What is the probability that the distance of this point to the origin is more than 1/2?
(d) Find the p.d.f. of X.

(e) Find the p.d.f. of Y.

(f) Are X and Y independent?

0.8

0.6

04

0.2

FiGURE 2: Graph of y = 1 — x?

(@) The area of the sector is given by the integral,

! 2 13
/0 1-—x dxz[x—gx}

(b) The probability that the distance of this point to the y-axis is less than 1/2 is equal to P(X < 1/2), which we write as

x=1

1 2
=l--==. V
3 3

x=0

P(X < 1/2) = (Area of sector for 0 < x < 1/2) + (Area of sector)

1/2 x=1/2
; 3 3

0 5—
P(X <1/2) = %

x=0

(c) Similar to the previous part, we can write the probability that the distance of this point to the origin is more than 1/2
P(VX2+Y2>1/2)=1-P(VX?2+Y2<1/2)=1-

2
1 1 2 T
—1‘1'”(5) 37l 3%

1
. (Area of circle with radius r = E) + (Area of sector)

NIW N~

P(VX2+Y2>1/2)=1- z—z

(d) The pdf is the derivative of the cdf. Based on the result from part (b), we have that

X
P(X <x)= %/ 1 - x%dx = Fx(x)
0



From inspectition, it is clear that the pdf of X is

fi) = 30~ 22)

We verify that the area under this curve is equal to 1, i.e.,

Z 1— ==.Z2-1
2/0 x“dx 3 v

(e) Next, we rearrange the expression y = 1 — x? to be in terms of x, i.e, x = 4/1 — y. It follows that

Y
P =P s =3 [ VT

implying the pdf for Y is

frly) = VT ¥

Again, we verify that the area under this curve is equal to 1, i.e.,

3 ! 3 [ 2 32
2 ), Vi-ydy=5-|-3(0-y)

y=1
=1 v
y=0

(f) No, X and Y are not independent. Let’s say we picked X u.a.r from x € [0,1]. And then we pick Y. We are not free to
pick Y u.a.r. y € [0, 1] because Y must satisfy the constraint y < 1—x2. Because of this constraint, there is a dependence
between X and Y.

7. (Events, indicators and basic probability inequalities) Recall that for an event A, we denote the corresponding indicator
random variable by 1 {A} (i.e., T {A} takes value 1 when A occurs and the value 0 when A does not occur). Also recall
that the probability P(A) of A equals the expectation of the random variable E[1 {A}].

(a) Given events Aq,...,A,, show that 1 {Uf‘zlAi} = maXj<j<y 1 {A;}.

(b) Using the fact observed above (and the following ordering property of expectation: X < Y implies that E[X] < E[Y]),
show that

n
PUL,A) < )" P(A).
i=1
Note: This is known as the union bound and used quite frequently.
(c) For every event A, show that 1 {A°} =1 -1 {A} where A° denotes the event that A does not occur.
(d) Forevents Ay, ..., Ay, show that 1 {ﬁ?zlAi} =15, T{A}.
(e) Using the above two facts, prove the inclusion-exclusion formula: For events Ay, ..., A,,
P(ULA) =51 —Xp+ X3 — Ty + - + (-1)"'%,

where
Teim )L PAzA, - Ay).

1<ii<ip<-<ix<n
(a) Given events Aq,...,A,, we have

oA
; {Ufl_lAi} _ 1 whenin U, A,
= 0 whennotin U, A;.

Clearly, the max {U;‘zlAi} = 1. Thus, so long as the event is in one of the A; for all i € [1, n], we have 1 {U?:lAi} =1
Thus, we have

1 {U?zlAi} = max 1{A;}.



(b) For this proof, we begin by noting that the max function is convex, i.e., for events A1, ..., A, and events By, ..., B,

Ai<maxA; and (1-A)B;<(1-A)maxB; = max{AA;+(1-A)B;} < /\ max A + (1 - A) max B;.

1<i<n 1<i<n 1<i<n 1<i<n

From this fact, we have that
UA <maX[E[1]{A}] male(A)<Z[P’(A)
i=1

E[1{ur, i”:[mMHA}

1<i<

P CJAI' Sznllp(Ai)
i=1 i=1

where the first inequality comes from Jensen’s inequality and the second inequality is because the sum includes the
max and all of the other probabilities.

(c) To prove that for every event A, we have 1 {A°} =1 -1 {A} where A° denotes the event that A does not occur, we will
use the definition of the indicator function, i.e.,

1{A} = 1 when € A 1 when ¢ A°
" ]0 when ¢A |0 when € A€

From the expression on the right, we see that taking 1 — 1 {A} will resultin 1 {A°}, i.e,,

=1{A}. /

1 h A€ 1 h A€
1—1]{A}=1—{ when ¢ :{ when €

0 when € A€ 0 when ¢ A€

(d) Forevents Ay, ...,A,, we have that

1]{0” } B {1 when € ﬂ?zlAi . H{ﬂ” } _ {1 when € Ajand € A>... and € A,

0 when ¢ N A; 0 otherwise

Clearly from our definition above, 1 {m?zlAi} =1 only when the event is in Ay, ..., A,, which can be written as

A =] oAl
i=1

(e) From the two facts above and de Morgan’s law, we have that for events A1, ..., Ay,

=

E 1—]1[(1—11{141-}) .

i=1

PULA) = E[1{u,4}] =E [1- 1 {UL A} | =E[1- 1 {n,A0}] = E [1 -[]{ag)

i=1

We next to evaluate [, (1 — 1 {A;}). It follows that

fﬁvﬂmn G—Hm%WMﬁ+HmnMDHC—HAD

i=1
Z(l—ﬂ{Al}—ﬂ{AQ}—ﬂ{A3}+ﬂ{A] ﬂA2}+ﬂ{AzﬂA3}+ﬂ{AlﬂA3}

AN A naD | [a-1{a)
i=4

n

]—[(1— 1{A;}) = 1—Zn:(—1)’<*1 Z 1{A,N..NAL}.

i=1 k=1 1<ii<ip<-<iy<n

Plugging our result back into our original expression results in

Zn:(—l)k_l Z 1 {Ail Nn...N A,‘k}

k=1 1<iy<ip<-<ix<n

[a-1am| =€

i=1

P(U",A;) = E |1-




and by linearity of expectation, we have

n
P(U,A;) = Z(—Dk-1 Z P(Aj, N..NAj) =21 — X+ 53— Sy +-- + (=1)""1%,
k=1

1<ii<ip<-—<ip<n

where
Tei= )L P(AyAp - Ay).

1<ii<ip<-<ix<n

8. (Hypergeometric and exchangeability) We have an urn with R red balls and N — R white balls, where 0 < R < N. We
draw 7 balls in sequence from the urn without replacement. Let R; denote the proposition that the i draw results in a
red ball.

(a) Calculate P(R;) foreachi=1,...,n.
(b) Show that P(R; | Rx) = P(Rk | Rj) forevery 1 < j, k < n.
(c) Calculate P(Rg | Ui_;,q Ri) forafixed 1 < k < n.

(d) Let X be the random variable representing the minimum number of draws required to get at least one red ball.
Calculate E[X], the expected value of X. (Hint: Use exchangeability to simplify the calculation.)

(e) Suppose that instead of only two colors, the urn has balls of k different colors: Ny of color 1, N, of color 2, ..., Nj of
color k. Let N = N + --- + Ni. Argue that the probability of drawing rq balls of color 1, r, balls of color 2, ..., ri
balls of color kin n = rq + - - - + r, draws without replacement is given by

() ()

N
( n )
(a) We can think of this as a sequence of random variables, i.e.,

1 wheniisaR ball
0 otherwise

w=1{1},1{2},...,1{n} where]]{i}:{

We are interested in whether 1 {i} is 1. Then by exchangeability, we have that probability of the i*" draw being a red
ball does not depend on i. Thus we have

P(R;) = P(R;) = % foralli=1,...,n.

(b) This result follows directly from Bayes’ rule and part (a),

(Bayes’) P(R]’ NRr) PRN R/)
P(R; | Rx) = P(Rk | R; - =

where P(R; N Rg) = P(Rx N R;) holds by commutative of the intersection, and P(R;) = P(R) from part (a). Thus we
have

‘[P’(R]- | Ry) = P(R | R;) forevery1<j,k<n.

(c) We are asked to compute P(Ry | U/, Ri) for a fixed 1 < k < n. This is the probability that the kt" draw results in a
red ball, given that at least one red ball is drawn in the remaining draws (k + 1)”1, ...,nth To begin, we write

PR, | L"J R PRk N Ui, Ri)
k i|= .
i=k+1 Pk Ri)

Starting with the denominator, we note that by de Morgan’s law, we have

(U )-1-#[ ) ).

i=k+1 i=k+1



(d)

O o - O O ®

N-R N-R-1 N-R—(n—k)+2 N-R—(n—k)+1 R
N N- N—(n—k)+2 N—-(n—k)+1 N-(n—k)

By exchangeability, we have that P ([, R¢) is equal to the probability of the first n — k balls drawn being white.

From the diagram, we have

N el R @b ()
P(iglRi)_ (N-R-(n-K) N! h (nlllk)'

Now we focus on the numerator. We have

" n n P(N".. REAR
P(ka U R,-) :IP( U Ri|Rk)IP(Rk): (1—[@( ﬂ R§|Rk))u3>(1zk)= (1— (m"m’jf(lel)m ) P (Ry)

i=k+1 i=k+1 i=k+1
n n
PR, N U Rl-)z(IP(Rk)—IP(ﬂ Rngk)).
i=k+1 i=k+1
Referring to our diagram, it clear that
1 —R)! —(n =IO —R)! —1=(n=k)
- ﬂ RE ARy | = (N = R)! (N (n' k))! R _ R (N =R)! (N-1-(mn-k)
AP (N—=R-(n-k))! N! N-n-k) N(N-R-(n-k)) (N =1)!
- R (5¢)
P( M Rngk) =% (1’3_1)
i=k+1 n—k

Put our results together, we have

! VUG
P (Rk | U Ri) = —"

(N*R
i=k+1 1 — Sk

(%)

Let X be the random variable representing the minimum number of draws required to get at least one red ball. We are
asked to calculate the expected value E[X]. Let us define an indicator variable that the j-th white ball will be drawn
before any of the red balls, i.e.,

1 when the j-th white ball will be drawn before any of the red balls
0 otherwise

1{j}(w) = {
Then we can write X as
w
X=1+ Z 1{j}
j=1

By exchangeability, we have that the probability that the j-th white ball is drawn before any of the red balls as

1
R+1

PO{j}=1)=E[{j}=

It then follows that

_N+1

u w
[E[X]:1+Z[E[1]{j}]:l+— = | E[X] = o7

R+1

=1



Ny Np1-1 Ni—-r4+2 Nij-ri+1 No No-1 No—rp+2 No—rp+1 N3 N3-1 Nig=r+2 Ni—re+1
N N-1 N-r1+42 N-ri+1 N-r N-r1—1 N-r1—r3+2 N-ri—ro+1 N—-ri—rp; N—=ri—rp—1 N-n+2 N-n+1

(e) Consider the diagram below

It is clear we have

() (5) -+ ()
(N1=r)! ) \(N2—=72)! ] * " \ (Ng=1¢)!

P(X =w)= i
(N-n)!

7

. . n! .
and this can be arranged in ;—7— ways leading to

%) G

()

P(r1 balls of color 1, r; balls of color 2, .. ., ¢ balls of color k) = n




STAT201A: Introduction to Probability at an Advanced Level September 27th, 2024

Homework # 2: Concentration Inequalities & Moment Generating Functions
Reece D. Huff

Problems (Solutions)

1. (Binomial tail bounds) Let S, have the Binomial(n, p) distribution of the number of successes in 1 independent
Bernoulli(p) trials. Use a suitable computational environment to evaluate the right tail probabilities

Sn
|:D — >+
( 2 Pi G)

for n = 100 and p; = ﬁ fori =1,2,...,9,and € = %, together with various approximations and upper bounds as
indicated. In each case:
¢ Give an exact mathematical formula for the function of i you are computing;

¢ Indicate suitable code for evaluating the formula in your preferred environment and attach the code at the end of
the homework;

Code is written in Python and is attached at the end of the document.

® Give the numerical values correct to two significant decimal places.
(a) The exact probabilities.

We begin by plugging in our values of 1, p;, and €, i.e.,

Sn _ofSw0 i 1) .
P(7 Zpl+€) —P(loo > 10+10) —P(S100210(Z+1)).

From the definition of the Binomial distribution, we have

0100 106411 1} 00
P (S100 =2 10(i + 1)) = Z ( K )Pf(l —p)10F =1 Z ( ' )Pf(l — pi)100-k,

k=10(i+1) k=0

pi p1 = 0.1 p2 = 0.2 p3 = 0.3 ps = 0.4 ps = 0.5 Pe = 0.6 p7 = 0.7 ps = 0.8 Po = 0.9
P (S, —npi 2 ne) = 0.002 0.011 0.021 0.027 0.028 0.025 0.016 0.0057  2.7e-05

(b) Markov’s upper bounds for these probabilities.
Recall Markov’s inequality,

E[X]

P(X>c) < — for any arbitrary r.v. X : O — R and constant ¢ > 0.

Additionally, recall the expectation of the Binomial distribution is E[S, ] = np, which is simply 100(i/10) = 10i for all
ie{l,...,9}. Thus, we have

E[S100] i .
P . Bl St 1007 E
(Sy —np; 2 ne) < 0G+1)  i+1 foralli e {1,...,9}

pi p1 = 0.1 p2 = 0.2 p3 = 0.3 ps = 0.4 ps = 0.5 Pe = 0.6 p7 = 0.7 ps = 0.8 P9 = 0.9
P (Sy —np; =2 ne) < 0.50 0.67 0.75 0.8 0.83 0.86 0.88 0.89 0.90

10



(c) Chebyshev’s upper bounds for these probabilities (which can be halved for i = 5 only: explain why).
Recall Chebyshev’s inequality,

P(X -pl=c) <

Var(X
arg ) foranr.v. X : Q — R with E[X] = p < o0 and constant ¢ > 0.

Additionally, recall the variance of the Binomial distribution is Var(S,) = np(1 — p), which is simply 100(i/10)(1 —
i/10) = 100(i/10 — i?/100) = 10i — i%. Thus, we have

1 ._.2 1 ._.2
P(IS100 — E[Si00]| = n€) < ?1 )21 = 011001 forallie{1,...,9) /5
ne

Note that for i = 5, we can halve the probability by symmetry, i.e.,

1
P(S100 — E[S100] = 1€) = P(S100 — E[S100] < —11€) = 7 P(S100 — E[S100] > n€)

— | P(|S100 - E[S ]|>ne)<10i_12 fori=5
100 10011 2 = 7200 Y

pi p1 = 0.1 p2 = 0.2 p3 = 0.3 ps = 0.4 ps = 0.5 Pe = 0.6 p7 = 0.7 ps = 0.8 P9 = 0.9
P (|Sy —npil =2 ne) < 0.090 0.16 0.21 0.24 0.25 0.24 0.21 0.16 0.090

(d) Hoeffding’s upper bounds.

Recall Hoeffding’s inequality: Let X3, ..., X, be independent r.v.’s with E[X;] = y; < oo and P(a; < X; < b;) =1 for

constants a;,b; € R. LetS,, = X1 +--- + X,,. Then,

—2¢2
21‘11 b; - ﬂi)z
Note that in our case, X; € {0,1} foralli € {1,...,n}. Then we have a; =0and b; =1foralli € {1,...,n}. Then our
Hoeffding bounds are

P(S, —E[Sy] =€) < exp( ) for any € > 0.

—2n2¢?

P(S, — E[Sy] = ne) < exp( ) = exp(—Znez) = exp(-2)

pi p1 = 0.1 p2 = 0.2 p3 = 0.3 P4 = 0.4 ps = 0.5 Pe = 0.6 p7 = 0.7 ps = 0.8 po = 0.9

P (Sy —np; =2 ne) < 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14

(e) Chernoff’s upper bounds.
Recall Chernoff’s inequality,

Mx(t)
etc

P(X>c)< min{

} forany t > 0and c € R.
t>0

Recall that we derived in called the Chernoff bound of a Binomial random variable as

1-— (1-a)n p\an
P(X >an) < (1 — a) (E) for any t > 0 and any constant a € R.

We seta = (p; + €) to arrive at

—pi )(1_Pi_€)”( pi )(Pi+€)/"

P(S, = (pi + €)n) = P(S, —np; = ne) < (m pite

9— i+1

)10(i+1)

10-i 90-10i
= |P(S190 = 10(i + 1)) < ( ; ) (—

11



pi p1 =0.1 p2=0.2 p3=0.3 p4=0.4 p5=0.5 p6=0.6 p7=0.7 p8=0.8 P9=09
P (S, —np; 2 ne) < 0.012 0.06 0.10 0.13 0.13 0.12 0.076 0.026 2.7e-05

2. (LLN) Suppose that X, X, ... form an i.i.d. sequence of random variables with E[X;] = u < o0 and Var[X;] = 02 < co.

Evaluate 1
; . Y.)2
Hhm ) E (Xi = Xj)".

2/ i,j1<i<j<n

We apply the law of large numbers to the random varible Z := é i jcicjen(Xi = X;)? to arrive at

,}m(i—) > (Xi—xj)2=[E(i—) S -Xp = Y E[X? -2, + X7

n
2/ i,j1<i<j<n 2/ i,j1<i<j<n 2) ijil<i<j<n

_ 1 2 1n(n+1)
= — Z o+y 2y+a+y—(2)T

2)
2/ i,j:1<i<j<n

. 1
lim G ), X XP=

2} i j<i<j<n

3. (Chebyshev & CLT) Let X1, X, X3,... be ii.d. random variables with mean zero and finite variance 2. LetS, =
Xj + -+ + X;,. Determine the limits below, with precise justifications.

(a) lim,—o P(S, > 0.01n).
(b) lim, e P(S,; > 0).
(0) limy,—o P(S, = —0.01n).

To begin, we note that we can rewrite the expression lim, .., P(S, > x) as
lim P(S, > x) =1- lim P(S, < x).
n—oco n—oo

This follows from our discrete r.v. S, becoming continuous as n — o, i.e.,

P(Sn 2x) +P(Sy <) =Py =x) =1 = lLm {P(Sy 2 x) +P(Sy <x) - P(Sy =x)} =1

0
= lim P(S, >x)+hrn[P’(S <x)—hm[F° =x)=1

n—-oo

= lim P(S, 2 x)=1- lim P(S, < x)
n—00 n—o0o

Next, we recall the Central Limit Theorem.

Theorem 1 (Central Limit Theorem). Let X;, ..., X, be a sequence of i.i.d. r.v.’s with finite mean u and finite variance
0% LetS, := X; + -+ X,. Then,

n—oo

lim P [\/_ (— - ) < x] ®O(x), forallx € Rwhere ®(x):= / exp(——)dt (the c.d.f. of N(0, 1)).

Then for Xy, X», X3, . .. i.i.d. random variables with mean zero and finite variance ¢2, and S,, = X1 + - - - + X,,, we have

i <] - [ Loof-L)a

It then follows for part (a), (b), and (c):

12



() limy, 0 P(S,; = 0.01n).

0.01yn

S —O'Oh/ﬁ} =1- lim w1 ex (—ﬁ)dt
O‘\/ﬁ o n—oo [_ 1/2,,.( p 2

hm P(S, 20.0ln)=1- hm P(S, <0.0ln)=1-lim P

n—oo

2
lim P(S, >0.01n) =1 - / exp(——)dt =1-1

lim P(S, > 0.01n) =
n—oo

(b) limy e P(S; > 0).

£2
hm[P’(S >O)—1—11m[P’(S <O)—1—11m[P’[ ]—1—/ —ex (——)dt
ovn V21 P

n—-oo
. 1
hm P(S, 20)=1—§
lim P(S, = 0) =
n—oo

(¢) limy, e P(S,, > —0.01n).

lim P(S, > —0.01n) =1 — lim P(S, < -0.0ln) =1 - lim P
n—oo n—oo

n—-oo

nll_I)Iolo P(S, 2 -0.0ln)=1- 7111_1)120/ \/2_7-( exp(——)dt

2
lim P(S, > -0.01n) =1 - / exp(—t—)dt =1-0

[ Sy _ ~0.01Vn

o\n o

lim P(S, > —0.01n) = 1.
n—0oo

4. (Convolution & MGF) The Laplace distribution has density fz(z) = exp( Alz|) and MGF Mgz(t) = \2 tZ' where A > 0.
Let X,Y Exp(A). Prove that Z = X - Y follows a Laplace distribution by using:

(a) Moment generating functions.
Recall the MGF of the exponential distribution,

Mx(t)=E [exp(tX)] = % forarv. X ~Exp(X)and A > 0,t € R.

Now we simply apply the MGF to the random variable Z = X - Y, i.e,,

Mz(t)=E [exp(tZ)] =E [exp(t(X - Y))] =E [exp(tX) exp(—tY)]

=E [exp(tX)] E [exp(—tY)] (by independence of X and Y)
_ A A zld
/\2
M=

(b) The convolution formula.
Recall the density of the exponential distribution,

fx(x) = forarv. X ~ Exp(X)and A > 0.

)\exp( Ax) ifx >0,
otherwise.

13



Additionally, recall the convolution formula,

fx+v(z) = /_oofx(x)fy(z -x)dx & fx-y(z)= [oofx(x)fy(x —z)dx for continuous r.v.s X, Y.

Using these formulae, we have that forarv. Z =X -Y,

[ee]

f2(z) = fx—v(z) = [mfx(x)fy(x —z)dx = / Aexp(=Ax) - Aexp(—A(x — z))dx

—00

Note from our integral is non-zero only when x — z > 0. Therefore, we consider two cases: when z > 0 and when
z < 0. For each case we will changes the bounds of integration. As such, we solve the integral above for general
bounds of integration, a and b:

b b b
fz(z) = / Aexp(=Ax) - Aexp(—A(x — z))dx = /\2/ exp(—Ax) exp(—Ax) exp(Az)dx = A% exp(Az) exp(—2Ax)dx

b a
fz(z) = A2 exp(Az) [% exp(—2/\x)] = % exp(Az) [exp(—Z/\x)]Z

(i) fz(z) whenz > 0:
When z > 0, we have that density is nonzero for x > z, so we evaluate our integral from x = z to x = oo, i.e,,

-A o A A
fz(z) = - exp(Az) [exp(—Z/\x)]z = exp(Az) [0 - exp(—ZAz)] == exp(/\z) exp(—2Az) = = exp( Az)
(i) fz(z) whenz <O0:
When z < 0, we have that density is nonzero for x > 0 as x —z > 0 for x > 0, so we evaluate our integral from
x=0tox =o0,ie,

fz(z) = — exp(/\z) [exp( 2Ax)] = _2—A exp(Az) [ —exp(— 2/\0)] = exp()\z)

Taken together, we have that the density of Z = X — Y'is

exp(—Az) ifz >0,
f2(z) = {iexp(/\z) otherwise e |f2le)= —exp( Az

5. (Moments & MGF) Let X be a random variable with p.d.f. given by

2, 0<x<1,
fr) = 22 1 cx <y,
0, otherwise.

(a) Verify that this is actually a p.d.f.
We verify that fx(x) is actually a p.d.f. by checking /_o:o fx(x)dx =1,1ie,

4 4
/ fx(x)dx—/ Zdx +/ '4 2, x:§+§/ ldx—z/ 12 - x|dx
1

/fx(x)dx—§ [w 14 2[—|2 42-4)  2-1)@- 1)} 14 2[5]_14 5

9 2 2 9 9
/ fx(x)ydx=1 v

(b) Find the moment generating function of X.
The MGF for X is

Mx(t) = E[e*] = / e fx(x)dx = / etxédx " / etx4 |49 2x| Jx
oo 0 : —

14



2 ! 4 [t 2 [t
Mx(t):§/0 e“‘dx+§/1 e“‘dx—;/1 e |x — 2|dx
1 4 e 2 [F
[”‘]0+§[e x]1—§[ et |x —2|dx
4 2 [ 2
t_l 4t Lt = tx -2 _ = tx -2
[e ]+9t[e e]+9le(x )dx 92e(x )dx

By integration by parts with u = x — 2 and dv = et*dx, we have

Mx(t) =

Mx(t) =

1

b b b b
_ b x _1 x b x _1 x b 1 x1b
/a udv—[uv]a—/ vdu = ‘/a el (x—Z)dx—? [ef (x—Z)]a—? i el dx—? [ef (x—Z)]g—t—2 [e™],

a

Then we have

2 21 2 21 4 21 4
MX(t)_ [e _1] [ 4t_et] __[ (- )]1___2[etx]1 ) [ SER 2)]2+__2[etx]2
9¢ 9t 9t
Ze -2 4e4f —4e 2 2t 4 2 4
Mx(t) = TR +9t[ —e'(1-2)] - 9t2[ ]—E[e 4-2)-0]+ 9t2[e —e”|
2et =2 Ae* — 4ot 2e! 2t — 202 M 2e4 — 2e2
Mx(t) = + +—+ — _
ot 9t 9t 9t2 9t 9t2
_n_ t _ 2t 4t
MX(t)z%{ 2 M+zé(+2e 402t + 2¢
ot 9t2
et — 42t + 2e4 — 2t
Mx(t) = oF2
2(et =22t 4o — ¢
Mx(t) = ( on2 )

(c) Find E[X] and Var[X].
The expectation of X is

oo 1 4 4 4 1 4 4
E[X] = / xfx(x)dx = / x%dx +/ xwdx = g/ xdx + é/ xdx — %/ x|x —2|dx
oo o 9 1 9 9o 9/ 9 /1

[E[X]z%%[xz]é+g%[xz]i+§/12x(x—2)dx—g/:x(x—Z)dx
[E[X]—é+§[16—1]+;/12x2—2xdx—§/24x2—2xdx
-3 23 53[5

-3 2 [ ba 2 (%062
03423213 -5[2- 23
[E[X]—;L—g

In order to calculate the variance, we first calculate E[X?] as Var(X) = E[X?] — E[X]?. Then we have

oo 1 4 1 4 4
2 4-14-2 2 4 2
[E[X2]=/ foX(x)dx:/ xz—dx+/ szdx:—/ xzdx+—/ xzdx——/ x%|x - 2|dx
_ 0 9 . 9 9 Jo 9/, 9/,

21 41 40 2 [? 2 *
2 2lr 3 < 200 _= 20 _
E[X“] = 93[ ]+93[x]1+9/1x(x 2)dx 9/Zx(x 2)dx

15



E[X?] = 2+ [64 —1] + 2 Zx?’—szdx—g 4x?’—szdx
27 27 9, 9/,
4 312 4 931%
Ex? e 222, 2|0 2 2| 2
27727 79 ColT T,
254 2[16 16 1 2| 2[25 128 16 16
2
—_— _ | — = — — = — __—_—_+_
EXT=27+5|7 73 4+3} 9[4 3 13
254 248 64 3 8 768 512 48 64
E[X?1=222 42| 2 =2 = = e Wi
Xl=%7 5|2 2 12 2" 9 2 12 12+12}
E) - 25 L2[ 1] _2[22] _1016 22 54 _ 450 25
9| 12| 9[12] 108 108 108 108 6

Now that we have solved for [E[Xz], we can solve for the variance of X, i.e.,

— 2 = _ X)=——~0.87
Var(X) = E[X ] E[X] = 3 7 G 79 Var(X) 0.873

25 (49 2 25 2401 1273
= —
1458

(d) Find a formula for the moments of X.
We define the k-th moment of X as

00 1 4 4 1 4 4
[E[Xk]z/ xkfx(x)dxz/ xkzdx+/ kadng/ xkdx+é/ xkdx—g/ xKx = 2]dx
oo o 9 . 9 9 Jo 9/, 9/,
k+1 71 k+1 14 2 4
2
2 4lx +%/ xk(x—Z)dx——/ xK(x = 2)dx
1 94 9.2

9 AT
E[X*] = 2 _,_14 [4F+1 - 1] +g/2xk(x—2)dx—g/4xk(x—2)dx
S 9(k+1)  9(k+1) 9/ 9/,

X

[E[Xk] - k+1

Again, we apply integration by parts with u = x — 2 and dv = x*dx, ie.,

b * xktl b b xk+1 Xkt b
_/ﬂl (x—2)dx—[(x—2)k+1 _/a K71’ [(x 2)k+1

Then we have

b
xk+2

(k+1)(k+2)],

: 2 +4(4k+1 _ 1) 2 k+l 2 xk+2 2 2 xk+l 4 xk+2 4
EX = —50 +§(( 2)k+11 k+Dk+2)],] 9 [(9‘_2)“12 k+Dk+2)],
. 2+42-4 2 2f2 1
EX = =05 9 ([O (=27 ] [(k+1)(k+2) (k+1)(k+2)])
2 4k+1 4k+2 2k+2
((4 Dev1- (k+1)(k+2)_(k+1)(k+2)])
E Xk 4k+2 2 2 1 1-— 2k+2 2 (2. 4k+1 2k+2 _ 4k+2
X =5 (k+1+(k+1)(k+2))__(k+1 +(k+1)(k+2))
K 4k+2 _ 9o 2 2(1 _ 2k+2) 2.2 4k+1 2(2k+2 _ 4k+2)
BT = 503 "o+ D T oks DR+ 9k D) kT Dk +2)
[E[Xk] 4k+2 2 2 ~ 4k+2 N 2_ 2k+3 ~ 2k+3 —2. 4k+2
9k +1) 9(k +1) 9k+1) 9k+1(k+2) 9k+1)k+2)
E Xk W Z+Z W 2_ 2k+3 2k+3 +2. 4k+2
(X = 9k +1) 9k +1)(k +2)
L 2(1 _ 2k+3 + 4k+2)
ElXTl = 9(k +1)(k +2)

We can verify that it holds for the first and second moments:

_2(1-24+4%) _201-2'+4%) 98 _ 49
Elxl= 92)3) 54 T 54 27
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2y 2(1-25+4% 450 25
XI=5wm T8

6. (Distribution of sums using MGFs) LetS, := X;+---+X,, forindependent Xj, ..., X,,. Use MGFs to find the distribution

of S,

(a)

(b)

For X; with Normal (u;, 07) distribution.

Recall the MGF of the Normal distribution with mean y; and variance aiz,
— 1 242 f X 2
Mx,(t) = exp t[,l,-+§oit orarv. X; ~ N(ui, 07).

Then the MGF of §;, = X1 + - - - + X, for for independent Xj, ..., X, is

n

1 C 1 C 12 <
Ms, (1) = 1_[ exp(tyi + Eaftz) = exp( tui + Ea%tz) = exp(t it 01.2)
1

i=1 i= i=1 i=1

Therefore, S,, follows the Normal distribution with mean Y% . u; and variance 3", ¢2, i.e.,
i=1 H i=1"q

n

n
Sp~N (Z Wi, Z 01.2) with density  fs,(x) =
i=1

i=1

(-3 w)

1
——exp >
2 X, o? ( 239

For X; with Gamma (r;, A) distribution.

Recall the MGF of a Gamma distribution with shape parameter r; and rate parameter A is given by:
£\

Mx,(t) = (1 - X) , fort < A.

Since S, = X1 + X5 + - - - + X, is the sum of independent Gamma random variables with the same rate parameter A,
we have:

n p\7" ¢ —Xiri
Msn(t)zl_[(l—z) :(I_I) .
i=1

This is the MGF of a Gamma distribution with shape parameter }.;_, r; and rate parameter A. Hence, S, follows the
Gamma distribution:

n

S, ~ Gamma ri, A with density  fs,(x) =
n
i=1

AZin iy L ri—1p—Ax

r (Z?:l i)

, x>0.

For X; = Z? with Z; ~ Normal(0, 1).
The MGF and density of a standard normal random variable Z; ~ Normal(0, 1) is:
Mz (t) = ex (t2) and f7,(z) ! ex ( ZZ)
Zi = a Zi e — -5
P12 Vo P72
We note that the MGF of Zf is not as simple as MZi(t)Z. The MGF of X; = Zf is as follows,
2

CE[e7] = [ exp(ted) e exp(-Z )iz = - [ expltz2 - Z)az = 1 [ exp[Z1 -
Mxi(t)—[E[e ]—‘/_mexp(tz)\/z_nexp( 2)dz—\/2_n[mexp(tz z)dz—\/z_n _ooexp 2(1 2t)|dz

In order for the integral to be convergent, we require that 1 — 2¢ > 0 or equivalently t < 3. Then we have

1 1
Mx,(t) = ——, fort < =.
V1 -2t 2
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Now we can derive Mg, (¢). Since X1, Xa, . .., X, are independent, we have:

1
V1 -2t

This is the MGF of a chi-squared distribution with n degrees of freedom. Therefore, S, follows a chi-squared
distribution with n degrees of freedom:

n
n 1
Mg, (t) = ( ) =(1-2t)"2, fort< X

1 1
S, ~ x*(n) with densi x)= ——x27 172 x50,
» ~ 22n) Y 0= S
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STAT201A: Introduction to Probability at an Advanced Level October 11th, 2024

Homework # 3: PDF’s, CDF’s, PGF’s, and Transformations
Reece D. Huff

Problems (Solutions)

1. (Approximating Binomial Distributions)

The goal of this question is to empirically verify three approximations to the exact Binomial probability P(X = k), where
X ~ Binomial(n, p):

P(Y = k), where Y ~ Poisson(np), the Poisson approximation with rate parameter np;
The normal approximation

7

1 . {_ (k —np)* }
\2nnp(1 - p) P 2np(1-p)

¢(k;np,np(l-p)):=

The entropic approximation

Ent(k; n, p) := exp (—=nKL(f || p)),

1
N

where f = % and KL(f || p) = flog(%) +(1 —f)log(%).

For this problem, I elected to plot the absolute and relative errors for each distribution making it easier to understand the
Binomial approximation accuracy of the Poisson, the Normal, and the Entropic distribution. For completeness, I attach
the tables corresponding to part (a), (b), (c), (d) as well as the code for generating the plots and tables to the end of this
document.

In the analysis that follows, recall these properties about each approximation:

(a)

(b)

Poisson Approximation: The absolute error is bounded by 2np?. This is because when p = A/n, we have np? = A%/n
which will be small when # is large.

Normal Approximation: Only accurate when f = k/# is close to p.

Entropic Approximation: Accurate as long as the Stirling Approximation is accurate for n — k and k (and the Stirling
approximation is quite accurate even for small integers).

Take n = 30 and p = 0.05. Create a table (31 rows and 3 columns) containing the absolute errors for each approxima-
tion:
IPX =k)-PY =k, [PX=k) -¢(k;np,np(1-p)l, and [P(X =k)-Ent(k;n,p)|

for k = 0,1,...,30. (Note: The entropic approximation does not exist for k = 0 and k = 30, so only list it for
k=1,...,29). Based on the table, comment on the accuracy of each of the three approximations for the Binomial
distribution.

Create a similar table for the relative errors:

IP(X =k)-P(Y =k)| [PX=k)—dk;np,np(-p)| and | P(X = k) — Ent(k; n, p)|
P(X = k) ' P(X = k) ' P(X = k)

for k = 0,1,...,30. Based on this table, comment on the accuracy of each of the three approximations for the
Binomial.

The absolute and relative errors for k = 0,1, ..., 30 are listed in Table 1 and Table 2. The errors have also been plotted
in Figure 3.
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Binomial vs. Poisson (n = 30, p = 0.05) Binomial vs. Normal (17 = 30, p = 0.05) Binomial vs. Entropic (1 = 30, p = 0.05)
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Ficure 3: Probabilities (left) and absolute errors and relative errors (right) for the between the Binomial distribution and the
Poisson, Normal, and Entropic distribution for n = 30 and p = 0.05.

Commentary for part (a) & (b):

* Poisson Approximation: We would expect the Poisson approximation only to work when k is near the mean
(np). We see the absolute errors increase as k moves away from the mean.

e Normal Approximation: The normal approximation is only accurate when f = k/n is close to p (i.e., k = np =
1.5). As k increases, the error blows up. This follows from the approximation going to zero much faster with
such a small p value.

¢ Entropic Approximation: The Entropic approximation is clearly the best approximation in both absolute and
relative error compares to the other approximations. Interestingly, the absolute error is smallest when k = 1 and
the relative error is minimized when k = n/2.
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(c) Repeat exercises (a) and (b) for n = 30 and p = 0.25.
The absolute and relative errors for k = 0,1, ..., 30 are listed in Table 3 and Table 4. The errors have also been plotted

in Figure 4.
Binomial vs. Poisson (n = 30, p = 0.25) Binomial vs. Normal (n = 30, p = 0.25) Binomial vs. Entropic (n = 30, p = 0.25)
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Ficure 4: Probabilities (left) and absolute errors and relative errors (right) for the between the Binomial distribution and the
Poisson, Normal, and Entropic distribution for n = 30 and p = 0.25.

Commentary for part (c):

* Poisson Approximation: Again, the Poisson approximation works well when np? is small, and now p is 5 times
larger. The approximation is still able to do well when k is near the mean. However, as k increases, the absolute
errors blows up even though the absolute errors become quite small.

* Normal Approximation: Much like before, the Normal approximation performs well when k is close to the mean
(np = 7.5). The approximation hangs on for larger values of k and interestingly, it does very poorly for small
values of k. This is becomes the exponential has had a chance to decay such that the absolute error is greater
than the probability of the Binomial.

¢ Entropic Approximation: The Entropic approximation once again proves to be the most accurate across the
entire range of k. It consistently provides smaller absolute and relative errors compared to the other two
approximations. We now notice that the absolute errors are smallest when k is close to the mean.
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(d) Repeat exercises (a) and (b) for n =30 and p = 0.5.
The absolute and relative errors for k = 0,1, ..., 30 are listed in Table 5 and Table 6. The errors have also been plotted

in Figure 5.
Binomial vs. Poisson (1 = 30, p = 0.50) Binomial vs. Normal (17 = 30, p = 0.50) Binomial vs. Entropic (n = 30, p = 0.50)
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Ficure 5: Probabilities (left) and absolute errors and relative errors (right) for the between the Binomial distribution and the
Poisson, Normal, and Entropic distribution for n = 30 and p = 0.25.

Commentary for part (d):

* Poisson Approximation: As expected, the Poisson approximation becomes even worse now that p = 0.50. The
approximation significantly overestimates probabilities when k is away from the mean. It still does reasonably
well when k is close to the mean but not as well as before.

* Normal Approximation: The Normal approximation performs better when p = 0.50 compared to the earlier
cases simply because there are more values of k that are near the mean. Still when k is small or large, the Normal
approximation falls apart resulting large absolute errors (much larger than 1 in some cases).

* Entropic Approximation: The Entropic approximation (to no surprise) provides the best accuracy. It shows
small absolute and relative errors across the entire range of k, especially when k is near the mean. It is striking
that the absolute error is minimized at k = 1n/2 regardless of the p.
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2. (KL-Divergence, Multinomial)

Let X and Y be discrete random variables with distributions p and ¢, respectively. So p(k) = P(X = k) and g(k) = P(Y = k).
Recall that the Kullback-Leibler divergence is defined by

(a)

(b)

KL(p I 9) :=Ep [ln(m)] Z i ((k))

Show that when g(k) is a Poisson distribution with parameter A > 0, the KL-divergence is minimized by setting A to
be the mean of p(k).

Let g(k) follow a Poisson distribution, i.e., (k) = P(Y = k) = e™*A¥/k! for k € {0,1,...,n}, A > 0. Then the KL
divergence can be written as

Kkl
KLpllg)= > pk)lo (pgk;) > pto (’“&J:% > plolog(pkie'a~)

ke{0,....n} ke{0,...,n}

Setting the derivate of the KL divergence with respect to A equal to 0 results in

d d k)k! 0
S =5c 3 g P = Y | 0 (e 2 (pdoiee'a™)

ke{0,...,n} ke{0,...,n
J _ A=k _ o Aq—k-1) _ ket Ak
SR = Y 0 () (o) = 5 pfi- R
ke{0,...,n} ke{0,...,n}
d kA=FAT k
sEwlo= Y p(i-2o) = 3 p(i-5] -0
ke{0,..n} ke{0,...,n}
=1 )= ), bk
kefer..., n} ke{0,....n}
= | A* = E[X]

Remember that the entropy H(p) is defined to be H(p|q) := —E,[In(p(X))]. Assume that we need to place n balls
into d bins. The number of ways to place the balls, resulting in k; total balls in bin 7, for i = 1, ..., d, is given by the
combinatorial expression
n
(kl, ko, ..., kd)'

Now, consider the empirical distribution of the balls. Its probability mass function is p(i) = k;/n. Let N, denote the
number of configurations with empirical distribution p. Show that

In(N,) = nH(p) + O(In(n)),

where H(p) is the entropy of p.

In other words, there are many more high-entropy configurations than low-entropy configurations. This suggests
the intuition that, if we consider a physical system at a “macro level” (such as the distribution of gas particles in a
container) then we should expect it to drift toward high-entropy configurations.

Hint: Recall Stirling’s approximation
In(n!) = nln(n) — n + O(In(n)).

We begin by taking the log of combinatorial expression ( ky k ) We have that

rrrrr

d
n n!
= = )= 1 — ! 1) = 1 — 1
log(N,) = log (kl,kz,...,kd) 1og(k1'k2 =i ) log(n!) — log(ki!ka! . .. kg!) = log(n!) izzlllog(kl.)
Next, we apply Stirling’s approximation to log(n!) and log(k;!) to arrive at

d
log(N,) = nlog(n) — n + O(log(n)) — Z (ki log(ki) — ki + O(log(k;)))

i=1

23



d

d
log(N,) = nlog(n) —n — > (np(i)log(np(i)) - np(i)) + O(log(n)) = > Olog(k;))

i=1 i=1
d d d
log(Ny) = nlog(n) —n — > np(i)log(np(i)) + n " p(i) + Olog(n)) — " O(log(k;))
i=1 i=1 i=1
log(Np) =nlog(n) — n — nlog(n) Z p(i)—n Z p(i)log(p(i)) +n Z p(i) +O(log(n)) — Z O(log(ki))
‘\f"'/ = s\,—_/
1 ~H(p) 1

d
log(N,) = nlog(n) — n — nlog(n) + nH(p) + n + O(log(n)) - Z O(log(k))

i=1

log(N,) = nH(p) + O(log(n))

3. (Poisson)

Let K = Xy + Xp + -+ + Xy, where N ~ Poisson(A) and Xj, X, ... are independent Bernoulli(p) random variables.
Assuming that N and {X;};en are mutually independent, find the distribution of K.

To solve this problem, we utilize probability generating functions (p.g.f.’s). Recall that the p.g.f. of the Poisson distribution

Gn(t) = E[tN] = Zt” P[N =n] = i ( AAn) i ((M)n) etett =MD forall 1 < 1,4 > 0.

n=0

n=0
Additionally, recall the p.g.f. for Bernoulli random variables
Gx,(t) = E[t5] = Z t"P[X;=n]=1-p+tp forall|t|<1,pel[0,1].
n=0
Then by the Compunding theorem from Lecture 11, we have that

-A

¢ , C e (A -pHpHAlt
Gk(t) = G (Gx(b) = Z;)(Gx(t)) PIN = n] = Z‘sa —ptp)——=¢" Z‘S e L A
GK(f) — e/\—/\p+/\pt—/\ — e/\p(t—l)

We notice the p.g.f. of K has the same form as the Poisson distribution with parameter Ap. Thus we conclude

K ~ Poisson(Ap) ‘

4. (Joint densities)
Let the joint density function of (X, Y) be

0, else.

i 2
f(x, )_{BW(“J) if (x,y) € [0,1]%,

Calculate the covariance Cov(X,Y).

Recall the covariance can be written as Cov(X,Y) = E[XY] — E[X]E[Y]. We calculate each of these terms starting with

E[X],
E[X] = / / xf(x,y)dxdy = / / 3x%y(x + y)dxdy = 3/ / X ydxdy+3/ / y2dxdy

o x"
n=0 n!"*

1Recall the power series expansion of the exponential function, exp(x) = 3}
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1 1.2
3 [ Y V=343V
[E[X]—3/O 4dy+3‘/0 3dy—8+9—24.

By symmetry, we have that E[X] = E[Y] = %. We then calculate E[XY] as

1 pl 1 pl 1 p1 1 el
[E[XY]z/ / xyf(x,y)dxdyz/ / 3x2y2(x+y)dxdy=3/ / xSydedy+3/ / x?y3dxdy
0o Jo o Jo 0o Jo 0o Jo

3 3 1

E[XY]=E+E=E

Taken together, we have the Cov(X, Y) is

2
1 (17 1
Cov(X, Y) = E[XY] - E[X]E[Y] = 5 - (ﬂ) — | Cov(X,¥) =~
5. (Transformation of random variables)
(a) Suppose X has the Cauchy distribution with density:
1
fx®)= T

(b)

Show that 1/X has the same distribution as X.
LetY =T(X)=1/Xand X = T"}(Y) = 1/Y. Then we have

_ dT1(y) 1
fi = () [T = s am -

il
n(1+<§)2) v2) ny2+1) \y2) n(l+y?)

Since fx(x) = fi/x(x), we have that| X 2 /X | where 2 is that the random variables are equal in distribution.

Suppose Y ~ Exp(1). Find a function g : (0, 00) — (=00, 00) such that g(Y') has the Cauchy distribution with density
given by (a).

Note that any r.v. A with c.d.f. F4 has the following property: Fa(A) 4 U where U ~ Uniform(0,1). Let X = g(Y)
for a function g : (0,00) — (—00,00). Recall that X ~ Cauchy(0,1) has a p.d.f. of fx(x) = ——— and c.d.f. of

mt(1+x2)
Fx(x) = %tan‘l(x) + % for all x € (o0, o). Additionally, recall Y ~ Exp(1) has a p.d.f. of fy(y) = e™¥ and c.d.f. of
Fy(y)=1-e7Y forall y > 0. It then follows that

Fr(V)2USFx(X) £Fx(g(Y) = F()EFx(g(Y) = 1-¢7 £ tan'(g¥)+ %

Al

Solving for g(Y) results in

sin(§ —me™)  cos(me”Y oy y
e = sin(re ) = cot(ne ) = |g(V)= cot(ne )

s() = tan(g - T((f_Y) =

ISIERISIE]

cos(

Suppose Z ~ Exp(A), where A > 0. Show that the distribution of W := [Z] (here [z] is the smallest integer that is
larger than or equal to z) is Geometric. Explicitly express the parameter of the Geometric distribution in terms of A.
To begin, we recall that Z ~ Exp(A) has a p.d.f. of fz(z) = Ae™? and c.d.f. of Fz(z) = 1 — e for all z > 0.
Additionally, recall that W ~ Geometric has P[W = k] = (1 - p)<lp forall k = 1,2,3, .... It then follows that

—Ak ,A
PIW=k]=P[k-1<Z <k]=Fz(k) = Fz(k—1) =1 — e~ — (1 - e_Mk_l)) = MDAk oAk 28
e
R e—Mk=1) 1
PIW = k] = e M0 Z & pmAk) _ 8 A [ 2 ) 2 (e kD (1 _ e—)\)
el el 2 BN
(1-p)<-t .
A

By inspection, we see that| W = [Z] ~ Geometric with a parameter p =1 —¢™".
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6. (Transformation of random variables)
Suppose X ~ Uniform[—, 27t]. Find the p.d.f. of Y = sin(X).

This problem involves what we call a many-to-one transformation T. Therefore, we begin by splitting the domain of X into
regions of monotonicity of Y = sin(X).

Y = sin(X)
Ay Ay | A3 Ay As A
| | 1 T |
| | |
| | |
| | |
X = x
| 2 2
| | |
| | |
| | |
| | |
I -1+ I

We then define the inverse transforms for each partition as

sin(y)—mn/2 forx € Ay =[-n,-1t/2] ye[-1,0]
sin!(y) forx € Ay = [-m/2,0] y e[-1,0]
T-(y) = sin!(y) + /2 forx € A3 = (0,7/2] y€(0,1]
1 Y= sin!(y) + 7 for x € Ay = [1/2,m) y €(0,1]
sin_l(y) +3mn/2 forx € As = [n,3m/2] y €[-1,0]
sin"}(y) + 2n forx € Ag = [31/2,2n] y €[-1,0]

Then for y € [-1, 0], we have

dT ' (y) 1 1 4 1
_ -1 i _ 4 - =
= iE{l,ZZ;S,é} & (Ti (y)) ‘ dy ie{1,22,5,6} Mi-y2 3m\1-y2
Similarly, for y € (0, 1], we have
AT (y) 11 2 1
Fry) = fx T ) ‘ ’ = = ==
ie%;}} ( ) dy ie%;4} 3n 1= y2 3n 1= y2

Taken together we have that

4 _
P for y € [-1,0],
_ 2
fr(y) = P for y € (0,1),
0 otherwise.
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(a) Taken =30and p = 0.05. Create a table (31 rows and 3 columns) containing the absolute errors for each approximation:
IP(X=k)-P(Y =k, |P(X=K-(knp,np(1-p)l, and |P(X = k) - Ent(k;n, p)|

for k = 0,1,...,30. (Note: The entropic approximation does not exist for k = 0 and k = 30, so only list it for
k=1,...,29). Based on the table, comment on the accuracy of each of the three approximations for the Binomial
distribution.

TaBLE 1: Absolute errors for the between the Binomial distribution and the Poisson, Normal, and Entropic distribution for
n =30and p = 0.05.

k [P(X =k)-P(Y = k) |P(X = k)= ¢(k;np,np(1 - p))| |P(X = k) — Ent(k; n, p)|
0 0.0085 0.063

1 0.0042 0.033 0.029

2 0.0076 0.047 0.011

3 0.0015 0.025 0.0036

4 0.0019 0.0078 0.00097
5 0.0018 0.0078 0.00021
6 0.00082 0.0024 4.0x107°
7 0.00027 0.00048 6.3 x107°
8 6.8 x 107> 7.4%x107° 8.5x 1077
9 1.4%x107° 9.5x107° 1.0 x 1077
10 2.5x107°° 1.1x107° 1.0x 1078
11 3.8x1077 1.0x 1077 9.3x 10710
12 52x1078 8.4x107° 74x10"11
13 6.4 %107 6.1x10710 5.2 x 10712
14 7.1x 10710 39x1071 3.3x10713
15 7.3x 1071 2.2x10712 1.8x 1071
16 6.9 x 10712 1.1x 10713 9.1 x 10716
17 6.1x10713 4.7 %1071 4.0x107Y
18 5.1x 10714 1.8 x 10716 1.6x 10718
19 41x10715 5.9 x 10718 5.5x 10720
20 3.0x 10716 1.7 %107 1.7x 1072
21 2.2x107Y7 43x1072 45x107%
22 1.5x 10718 93x1072% 1.1x 1072
23 9.7 x 10720 1.7 x 10724 2.2x1072%
24 6.1x1072 2.6 x 10726 3.8x10°28
25 3.6 x 10722 3.3x10°28 5.7 x 10730
26 2.1x107% 3.3x 10730 7.1x 10732
27 1.2x 1072 2.6 x 10732 7.4 %1073
28 6.2x107% 1.5x 10734 6.2 x 10736
29 3.2x10°% 5.3x107% 4.5x 10738
30 1.6 x 10728 9.3x10™40
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(b) Create a similar table for the relative errors:

IPX=k) -P(Y=k| [|PX=k)-¢lk;np np(l-p)) and |P(X = k) — Ent(k; n, p)|
P(X = k) ' P(X = k) ' P(X = k)

fork =0,1,...,30. Based on this table, comment on the accuracy of each of the three approximations for the Binomial.

TaBLE 2: Relative errors for the between the Binomial distribution and the Poisson, Normal, and Entropic distribution for
n =30and p = 0.05.

k | P(X=k)-P(Y=Fk)| | P(X=k)-¢(k;np,np(1-p))| | P(X=k)-Ent(k;n,p)|
P(X=k) P(X=k) P(X=k)
0 0.040 0.29
1 0.012 0.097 0.085
2 0.029 0.18 0.042
3 0.012 0.19 0.028
4 0.043 0.17 0.021
5 0.14 0.63 0.017
6 0.30 0.90 0.015
7 0.55 0.98 0.013
8 0.92 1.0 0.011
9 1.5 1.0 0.011
10 2.4 1.0 0.0098
11 3.8 1.0 0.0092
12 6.2 1.0 0.0088
13 10. 1.0 0.0086
14 18. 1.0 0.0084
15 33. 1.0 0.0084
16 64. 1.0 0.0084
17 1.3 x 10*2 1.0 0.0086
18 2.9 x 10*2 1.0 0.0088
19 6.9 x 10*2 1.0 0.0092
20 1.8 x 103 1.0 0.0098
21 5.1 x10*3 1.0 0.011
22 1.6 x 104 1.0 0.011
23 5.7 x 104 1.0 0.013
24 2.3x10%° 1.0 0.015
25 1.1 x 10*° 1.0 0.017
26 6.3 x 10%0 1.0 0.021
27 45x10%7 1.0 0.028
28 43x10*8 1.0 0.042
29 6.1 x10%° 1.0 0.085
30 1.7 x 10t1 1.0

28



(c) Repeat exercises (a) and (b) for n = 30 and p = 0.25.

TaBLE 3: Absolute errors for the between the Binomial distribution and the Poisson, Normal, and Entropic distribution for
n=30and p = 0.25.

k [P(X =k)-P(Y = k)| |P(X =k)—¢(k;np,np(1 - p))l |P(X = k) — Ent(k; n, p)|
0 0.00037 0.00095

1 0.0024 0.0021 0.00015
2 0.0069 0.0028 0.00037
3 0.012 0.00095 0.00076
4 0.012 0.0038 0.0013

5 0.0046 0.0082 0.0018

6 0.0087 0.0077 0.0021

7 0.020 0.0017 0.0021

8 0.022 0.0052 0.0018

9 0.015 0.0079 0.0014
10 0.0050 0.0056 0.00089
11 0.0035 0.0015 0.00051
12 0.0075 0.0013 0.00026
13 0.0077 0.0020 0.00011
14 0.0059 0.0015 4.6x107°
15 0.0037 0.00080 1.6 x107°
16 0.0020 0.00033 5.1 x107°
17 0.0010 0.00011 1.4x10°°
18 0.00045 3.1x107° 3.5x 1077
19 0.00018 7.1x10°° 7.7 %1078
20 7.1x107° 1.4%x107° 1.5%x 1078
21 2.6x107° 2.3x1077 2.6x107°
22 8.7 x107° 3.2x10°8 3.8 x 10710
23 2.9x%x10°° 3.8%x10~° 50x 1071
24 8.9x 1077 3.7x 10710 5.5x 10712
25 2.7x1077 3.0x 10711 52 x 10713
26 7.7 %1078 1.9x 10712 41x10714
27 2.2x1078 9.5x 10714 2.7x1071
28 5.8x 1077 3.4x1071° 1.4x 10716
29 1.5%x107° 7.8x 107 6.6 x 10718
30 3.7x10710 8.6x107Y

29



TaBLE 4: Relative errors for the between the Binomial distribution and the Poisson, Normal, and Entropic distribution for
n =30and p = 0.25.

K | P(X=k)-P(Y=k)| | P(X=k)=p(k;np,np(1=p))| | P(X=k)~Ent(k;n,p)|
P(X=k) P(X=k) P(X=k)
0 2.1 5.3
1 1.3 1.2 0.085
2 0.80 0.32 0.042
3 0.45 0.035 0.028
4 0.21 0.063 0.021
5 0.044 0.078 0.017
6 0.060 0.053 0.015
7 0.12 0.010 0.013
8 0.14 0.033 0.011
9 0.12 0.061 0.011
10 0.055 0.062 0.0098
11 0.063 0.028 0.0092
12 0.26 0.043 0.0088
13 0.57 0.15 0.0086
14 1.1 0.28 0.0084
15 1.9 0.41 0.0084
16 3.4 0.55 0.0084
17 6.1 0.67 0.0086
18 11. 0.77 0.0088
19 22. 0.84 0.0092
20 46. 0.90 0.0098
21 1.0 x 102 0.94 0.011
22 2.6 x 10*2 0.96 0.011
23 7.4 x 102 0.98 0.013
24 2.4%x10%3 0.99 0.015
25 8.9 x 103 0.99 0.017
26 4.0x 10" 0.99 0.021
27 2.3x10%5 1.0 0.028
28 1.7 x 10*° 1.0 0.042
29 1.9 x 10*7 1.0 0.085
30 4.3 x10%8 0.99
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(d) Repeat exercises (a) and (b) for n = 30 and p = 0.5.

TaBLE 5: Absolute errors for the between the Binomial distribution and the Poisson, Normal, and Entropic distribution for
n =30and p = 0.50.

k [P(X =k)-P(Y = k)| |P(X =k)—¢(k;np,np(1 - p))l |P(X = k) — Ent(k; n, p)|
0 3.0x1077 44x1078

1 4.6x10°° 2.8x1077 2.4x107°
2 3.4x107° 1.5%x107° 1.7 x 1078
3 0.00017 6.1x10°° 1.1 x 1077
4 0.00062 2.0%x107° 55x 1077
5 0.0018 5.3 x107° 2.3x10°°
6 0.0043 0.00010 8.1x107°
7 0.0085 0.00015 2.4x107
8 0.014 0.00010 6.3x107
9 0.019 0.00011 0.00014
10 0.021 0.00047 0.00027
11 0.015 0.00074 0.00047
12 0.0023 0.00061 0.00071
13 0.016 40x107° 0.00096
14 0.033 0.00084 0.0011
15 0.042 0.0012 0.0012
16 0.039 0.00084 0.0011
17 0.027 4.0x%x107° 0.00096
18 0.0099 0.00061 0.00071
19 0.0049 0.00074 0.00047
20 0.014 0.00047 0.00027
21 0.017 0.00011 0.00014
22 0.015 0.00010 6.3x107
23 0.011 0.00015 2.4x107
24 0.0077 0.00010 8.1x107°
25 0.0048 5.3x107° 2.3x107°
26 0.0028 2.0%x10° 55x 1077
27 0.0016 6.1x10°° 1.1x 1077
28 0.00085 1.5%x107° 1.7 %1078
29 0.00044 2.8x1077 2.4x107°
30 0.00022 44x%1078
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TABLE 6: Relative errors for the between the Binomial distribution and the Poisson, Normal, and Entropic distribution for
n =30and p = 0.50.

k | P(X=k)-P(Y=Fk)| | P(X=k)=¢(k;np,np(1-p))| | P(X=k)~Ent(k;n,p)|
P(X=k) P(X=k) P(X=k)
0 3.3 x 10*2 47.
1 1.6 x 102 10. 0.085
2 84. 3.6 0.042
3 45. 1.6 0.028
4 24. 0.79 0.021
5 14. 0.40 0.017
6 7.8 0.19 0.015
7 45 0.078 0.013
8 2.6 0.019 0.011
9 14 0.0082 0.011
10 0.74 0.017 0.0098
11 0.30 0.015 0.0092
12 0.029 0.0075 0.0088
13 0.14 0.00036 0.0086
14 0.24 0.0062 0.0084
15 0.29 0.0084 0.0084
16 0.29 0.0062 0.0084
17 0.24 0.00036 0.0086
18 0.12 0.0075 0.0088
19 0.096 0.015 0.0092
20 0.49 0.017 0.0098
21 1.2 0.0082 0.011
22 2.7 0.019 0.011
23 6.0 0.078 0.013
24 14. 0.19 0.015
25 37. 0.40 0.017
26 1.1 x 102 0.79 0.021
27 4.2 x10*2 1.6 0.028
28 2.1x10%3 3.6 0.042
29 1.6 x 10+* 10. 0.085
30 2.4 %x10%° 47.
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Code for Question 1

O ® N G R W N =

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

import os

from glob import glob

import numpy as np

from math import factorial, comb, exp, pi, sqrt, log
import re

from PIL import Image

import matplotlib.pyplot as plt

import matplotlib as mpl

mpl.rcParams[’text.usetex’] = True
mpl.rcParams[’text.latex.preamble’] = r’\usepackage{mathpazo}’
mpl.rcParams["font.family"] = "Palatino"

# Create a figure dir if it does not already exists
FIG_DIR = os.path.join(os.path.abspath( os.path.dirname( __file__ ) ), "figures")
if not os.path.exists(FIG_DIR):

os.makedirs (FIG_DIR, exist_ok=True)

#%% Printing function
def replace_sci_notation(input_str):
return re.sub(r’ (\d\.\d)e([+-1)0*([0-9]+)’, r’\1 \\times 104{\2\3}’, input_str)

def np_to_content(arr):
output = []
for k, r in enumerate(arr):
1 = "\t\t${:d}$ & ${:#.293% & ${:#.29g3% & ${:#.29}$ \\\\".format(int(r[0]),
float(r[2]), float(r[3]1))
1 = replace_sci_notation(l)
if k == 0 or k == (arr.shape[0]-1):
1 = 1[:1.rfind("&")] + "& \\\\"
output.append(l)
return output

def print_table(data_in, title, caption, table):
# \begin{table}[!ht]
# \centering
\begin{tabular}{C{lcm} C{5cm} C{5cm} C{5cm}}
\toprule
$k$
& $|\Pr(X k) - \Pr(Y = k)I$
& $I\Pr(X = k) - \phi(k; np, np(l - p))I$
& $|\Pr(X = k) - \textnormal{Ent}(k; n, p)I|$
\\
\midrule
0 & 0.01 & 0.01 & 0.01 \\
\bottomrule
# \end{tabular}
# \end{table}
# Update the caption to include a \label

FH O H O H W H O H R

error_type = caption[caption.find("{")+1l:caption.find("errors")-1]
inds = [i for i, c in enumerate(list(caption)) if c == "§"]

n_str = caption[inds[0]+1:inds[1]].replace("=","_")

p_str = caption[inds[2]+1:inds[3]].replace("=","_")

caption += "\n\t\label{%s_%s_%s}" % (error_type, n_str, p_str)

frontmatter = [
"\\begin{table}[!'ht]",
"\t\centering",
"\t\\begin{tabular}{C{lcm} C{5cm} C{5cm} C{5cm}}",
"\t\t\\toprule"
]

frontmatter.insert (2, caption)

middlematter = [
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63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

def

"N\,
"\t\t\midrule",
1
content = np_to_content(data_in)
endmatter = [
"\t\t\\bottomrule",
"\t\end{tabular}",
"\end{table}"
1

# endmatter.insert(-1, caption)

print("\n")

print ("="%*50)

print(table)

print("="%50)

for line in frontmatter + title + middlematter + content + endmatter:

print(line)
print ("="%50)
print("\n")

plot_approximation(approx_probs, abs_errors, rel_errors, ylabels):

# Plotting the Two-Panel Plot for Approximation

# Compute PUNFs

k_values = np.arange(®, len(abs_errors))
binom_probs = [binomial(n,p,k) for k in k_values]

# Create the Two-Panel Plot

# Option 1

# _, axes = plt.subplots(l, 2, figsize=(12, 6))
# Option 2

axes = plt.subplots(2, 1, figsize=(6, 12))

# --- Left Panel: Binomial vs Poisson ---

axes[0].bar(k_values - 0.2, binom_probs, width=0.4, label=’Binomial’, alpha=0.7, color=’blue’,
log=True)

axes[0].bar(k_values + 0.2, approx_probs, width=0.4, label=ylabels[0], alpha=0.7,
color="orange’, log=True)

axes[0].set_xlabel (r’Number of Successes ($k$)’, fontsize=14)

axes[0].set_ylabel (r’Probability’, fontsize=14)
axes[0].set_title(r’Binomial vs. %s ($n=%d$, $p=%0.2f$)’ % (ylabels[0],n,p), fontsize=16)
axes[0].legend(fontsize=14, loc=’upper right’)

axes[0].grid(True, linestyle=’--’, alpha=0.5, which="both’, axis="y’)
# --- Right Panel: Absolute and Relative Errors --- #

axl = axes[1]

ax2 = axl.twinx()

# Plot Absolute Errors

axl.plot(k_values, abs_errors, color=’green’, marker='o0’)

axl.set_xlabel (r’Number of Successes ($k$)’, fontsize=14)
axl.set_ylabel(r’Absolute Error $ = %s$’ % ylabels[1l], color='green’, fontsize=14)
axl.tick_params(axis=’y’, labelcolor=’'green’)

axl.set_yscale(’log’)

axl.grid(True, linestyle=’--", alpha=0.5, which="both’, axis="y’)

# Plot Relative Errors

ax2.plot(k_values, rel_errors, color='red’, marker='x")
ax2.set_ylabel(r’Relative Error $ = %s$’ % ylabels[2], color="red’, fontsize=14)
ax2.tick_params(axis='y’, labelcolor="red’)

ax2.set_yscale(’log’)

# Title
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181

182

183
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189

def

def

axes[1l].set_title(r’Errors of %s Approximation ($n=%d$, $p=%0.2f$)’ % (ylabels[0],n,p),
fontsize=16)

plt.tight_layout()

fig_name = "%s_%d_%0.2f.png" % (ylabels[0],n,p)
fig_path = os.path.join(FIG_DIR, fig_name)
plt.savefig(fig_path, dpi=600)

plot_data(n,p,abs_data,rel_data):

# Poisson labels and approximate probabilities
ylabels = [
"Poisson’,
r’ [\Pr(X = k) - \Pr(Y = k)|,
r’\frac{|\Pr(X = k) - \Pr(Y = k) |}{\Pr(X = k)}’
]
approx_probs = [poisson(n*p, int(k)) for k in abs_datal[:,0]]
plot_approximation(approx_probs, abs_data[:,1], rel_data[:,1], ylabels)

# Normal labels and approximate probabilities
ylabels = [
"Normal’,
r’ [\Pr(X = k) - \phi(k; np, np(1l - p))I’,
r’\frac{|\Pr(X = k) - \phi(k; np, np(1 - p))[}{\Pr(X = k)}’
]
approx_probs = [normal(n,p,int(k)) for k in abs_datal[:,0]]
plot_approximation(approx_probs, abs_datal[:,2], rel_datal[:,2], ylabels)

# Entropic labels and approximate probabilities
ylabels = [
"Entropic’,
r’ |\Pr(X = k) - \textnormal{Ent}(k; n, p)|’,
r’\frac{|\Pr(X = k) - \textnormal{Ent}(k; n, p)|}{\Pr(X = k)}’
]
approx_probs = [entropic(n,p,int(k)) for k in abs_datal[:,0]]
plot_approximation(approx_probs, abs_data[:,3], rel_datal[:,3], ylabels)

# Join the figures as one png
join_figs(n,p)

join_figs(n,p):

dists = [’Poisson’, ’Normal’, ’Entropic’]

search = os.path.join(FIG_DIR, "*%d_%.2f.png" % (n,p))
paths = glob(search)

images = []

for dist in dists:
for path in paths:
if dist in path:

print (path)
images.append(Image.open(path))
im_size = images[0].size
# Option 1
# new_im = Image.new(’RGB’, (im_size[0],3*im_size[1]), (255,255,255))
# new_im.paste(images[0], (0,0))
# new_im.paste(images([1], (0,1*im_size[1l]))
# new_im.paste(images[2], (0,2*im_size[1]))
# new_im_path = os.path.join(FIG_DIR, "n%d_p%.2f.png" % (n,p))
# new_im.save(new_im_path, "PNG")
# Option 2
new_im = Image.new(’RGB’, (3*im_size[0],im_size[1]), (255,255,255))

new_im.paste(images[0], (0,0))
new_im.paste(images[1], (1*im_size[0], 0))
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new_im.paste(images[2], (2*im_size[0], 0))
new_im_path = os.path.join(FIG_DIR, "n%d_p%.2f.png" % (n,p))
new_im.save(new_im_path, "PNG")

#%% Distributions
def binomial(n,p,k):
return comb(n,k) * (p**k) * ((l1-p)**(n-k))

def poisson(lambda_, k):
return ( exp(-lambda_) * (lambda_**k) ) / (factorial(k))

def normal(n,p,k):
return ( 1/sqrt(2*pi*n*p*(1-p)) ) * ( exp( - ((k-n*p)**2) / (2*n*p*(1-p)) ) )

def entropic(n,p,k):
if k == 0 or k == n:
return np.nan
else:
f =k/n
KL = f*log(£f/p) + (1-£f)*log((1-£f)/(1-p))
return ( 1/sqrt*pi*n*f*(1-£)) ) * ( exp(-n*KL) )

#%% Error functions
def absolute_error(n,p,k_min,k_max):
out = np.zeros((k_max-k_min+1, 4))
for i, k in enumerate(range(k_min, k_max+1)):

out[i,0] =k

binom_k = binomial(n,p,k)

poisson_k = poisson(n*p,k)

normal _k = normal (n,p,k)

entropic_k = entropic(n,p,k)

out[i,1] = abs(binom_k-poisson_k)

out[i,2] = abs(binom_k-normal_k)

out[i,3] = abs(binom_k-entropic_k)
title_out = [

"\t\t$ks$",

"\t\t& $|\Pr(X
"\t\t& $|\Pr(X
"\t\t& $|\Pr(X

k) - \Pr(Y = k)|$",
k) - \phi(k; np, np(1 - p))I$",
k) - \\textnormal{Ent}(k; n, p)|$"

]

caption_out = "\t\caption{Absolute errors for the between the Binomial distribution and the
Poisson, Normal, and Entropic distribution for $n=%d$ and $p=%.2£f$.}" % (n,p)

table_out = "Absolute errors for $n=%d$ and $p=%.2f$" % (n,p)

return out, title_out, caption_out, table_out

def relative_error(n,p,k_min,k_max):
out = np.zeros((k_max-k_min+1, 4))
for i, k in enumerate(range(k_min, k_max+1)):

out[i,0] =k

binom_k = binomial(n,p,k)

poisson_k = poisson(n*p,k)

normal_k = normal(n,p,k)

entropic_k = entropic(n,p,k)

out[i,1] = abs(binom_k-poisson_k)/binom_k

out[i,2] = abs(binom_k-normal_k)/binom_k

out[i,3] = abs(binom_k-entropic_k)/binom_k
title_out = [

"\t\t$ks$",

"\t\t& $\\frac{|\Pr(X k) - \Pr(Y = k) |}{\Pr(X = k)}$",
"\t\t& $\\frac{|\Pr(X = k) - \phi(k; np, np(1l - p))[}{\Pr(X = k)}$",
"\t\t& $\\frac{|\Pr(X = k) - \\textnormal{Ent}(k; n, p)|}{\Pr(X = k)}$"

]
caption_out = "\t\caption{Relative errors for the between the Binomial distribution and the
Poisson, Normal, and Entropic distribution for $n=%d$ and $p=%.2f$.3}" % (n,p)
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table_out = "Relative errors for $n=%d$ and $p=%.2f$" % (n,p)

return out, title_out, caption_out, table_out

#%% Part (a) and (b)

n = 30

p = 0.05

abs_error, title, caption, table = absolute_error(n,p,0,30)
print_table(abs_error, title, caption, table)

rel_error, title, caption, table = relative_error(n,p,0,30)
print_table(rel_error, title, caption, table)
plot_data(n,p,abs_error,rel_error)

#%% Part (c)

n = 30

p = 0.25

abs_error, title, caption, table = absolute_error(n,p,0,30)
print_table(abs_error, title, caption, table)

rel_error, title, caption, table = relative_error(n,p,0,30)
print_table(rel_error, title, caption, table)
plot_data(n,p,abs_error,rel_error)

#%% Part (d)

n = 30

P = 0.5

abs_error, title, caption, table = absolute_error(n,p,0,30)
print_table(abs_error, title, caption, table)

rel_error, title, caption, table = relative_error(n,p,0,30)
print_table(rel_error, title, caption, table)
plot_data(n,p,abs_error,rel_error)
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STAT201A: Introduction to Probability at an Advanced Level November 5th, 2024
Homework # 4: Ordered Statistics and Conditional Expectations & Variances

Reece D. Huff

Problems (Solutions)

1. (Order statistics) Let Xi,..., X, beiid. random variables with Exp(A) distribution, where A > 0, and let X(;) be the
order statistics fori =1, ..., n.

(a)

(b)

Find the distribution of X(4).
Recall the density of j-th order statistic is

fpy(x) = n(’]’l _‘11) Fx@) [Fx()V ™ [1 - Fx(x)]"”
Then the density of the 1st order statistic is
() = nfx () [1 = Ex(0)]"™!
and since fx(x) = Ae™*¥ and Fx(x) = 1 — e™*, we have
fxg(x) =nAe™ [1-(1- e‘“)]n_1 = nAe ™M [e_”]”_1 = nle M

which shows that distribution of Xq) is exponential with parameter n4, i.e.,

| Xa) ~ Exp(n)) |

Using the memoryless property, find the distribution of X1y — X fori=1,...,n - 1.
Recall that the memoryless property of the exponential distribution states that P[X > s+t | X > t] = P[X > s]. Now
we define the gaps between them order statistics as

L= X(i+l) fori = 0,
' X(i+1)_X(i) forizl,...,n—l.

We additionally define sets of indices. Let S be the set of indices above index (i). Then there exists some subset of
indices of the original iid random variables X; that correspond to the order statistics indices in S. We define this set
as A. We all define the S’ and A’ in the same way as S and A, but now we include index (7). We have that

S={G+1,(i+2),...,(n)} that correspond to some set of indices of X; A=A{j1,j2, -, Jn-i}
S ={@@),i+1),...,(n)} that correspond to some set of indices of X; A" ={jo, j1,- s jn-i}

Note that the indices within A and A’ are not unique. Their uniqueness is not critical to what follows. Importantly,
the cardinality of A is |A| = n — i. It then follows thatforalli=1,...,n -1,

P[L; > x] = P[X(H.l) - X > x] = P[X(i+1) - Xy > x|X(i) >t] = [P’[X(H.l) > x + t|X(i) > ]

PL;>x]=P ﬂXj>x+thj>t =l—[ﬂ3’ Xj>x+tﬂX]~>t (by independence)
jeA jEA jeA JEA
P[L; > x] = 1_[ P[X; > x] (by memoryless property)
jeA
P[L: > x] = ]_[(1 ~P[X;<x])= ﬂ 1-Fx,(x) = ]_[ 1-(1—e™)= ]_[ e = g~ Mn=ix
jeA jeA jeA jeA

To conclude, we have that

P[L; >x]=1-P[L; <x]=1-¢ 20"  — ‘Li~Exp((n—i))\)fori:0,1,...,n—1
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¢) Use the previous item to show that each X(;) has the same distribution as a sum of i independent random variables.
p (i) p
To begin, we note that

Xy = Lo = Xq)
X@)=Lo+L1 = Xa) + (X = X))
X(3) = Lo + L1 + L2 = X1y + (X2 = X)) + (X3) = X))

i
Xiy= D Lot =X+ (X = X) + -+ (X1 = X-2) + (X = Xon)
k=1

where Ly are independent events for all k = 0,1, ...,n — 1. Note their independence follows from our result in part
(b). Since each X(;;1) — X(;) depends only on the residual lifetimes (i.e., the X;’s in A) and not on any earlier times,
the spacings Ly are independent. Then we conclude that X;) has the same distribution as a sum of i independent
random variables,

i
X = Z Lx-1 where Ly ~Exp((n—k+1A)fork=1,...,i.
k=1

(d) Calculate the expectation and the variance of X;) fori =1,...,n.

To begin we recall that the expectation and variance of X ~ Exp(A) is E[X] = % and Var[X] = % Then, E[Li-1] =

and Var[Lg_1] = . The expectation of X;) is

1 1
A(n—k+1) A2(n—k+1)2

i i i
1 .
E[X;] =E LZ; Lk—l] = kZ_:‘ E[Lk-1] = kZ; kT D (by independence)

1< 1 .
E[X(i)]=xém fori=1,...,n,

and the variance is

Var[X(;)] = Var

i i i
1 .
kZ:; Lk_l] = ; Var[Ly_1] = ; m (by independence)

Var[X;)] = fori=1,...,n.

LE';
A2 e (n—k+1)?

2. (Joint and conditional densities) Let X,Y be two random variables with the following properties. Y has density function
fr(y) = 3y for 0 < y < 1 and zero elsewhere. For 0 < y < 1, given that Y = y, X has conditional density function

fxpy(xly) = f/—’z‘ for 0 < x < y and zero elsewhere.

(a) Find the joint density function fx,y(x, y) of X, Y. Be precise about the values (x, i) for which your formula is valid.
Check that the joint density function you find integrates to 1.
To find fx y(x,y), we use fx,y(x,y) = fx;y(x|y)fy(y). Then we have that
2x
fxy(x,y) = fxy(xly) fr(y) = ? ~3y2 =6x forye(0,1)and x € (0,y).

To check that this is a valid density function, we verify that it integrates to 1,

1 y 1
//6xdxdy:/ 3ydy=1
o Jo 0
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(b) Find the conditional density function of Y, given X = x. Be precise about the values of x and y for which the answer
is valid. Identify the conditional distribution of ¥ by name.

To find the conditional density function of Y given X = x, we use:

fX,Y(xl y)

Frx(yle) =

First, we need to calculate fx(x). We have that

1 1
fx(x) = /0 fxx(x,y)dy = / 6x dy = 6x(1 - x)

Then we have that

fxy(x,y)  6x 1
fx(x)  6x(1-x) 1-x

Frixylx) = for0<x<y<l.

The conditional distribution of Y given X = x is Uniform on the interval (x, 1), i.e.,

‘Y|X~Uniform(x,1) for0<x<y<1.‘

3. (Model selection) Given data x1, ..., x;, consider the problem of selecting between the two models:
Model One: Xi,..., X, Hd. N(0,1)
Model Two : Xq,..., X, i N(u,1) for an unknown p.

To use probability to solve this problem, let us introduce an additional random variable © that has the Bernoulli distribution
with parameter 0.5. Assume that the conditional distribution of X3, ..., X, given ® = 0 is given by the following

X1, ..., X,©® = 0" N(0, 1)

and
iid.

X1, Xult,® =17 N(y,1) and u|® =1 ~ N(0, 7%).

Here 7 is a parameter which you can treat as a fixed constant in this exercise.

(a) Using the formula

fX] ,,,,, X”|®:1(X], R Xn) = / fX] ,,,,, Xzzl[»l,®:1(x1/ LR xn)fyl@:l(#)dﬂ (3)

prove that

1\ 1 PNRES n272x>
X1 Xpl@=1(X1, .0, X)) = ( ) exp | ——— ex (—) ,
fx | ! V2r) V1 +nt? P 2 P 2(1+nt?)

where X is the mean of x1, ..., x,.
Using the formula:

Recall that if Z ~ N(u, 02), then

fr(2) = 1 exp(_(z—#)Z)

a2 202

By independence of Xj, ..., X,;, we have that

n n 1 ( - )2 1 n 1 n
e Xl @=1(X1, -+ o, Xn) = !;[fxim,@ﬂ(xi) = Ell Eexp (— - 2” ) = (\/ﬁ) exp (—5 ;(xi —[J)Z)
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Letx = 1 3" | x;. Expanding the sum inside the exponent, we get:
1 n ) 1 n ) ) 1 n ) n n!,[2 1 n ) _ ny2
_E;(xi—[,l) ——§Z<xi —2x1‘[,l+[.1 ) ——E;Xi +[u;xi—7 ——E;xi +ynx—T

i=1

Since u | ® =1 ~ N(0, 72), we have:

_ 1 W
fy|®:1(#) - 272 P ( ZTQ)

Plugging our results into Equation (3), we have that

1\ 1< ’
fxi,. Xn|@:1(X1,---,xn)=/ [(\/T_n) exp (—5 xf+ynx——)] [W ( ;?)}d#
i=1
2

1\ 1S, 1 _ u?
_ . n)=|— —_ £ - d
fxi,xa@=1(X1, - .., Xn) (\/2_) exp( 32 1 xz)/ — exp (ynx 5 272) u

i=

()

—a)’
2ﬁ2
effectively represent the mean and variance of a Gaussian. We have that

Now our goal is to rewrite the terms in the exponent in the form of — + constant for some a and 2 that would

2 2 2%
ny w1 Ly oo —__H 2 = __1 o\ [,2_ 24 nTX
—T+‘unx—ﬁ——§(n+?)‘u +ynx——ﬁ(l+n’c )+ynx.——ﬁ(l+n’c ) [J —m .
Completing the square inside the parentheses gives
2 2 2% \2 27)2 2% 2,252
ny _ u 1 2) nTex 1 (n7*x) 1( 5 nTex neTex
—+ -——=-—(1+ -——— + = =-—(1+ - + .
2 THTon 212( I T T ] T 1iae T 2 ”T) T2 T2+
Thus, we identify a and % as: a = 1’fn % and 2 =
Lo (e - M gy [N _(#-ah
V272 P 2 o) T V2ri2 \2np2 P 2B2 2(1+nt?)
1
1 _ np?  p? B n272%* / 1 =
- & Jgu=1(E ———|d
272 P (;mx 2 22T \)P 2(1+nt?) = 2B2 H
! exp | unx — ﬂ - ”—2 du = 1 ex —nszxz
V2nt? P P V1 +nt? P 2(1+nt?)
Plugging this back in, we arrive at the desired result
1\ 1 1<, n2c2x’
fxu,..., X,,l@:l(xh---,xn)— (\/Z_n) mexp (—E;xl)exp (m
(b) Calculate the conditional distribution of ® given Xj = x1,..., X, = x,.
By Bayes rule, we have that
fxi,xie(x1, ..., x,) P[O© = O] fxi,xie(x1, ..., xn) P[© = 0]
folxi=x1,... Xp=x,(0) = =
fxi 3, (X1, Xp) fxi,.. %,10=0(X0) P[O© = 0] + fx;,.. x,10=1(x0) P[© = 1]
fX . & @(xll e X )
forxi=xi,...X,=x,(0) = ! | - 4)
fXI

..... xp10=0(X1, - -+, Xn) + fxy,. X, 1@=1(X1, -+, Xn)
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where the last simplification come from the symmetry of ©, i.e.,

when ® =0
when ©® =1

NI= NI=

M@:ﬂ:{

In part (a) we showed that

f (x Xp) = L nex —lzn:xz ex nieE !
X],...,Xﬂl@:l 17 rAn) = \/z—n p 2 s i p 2(1+7’l’[2) m

So now we need to solve for fx, . x,j@=0(X1,...,x,). We have that

1y 1y 1 nt2x?
fxa,xae=0(xt, - ) + fa, xe=1 (X, Xn) = (_\/) expi—5 ) x7 ><(1+ exp( ))
1 | n 1 | n o 2; i f—1+nT2 20+ ntd)
Thus,
Vitnt2 hen © = 0
Wﬂexp( zﬁfnizz)) when
f®|X1:X1 ,,,,, Xy=x,(0) = exp( 1232

2(1+n12) —_
= when ® =1
\/1+n72+exp( ne2y”

2(l+n'r2) )

(c) Intuitively, we would prefer Model Two over Model One when X is far from zero. Is this intuition reflected in your

conditional distribution from the previous part?
Yes this intuition reflected in your conditional distribution from the previous part, because feo-1|x,=x,,..., X,=x,(0) = 1

as x> goes away from zero. Meaning, the probability of using Model Two will increase x goes away from zero.

.....

4. (Gamma-Poisson) Consider random variables ®, X1, ..., X;, such that
® ~ Gamma(a,A) and Xj,...,X,|®@ =0 . Poisson(0)
Recall the following about the Gamma distribution

(r—=1)! when r e N*

AT -1 ,—-Ax
= ——x° h I'(r) = 0o
fe(x) F(a)x ‘ where  I(r) {/0 t'le=*dt holds forall r > 0

Three other useful properties of the Gamma function are

/2“#%:%m& I&Hhﬂ@,md%%zﬁ.
0 o 2

Additionally, recall that for Y ~ Poisson(A), we have

e} k

P[Y = k] =

T fork€{0,1,2,...}

(a) Find the conditional distribution of ® given X; = x1, Xo = x2,..., X, = xy.
x,(0), we will use

P[Xl = X1,...,Xn = Xn | 0= Q]f@(e)

X%, (X1, 000, Xn)

foixi,..x,(0) =
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We start with

n n
o ST 1
P[X]ZXL...,X,,,:Xn|®=9]=€_n6r[?=€_n96nxl_[;
i=1 " i=1 "

where ¥ = 1 3 | x;. We know that the marginal distribution of ® is fo(0) = r}(\Z) 0%~ 1e=49, Then we have

n

1 A“ e T
a1, X) = / PIXt =1, X = %0 | © = 0f0(0)d0 = | | - 15 / e (N0 grEral g
i=1 " 0

n

1 A* T(nx+a)
le ..... Xn(xlr-../xn) = l_[ x_l| ' F(a) ’ (n +A)nf+a

i=1

Plugging our results into fg|x,,... x,(0), we have

e—n@@n?ea—le—/m (1’1 + A)n}?ﬂx . —
foixi,..x,(0) = Torra) = Tz + ) grita-ly=0(n+d)  —y ‘fGIXl ,,,,, x,(0) ~ Gamma(a + nx, A + n)
(,,H_A)m?ﬂr

(b) Find E[O®|X] = x1,..., X = x,].
Tofind E[® | X1 = x1,..., X, = x,], we will use

E[® | Xl = x]/' . -/Xn = xn] = / 9f®|X1:X1 ..... Xn:Xn(Q) de
0

Since ® | X1 = x1,...,X,; = x, ~ Gamma(a + nx, A + n), we have:

E[O | X1 = x1y Xy = 1] = LEDT T o guwsact im0t gg o PEAT [T ppiwiasn- o0 g
! s " F(nf + (X) 0 F(n)? + 0() 0

(n+ A"+ T(nx+a+1) 1 (nx¥+a)l(nx +a)

EO|X1=x1,..., X, = = — . — = : —

(O] X1 =x n =l Fnx+a) m+A)n*+arl  pn 4+ A I'(nx + a)

nx+a

E[@|X1 =x1,...,Xn =xn]= T+

(c) Write E[@®|X1 = x1,..., Xy = x,] as a weighted linear combination of (*~**2) and the mean of the marginal

distribution (i.e., prior mean) of © and argue that the weight of the prior mean goes to zero as n — co.

To begin, we note that our derivation of E[® | X = x1,..., X, = x,] shows that the expectation of a random variable
X ~ Gamma(a, A) is E[X] = §. Therefore, E[@®] = §.

Now we rewrite E[® | X; = x1,..., X, = x,,] as a weighted linear combination of ¥ and the mean of the marginal
distribution E[®]. We have that

nx +a noy . A \a
E[@|X1:x1/...,Xn=Xn]= 7’l+/\ :<n+A)x+(n+/\)X

It is really clear that as n — oo, the weight on the prior mean also goes to zero, i.e., A% — 0.

5. (Law of total expectation)

Let the joint probability mass function (p.m.f.) of (X, Y) be

1 (1 -1
px Y(k/ 1/1) — ) n+l n+1
’ 0, else.

k-1
) %, forl<n<ooand1l <k < oo,

Throughout this problem, we will leverage the convergence of a geometric series,

= a = a
ar’ = and anr™ 1 = for |r| < 1.
nZ::J) 1-7 ;) (1-r)?
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(a) Find the p.m.f. py(n) of Y and the conditional p.m.f px|y(k|n).
We obtain the marginal distribution Py (1) by summing over k,

3 (L 1 1 \! 1 1) = k-1
Py(n)ZkZ:;PXrY(k'”):Z(m)(2_")(1_”+1) :(n+1)(2_")2(n21)

k=1

PY(n):(%)(%)2(1_”11)!(nil)(zl”)'l—(ll—L) -5

1
Py(n) = o

For the conditional distribution Px/y(k | ), we have

P k’ Lln 1—L k-1 k-1
PX|Y(k|n)= x,y(k,n) _ n+¥l2 ( n+1) 1 (1 1 )

Py(n) zln Tn+1\T n+1

k-1
1 1
PXIY<"'”):m(1‘n+1)

(b) Calculate E[Y].
We simply sum over all # to obtain E[Y],

o0 n c0 1n 0 171 00 1 1n—1 %
-5 Sl S -E B e

Note that we can change the sum from 1 to oo to 0 to co because the first term is zero. Our result is
E[Y] =2

(c) Find the conditional expectation E[X|Y].
We simply sum over all k to obtain E[X | Y],

1

o0 0 k-1 00 k-1
= _ = R PR __1 S k(1- 1 v
EIXY]= ) kP(X=k[Y)=) Kk Y+1(1 Y+J TY+1 kb Y+1) T _(1_ 12
k=1 k=1 k=0 (1-(1-39)

E[X|Y]=Y+1

Again, we can change the sum from 1 to 0 because the first term is zero. We have

[EIX|Y]=Y+1]

(d) Use parts (a) and (c) to calculate E[X].
Use the law of total expectation, we have that

E[X]=E[E[X | Y]]=E[Y +1] =E[Y]+1=2+1=3 = [E[X]=3

6. (Expected number of coin tosses)

Consider a sequence of coin tosses.

(a) On average, how many tosses of a fair coin does it take to see two heads in a row?
Let N be the total number of tosses needed to get two heads in a row. Additionally, let

e E[N]: the expected number of tosses to get two heads in a row.
e E[N | H1]: the expected number of tosses given that the first toss is a head.
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Using the law of total expectation on the first toss:

as this is a fair coin and the number of tosses doesnt change after we don’t get one, i.e., E[N] = E[N | not H]. Now,

E[N] = 1+ P(H:)E[N | H1] + P(not Hy) E[N | not Hi]

EIN | Hy]+ 5 EIN]

using the law of total expectation again for E[N | H;]:

E[N | Hi] =1+ P(H; | H1)E[N | H1 N Hy] + P(not H, | H1) E[N | H; N not Hy]
E[N | H1] =1+ P(H) E[N | Hy N Hy] + P(not Hy) E[N | H; N not H;]

E[N | Hi] =1+ 5 E[N]

Now we note (1.) that E[N | H; N not Hy] = E[N] as soon as we hit a tail, we reset, (2.) E[N | H; N Hy] = 0 as we
reached two heads and we are done, and (3.) P(H, | H1) = P(H») as the probability of the coin landing on heads is
independent of the flip.

Then we have two equations and two unknowns and we can solve for E[N].

E[N] = 1+%[E[N | H1]+%E[N] and E[N|H;]= 1+%[E[N]

1

E[N]=1+ - E[N]+ = (1+%[E[N])

2

(b) How many tosses on average to see the sequence HTH for the first time?

We learned from part (a.) that the flips are independent so we do not need to worry about conditional probabilities.
We also saw that E[N] = E[N | not H;] = E[N | H; N H], so as soon as we deviate from the desired path, we reset.

Then for clarity, we define

* Ej be the expected number of tosses to reach HTH (the reset state and the expectation we want to solve for).

¢ Ly be the expected number of tosses to reach HTH after seeing H.

* Eyrt be the expected number of tosses to see HTH after seeing HT.

* Eprh be the expected number of tosses to see HTH after seeing HTH.

Then, we have that

Now we solve for Ej,

1 1
Eo=1+-Eg+=E
0 2 H > 0

1 1
Eg=1+=Egyr+ =E
H > HT 3 H

1
Egyr=1+ EEHTH + —EO

2
Engrn =0
%Eo -1+ %EH
—%EHT =1- %EH
-t
1 5
e

45



(c) How does our answer change if we have an unfair coin?
Let p be the probability of landing on heads.

¢ Seeing 2H:
Eo=1+pEg+(1-p)Eo — Eo=1+pEg+(1-p)Eo
En=1+(1-p)Ep 0=p—-pEu+p(1-p)E
Eo=1+p+(Q-p)Eg+p(1-p)Ey
pEo=1+p+p(l—-p)Ey
[p—pA-plEo=1+p

p2E0 1+p
1+p
Eg = "

As p increases the expected number of flips decreases which makes sense.
* Seeing HTH:

Eo=1+pEg+(1-p)Eo
Ey=1+4+pEg+ (1 —-p)Eur
Eyr =1+ (1-p)Ep
(1-p)Eg =1+ (1-p)[1+(1-p)Eo|

1
EH—E+1+(1—?§)E0

pEo=1+p ﬁ+l+(1—p)Eo

1
EO_;+1T+1+(1_F))EO
Ep=—+—-+1
PrRO=y T 1oy
1 1 1 1- (1-p) 1+p-p?
=Ly +_=2P+2P +P2P=2PP
p> p(l-p) p p*A-p) p*A-p) p*1-p) p>*(A-p)
E—l+ 1 1
T pa-p) P)

We calculate the p that results in the fewest number of flips on average by taking the derivative.

@:i(l“‘lﬂ—r’z):(1—ZP)[PZ(l—P)]—(ZP—3P2)[1+P—P2] 0o
dp dp\p*(1-p) p*1-p)?
1 =2p)[p* A -p)l-@p -3p)[1+p-p*l =
1-2p)[p1-p)]-@2-3p)[1+p-p*]
(1-2p)lp (1—;7)]:(2 3p)[1+p - p*]
[p—p*1-2plp —p*1=2[1+p-p*1-3p[1+p-p?]
p—p*—2p*+2p° =2+2p - 2p* - 3p - 3p* + 3p°
2p +2p*—pd =2
pl2+2p-p’] =

This leads toa p* = 0.688. So the expectation will decrease as it approaches 0.688 and then increase as it increases.
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STAT201A: Introduction to Probability at an Advanced Level November 20th, 2024

Homework # 5: Multivariate Normal and Gaussian Process
Reece D. Huff

Problems (Solutions)

1. (Multivariate normal) Suppose Y ~ N, (u, X) in this problem.

(a) If a is any fixed vector in R", show that

.
Y -
aY—p N(0,1).
VaTXa
. . . . _a'(Y-p)
We begin by taking the expectation of the random variable Z = VAT
a’™(Y - y)] 1 1 1
[E[Z]:[E[ = Ela™(Y - p)]) = a (E[Y —u]) = a (ElYf=u)=0 v
VaTZa \/aTZa( : ) VaTZa ( ! ) VaTZa :

1
VaTXa

where we can pull out the constants 4" and by the linearity of expectation and note that E[Y] = u. Next, we

compute the variance of Z,

_ a'l(Y-p)]_ 1 T _ 1 T a1 T

Var[Z] = Var [ — |~ i Var[a™(Y — p)] = P Var[a™Y —ay] = v (Var[a Y] +W)
_ T _ Ty, _

Var[Z] = el Var[Y]a = el Ya=1 V

where we used that for any random vector X, constant vector @, and scalar B, we have
Var[d"X] = & Var[X]d and Var[ﬁ}?] = p? Var[X].

Therefore, we have shown that Z is distributed according to N(0, 1).

(b) If A is now a random vector that is independent of Y, then show again that

AT(YY —p)
VATLA
is distributed according to N(0, 1) and that it is independent of A.
.. . . _AT(Y—p)
Similar to part (a), we can compute the expectation of the random variable Z = N
AT(Y — y)] 1 1 1
EM]:E[ - (HAWY—)D: AWEW— 1) = AT(E=w) =0 v
VATEA | VATIA T Vama g ) VATIA ( “)

and the variance of Z, we have that

AT(Y - H) _ 1 T _
A ] = TYA Var[A' (Y - p)] =
AT Var[Y]A =

_ 1 o e 1 .
Var[Z]—Var[ g VarlATY = AT = (Var[A Y]+W)

1
ATXA

1

T —
TEgATEA=L

Var[Z] =

and we can conclude that Z ~ N(0, 1).

To show that Z 1L A, we will use our result from part (a) that ()

VaTXa
a’(Y —p)
VaTXa

In words, Z|A = a follows the same distribution as Z. Therefore, Z 1L A.

~ N(0,1). We have that

(Z|A=a)= ~ N(0,1).
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(c) Using the above result, show that if Y ~ N3(0, I3), then

Y1€Y3 +Y, 10g |Y3|

~ N(0,1).
e + (log | Y3])?

To begin, we note that in the case of a Multivariate Normal distribution, £;; = 0 & Y; 1L Y] for all i # j. Therefore,
we havethat Y] 1L Y, 1L V3.

Next, we notice that the numerator Yie® + Y, log |Y3| is a linear combination of the random vector Y’ = [Y, Y2]T.
Therefore, we construct the random vector A’ = [¢*,log |Y3]|]T and note that the random vector A’ is independent of

AT ) N(0,1). We have that

Y’ (since Y1 AL Y> 1L Y3). We can now use the result from part (a) to show that Z = A

Y 0
oo Y- L _[e¥s I Y-
5 A/T(Yz _H,) ~ [e Og| 3|] [YJ [6 Ogl 3|] 0 _ Y16Y3 +Y, 10g|Y3|

VATTA \ o] e Ve + log )2
[e¥ log|Ysl] Y3

0 1f|log

where ¢/ = E[Y’] =[0,0]" and X’ = Var[Y’] = I,. Therefore, we have that Z ~ N(0, 1).

2. (Marginally normal but not bivariate normal) Give an example of a 2 X 1 random vector Y = (Y1, Y2)" with a positive
definite covariance matrix such that each Y; and Y5 is standard normal but Y is not bivariate normal.

To begin, let Y1 ~ N(0,1) and Y> = WY; where W is a Rademacher random variable that is independent of Y; and has the
1/2, ifk=1,

following distribution P(W = k) = 12, ifk = 1.

with E[W] = 0 and Var[W] = 1.

By our construction, clearly Y; is not independent of Y> as Y, is a function of Y.

Next, we show that the marginal distributions of Y1 and Y, are standard normal. Y7 is standard normal by construction.
Y, is also standard normal as

P[Y, < y] = P[WY; < y] = P[WY; < y|[W = 1]P[W = 1] + P[WY; < y[W = 1] P[W = —1]

PYs < y] = 3 (P < ]+ P[- < y)) = P[Y; < y)

where the last equality follows from the symmetry of the standard normal distribution (i.e., if Y1 ~ N(0,1) then -Y; ~
N(0,1)).

Next we calculate the covariance matrix of Y. We have that

¥ = Var[Y] = Cov[Y, Y] = E[YYT] - E[Y] E[Y]” = chva[rgl]yl] C‘QZI[:[%?]

The covariance between Y; and Y5 is
Cov[Y1, Ya] = Cov[Ys, V1] = EM1 Y] — E[V] E[Y2] = E[viWY1] - EPATE[WY1] = E[Y/W] -0 = E[YZ]EIN] =0

Thus, the covariance matrix of Y is

()

Finally, we show that Y is not bivariate normal. To do this, recall that two random variables X and Y are said to be
bivariate normal (or two jointly normal random variables), if 2X + bY has a normal distribution for all a,b € R.

In our case, we have that Y7 and Y5 are standard normal, but Z = Y7 + Y5 is not standard normal. To see this, note that

2Yq, with probability 1/2,

Z=Y1+Y, =
T {O, with probability 1/2.

In other words, P[Z = 0] = 1/2 which is not the characteristic of a standard normal random variable. Therefore, Y is not
bivariate normal.
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3. (Conditional distribution) Consider three random variables Y1, Y5, and Y3 that are independent and standard normal.
Let

X1 =Y2+Y3,
Xo=Y1+Ys;,
X3=Y1+Y2.

Find the conditional distribution of X; given X, = X3 = 0.
To begin, recall that we can partition the multivariable normal distribution X ~ N, (y, L) into X, € R¥ and X}, € R"k,

such that X = (ig:) JU= (ﬁ:) ,and & = (gzz g’;:) , where y,; and uy are the means of X, and Xj,, respectively, and ¥,,,

b, Lpa, and Xy, are the corresponding covariance matrices. We that the marginal distributions of X, and X, are given by
Xg ~ Nk(#u/ Yw), and Xp~ Nn—k(#b/ Zpp)-
and the conditional distribution of X, given Xj is given by

X, | Xp=xp ~ Nk([uulbrzalb)/ where Halp = Ua + Zubzb_bl(xb - /Jb)/ Z‘ulb =Yg — Zabngl):bw (5)

Now, we can apply this result to the given problem. Let us calculate the expectation and covariance matrix of X =
[X1, X2, X3]T. We have that

E[Xi] = E[Y;] + E[Yx] =0, Cov[X;, X;] = Var[X;] = Var[Y;] + Var[Yy] =2 and
Cov[Xi, Xj] = Cov[Yj + i, Y; + Yi] = Cov¥; YT + Cov¥; i ] + Cov¥, Vi] + Cov[ Yk, Yi] = Var[¥] = 1

foralli,j, k € {1,2,3} such that i # j # k. Thus we have
Yoa = [2] Zab =

1 1
1 2 111,
Zpa = H Zpp = 1 2

1 — 1
Noting that X/ = BT [ _21 21] =3 [_1 N }, we use Equation (5) to show

Y [ [ I T R

and

mw:zm—zwzgmu=py(§)p ”[31'?}E]=Z‘G)U q[ﬂ=z_(%ﬂj+gzz_§:

Therefore,

W~

mu&za&=m~M@é)

4. (More on jointly Gaussian distributions) Let X and Y be independent standard normal variables.

(a) For a constant k, find P[X > kY.
Let Z, = X — kY. Then we have

E[Z,] =E[X - kY] =E[X]-kE[Y]=0 and Var[Z,]= Var[X — kY] = Var[X] + k* Var[Y] = 1 + k?

Therefore, Z, ~ N(0,1 + k?) and

P[X > kY] =P[X - kY > 0] = P[Z, > 0] = IP[X>kY]=%
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(b)

IfU =V3X+Yand V = X —V3Y, find P[U > kV]. First, we note that
E[U] = E[V3X + Y] = VBE[X]+E[Y] =0 and E[V]=E[X - V3Y]=E[X]-V3E[Y]=0

and

Var[U] = Var[V3X + Y] = 3Var[X] + Var[Y] =4, Var[V] = Var[X — V3Y] = Var[X] + 3 Var[Y] =4 and

Cov[U, V] = Cov[V3X + Y, X — V3Y] = V3Var[X] - V3 Var[Y] = 0
Let Z, = U — kV. Then we have
E[Zy] = E[U - kV] = E[U] - kE[V] =0 and Var[Z,] = Var[U — kV] = Var[U] + k* Var[V] = 4(1 + k?)

Therefore, Z, ~ N (0,4(1 + k?)) and

P[U > kV] = P[U-kV >0]=P[Z, >0] — P[u>kv]:%

Find P[U? + V? < 1].
For this problem, we will use polar coordinates. Let R?> = X2 + Y? such that

U2+ V2= (VB3X +Y)P + (X - V3Y)? = 3X2 + 2V3XY + Y? + X? = 2V3XY +3Y? = 4(X? + Y?) = 4R>.
We also let X = R cos(®) and Y = Rsin(®) for a ® ~ Uniform[0, 27t]. It then follows that

1 1
P[UZ+V2<1]:IP[4(X2+Y2)<1]:IP[4R2<1]=[P’[R2< 1l =P|R<3
Pt vz <= [ 12 = vardo
[ + < ]—A L Eexp T rar
Letu = é and du = rdr. We change the bound of r = J tou = %. Then we have

1 [ s ; } 1
PU?+V?<1] = —/ / e *dudf = / e Mdu = —[e_”] =1-¢78

21 0 0 0 0

PU?+V2<1]=1-¢%

Find the conditional distribution of X given V = v.

iid.
~

Let us consider the following: Let Z1, Z, N(0,1) and X and V are jointly normal random variables,

X |11 0 ||zy N 0

Vi |1 —\/5 Zy 0
Then the two dimensional version of Equation (5) is that (X | V = v) ~ N (E[X | V], Var[X | V]) where
Cov[X, V] _ (Cov[X, V])?

Var[V] Var[V] ©)

We have that E[X] = E[V] = 0, Var[X] = 1, and Var[V] = 4 (see part (b) for the calculation of Var[V]) We calculate
Cov[X, V]

E[X | V] =E[X]+ (V —-E[V]), Var[X |V]= Var[X]

Cov[X, V] = Cov[X, X — V3Y] = Var[X] - V3Cov|X, Y] = 1
We calculate E[X | V] and Var[X | V],

1
E[X|v:v]:M+MU—M):E and Var[XlV]:M}Wﬁ—Z.

Thus, the conditional distribution is given by

(X|V=U)~N1(g,§)
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X; X3
X5 Xo
A1 and A; be two eigenvalues of X and s = |11 — A3].

5. (Wigner’s surmise) Let X = ) with X; and X; independent N (0, 1) and X3 another independent N'(0,1/2). Let

(a) Prove thats = \/(Xl -X5)2 + 4X§.
To begin we determine the eigenvalues of X. We have that

X1-4 X3

det(X — AL) = det( . xoa

) =X - M)XK -A) - X3 =22 - AXy + Xo) + (X1X2 — X3) = 0.

Setting the characteristic equation to zero and solving for A, we have

(X1 +X2) + \/(X1 + X0 —4(X1 X2 - X3)  (Xp+ Xa) £ 4[(X1 = X2 + X5

A 2 2

Therefore, we have the s is

(X1 +X2) + (X1 = X2 + X3 (X1 +Xa) = /(X1 = X2 + X5

5 5 =1/(X1—X2)2+X32 v

s=AM—A =

(b) Find the density of s.

To determine the density of s, we let Z; = Xl‘_ﬁxz and Z, = V2X3 such that Z1, Z» Hd- (0,1)2. Then we have

5= /(X1 - Xo)2 + X2 = (222 + 223 = \[AZ3 + Z2).

We showed in class that the sum of k sqaured independent, standard normal random variables is distributed according
to the chi-squared distribution with k degrees of freedom )(%. LetW = Z% +Z2. Then W ~ x2 with a pdf of

1
fw(w) = Ee‘w/z where W = Z% + Z% ~ X%-

Now we apply change of variable to determine the distribution of s. Let S = V2W (i.e., W = 52—2). Then we have

(N}

dw| 1 _g
= = 4|S|:

as| 2

s

e foralls >0

f0 = (3)

where s ~ Rayleigh(V2).

(c) Plot the density function of s. What do you observe regarding the eigenvalues of the random matrix X?

fs(s)

| _ s =|A1 = Ay

FiGure 6: Plot of fs(s) for0 < s < 5.

2We can easily show that E(Z1) = E(Z;) = 0, Var(Z;) = % Var(Xj) + %Var(Xz) =1 and Var(Z,) = Var(V2X3) = 2 Var(X3) = 1. The independence of Z;
and Z follows from the independence of Xj, Xp, and X3.
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Comments:

¢ The density function fs(s) = %e‘sz/ 4 is zero at s = 0, indicating that the eigenvalues are almost surely distinct.

* The eigenvalue spacings is non-uniform and follow a Rayleigh distribution that peaks at approximately s = 1.4.

¢ The eigenvalues of the random matrix X are typically spread out rather than clustered together (e.g., P[s < 1] <
Pls > 1]).

6. (1D Gaussian process) In this problem, you will implement a 1D Gaussian process that predicts outputs based on noisy
training data. You will be given (noisy) 1D training data pairs Dirin = {(x1,y1), (x2,¥2),...}. Your task is to predict
the output for a set of test queries Dyest = {x;, X5 }, conditioned on the training data. Implement two separate kernel
functions, namely the

¢ Squared Exponential Kernel: This is the kernel we discussed in class.

K(xi, 1)) = o exp (_<xf G x,>)

where oy is a scale factor for the kernel and M is a metric measuring distance between two input vectors. In the 1D
case, M = [lz where [ is the length scale of the kernel.

e Matérn Kernel: This kernel is used commonly in many machine learning applications.
21-v (@r ) ( ZW)
K, |——

k(xi/xj): m 1

l

where v and I are (positive) parameters of the kernel and r = |x; — x;|. K, is a modified Bessel function and I' is
the gamma function. Good parameter settings for v are 0.25 - 3. You can use scipy.special.kv() in Python or
besselK() in R for implementing K,.

(a) Implement the squared exponential and Matérn kernel functions to compute similarity between any pair of inputs.
The output for each function should be a kernel matrix K.

(b) Using your kernel functions, implement a Gaussian process regression function to predict the posterior mean and
variance of test data y/".

(c) The simulation function and plotting function are provided in the file ps5_GP_1D.ipynb. Vary the kernel parameters
(e.g., o7, 1, and v) and observe how they affect the predictive mean and variance. What impact do these parameters
have on the smoothness and uncertainty of your GP predictions?

Note: It's recommended to use Python (Jupyter notebook) and submit a PDF file including code, plots, and comments.
If you prefer using another coding language, please ensure the data simulation is consistent with the provided code.
¢ Squared Exponential Kernel:
- Varying oy:
* Predictive Mean: oy doesn’t really affect the predicted mean.

* Predictive Variance: Increases with larger o ¢, resulting in wider uncertainty bands (notice how the bounds
of the axes changes as o increases).
- Varying [:
* Predictive Mean: Smaller [ values allow the function to change rapidly, fitting closely to training data and
resulting jagged bands; larger [ yields smoother functions.

* Predictive Variance: Smaller / leads to lower variance near training points but higher variance away from
them.

* Matérn Kernel:
— Varying v:
* Predictive Mean: Smaller v values (0.25 < v < 3) allow for rougher, less smooth functions; larger v results
in smoother functions.
+ Predictive Variance: Smaller v increases uncertainty between data points as the function is more jagged.
— Varying [:
* Again, smaller [ permits allows for a more jagged function. So the same holds here for the predicted mean
and variance in the Matérn Kernel as the Squared Exponential Kernel.

See the attached Jupyter notebook for the solution.
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STAT201A: Introduction to Probability at an Advanced Level December 6th, 2024

Homework # 6: Discrete Markov Chains
Reece D. Huff

Notation

Let {Xt, t e No} represent a Galton-Watson process where X; represents the number of particles at time ¢ and Ny respresents
(t

the set of natural numbers including 0, i.e.,, No = {0,1,2,...}. Let B, ) represent the number of offspring of branch i at time
t. Then we have 1) 1)
X¢ = B +--~+BX,_1.

The probability of branch i has k offspring at time ¢, P[Bgt) = k], is given by an offspring number distribution ¥ = {px, k € No}

with mean y < oo and variance 62 < oo. Here, py is shorthand for [P’[Bgt) = k]. We note that each particle gives birth to k € Ny
children with probability independently of other particles in the past and the present, i.e.,

(t-1) iid.

X F and 1. from X;.
t-1

(t-1)
BV, ...,B

In class, we showed that E[X;] = u! and Var[X;] = o2 (u'! + pf + -+ + pu?72).
We defined the extinction time as 7 = {t eNg | X; = 0} and the extinction probability as P[t < oo]. We also introduced the

notation
p(s) = E[s?] = Zsk P[B=k] = Z skpk and @¢(s) = E[s*] = Zsk P[X; = k]
k=0 k=0 k=0

We let e; = P[X; = 0], the probability of extinction by time ¢, from which we showed ¢; = @(e;—1). We derived that the
probability of extinction is the smallest non-negative solution of the fixed point equation, s = ¢(s).

Markov Chain Definitions in Simple Terms

¢ Irreducible: A Markov Chain is irreducible if it is possible to visit every other state regardless of where you start.
In most cases, we determine if an MC is irreducible by looking for terminal states: if a chain has a terminal state,
it’s definitely not irreducible (unless the state space consists of that one state only). However, the absence of a single
terminal state does not necessarily guarantee irreducibility, because it’s possible to have multiple disjoint sets of states
that don’t communicate with each other (no terminal states, but the chain still isn't fully “connected”).

e Astatei € Sis...

1. recurrent or persistent if when starting from i, the probability of eventually returning to 7 in the future is 1.

(a) positive recurrent Imagine you're in a particular state (a place) that you can return to again and again. If,
on average, it doesn’t take you too long to get back there—meaning the expected time until you return is
finite—then this state is positive recurrent. It’s like a bus that comes around regularly and quickly enough
that you never have to wait forever.

(b) null recurrent Now imagine you're still guaranteed to return to that same state eventually (just like above),
but this time, you might have to wait a very, very long time on average—so long that the average waiting time
is actually infinite. In other words, it’s certain you'll get back there if you wait long enough, but there is no
meaningful “average” return time because it stretches out to infinity. Such a state is called null recurrent. It’s
like a bus that will definitely come, but you can’t put a reasonable number on how long you'll have to wait.

2. transient if when starting from i, the probability of eventually returning to i in the future is not 1.
¢ Periodicity:

1. Periodic: If I know for a fact, that after n steps, I will be at some state ;.

2. Aperiodic: If I do not know for a fact, that after n steps, I will be at some state j.

¢ Ergodicity: A Markov chain is ergodic if it is irreducible, aperiodic, and (usually) positive recurrent (for finite state
spaces, irreducible + aperiodic automatically gives positive recurrence).
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Problems (Solutions)

1. (Branching process) A branching process starts with one individual, i.e. X(0) = 1, who reproduces according to the
following principle:

# of children | 0
probability ‘ %

G =
NI= N

Individuals reproduce independently of each other and independently of the number of their sisters and brothers.
Determine

(a) the probability that the population becomes extinct;
Recall in class, we derived that the probability of extinction is the smallest non-negative solution of the fixed point
equation, s = @(s). Then, we have that

- 1 1 1 1 2 1
S:§0(S)=ZSkPk=SOP0+51P1+52P2 = S=g+§s+§s2 == S _§S+E=0
k=0
2 1
3

_ S_gﬁézo — (s-1(-1/3)=0 = s=1,5=

Clearly, s, = 1 is the smallest non-negative solution of the fixed point equation, s = ¢(s), so we have

1
P[extinction] = P[t < oo] = 3

(b) the probability that the population has become extinct in the second generation, i.e. P[X(2) = 0];
By the law of total probability®, we have that

P[Xzzo]:ZP[XZ=O|X1:k][P’[X1:k]

k=0
1
[FD[XQZO]:P[XQ = 1=0]P[Xl =0]+[FD[X2=O|X1 =1][FD[X1 =1]+[FD[X2=O | X1 =2]P[X1 =2]
R NIRRT
P[X, = 0] = ;—Z

(c) the expected number of children given that there are no grandchildren.
In this problem, we are asked to calculate E[X;|X, = 0]. We have that

kP[X4 =k|X2=O]=Zk

Ms

E[X1|X2 =0] = ([P’[Xz =0|X; = k]P[X; = k])

£ i P[Xz =0]
o (PX = 01X = 1]P[X; = 1] P[X, = 0|X; = 2] P[X; = 2]
[E[X1|X2 - 0] =1 ( U:D[Xz — 0] ) + 2( P[Xz = 0] )

3Note that this approach is no different from the approach in class, where we showed e; = @(e;_1) with e; = P[X; = 0] representing the probability of
extinction by time ¢, i.e.,

P[X2 =0] =e2 = p(e1) = Z(El)km = (e1)°po + (e1)p1 + (e1)*p2 = (e1)°po + (e1)'p1 + (e1)’p2
k=0

3 o g3 S ) o]

e () )- -
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1 [Me) (3) (/6> (12 72| (1) (1 1\2 (1
E“”“‘”‘47ﬂ54+4—wﬁrfﬂﬁF&Hﬂ+2&)Gﬂ

6
E[X:1]X2 =0] = 7

2. (Random walk) Random walk on {0, 1,2,3}. Consider the Markov chain (X;,) with transition matrix

1 1

;2 90
= 0 5 O
P=12 1 & 1|,
02 03
0055

started with X = 0. Define T; as min{n > 1: X;, = j}. Find explicitly the following distributions and expectations:

(a) The distribution of Xj.

(b)

From class, we defined the row vector i, := [[P’[X71 = i]] foralli € S := {0,1,2,3} such that i, = iipP". It follows
that

F Lo o[t 300 Fhdo
1 1 1 1 T 1 1
N 5 0 5 0|5 0 5 O 5 0 %
m=iopt=[1 0 0 o2 O 2 9120 2 Yopo ool 2 Y =)0
O A R
00 3 3]0 0 53 3 0 1 1 3
Thus, the distribution of X; is given by
% wheni =0
1 wheni=1
PX,=i]={% "
7 Wheni=2
0 wheni=3

The limit distribution of X, as n — co.

Since this Markov Chain has a finite state space S and is irreducible and aperiodic, the limit distribution of X, as
n — oo is given by

lim P" =1n  where 7 is the unique stationary distribution from 7 = 7P.

n—0oo
It follows that
T % % 0 0 Tl l7'(()-1—17'(1
1
T T_T s 7 0 35 0]|m 570 + 5702
n=nPen'=P'n = | |= (2) 1 (2) 1 | = in +in = MN=T1=T2=T3
: A O e I i
T3 0 0 3 3 T3 §ﬂ2+§7'(3

Since mp = m; = mp = m3 and we must have an eigenvalue of 1, we ensure that };.s 77; = 1. Then the limit distribution
of X,, asn — 0.

1 whenj=0
. 1 whenj=1

lim [P"];; = mj,Vi,j € S where m = (7;)es is the unique stationary distribution 7 = ‘% )
n—co 7 Whenj=2
1 whenj=3
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(c) E[To]
Since our Markov chain is irreducible and finite, then 7t is the unique stationary distribution and n; = 1/;, Vi € S
where r; = E[T;] is the mean recurrence time. It follows that

1 1
9 = — == 7021/—424. - [E[T()]=4.

o
We can equivalently show that for E; = E[Tj | Xo = i] forall i € S, we have

Eo=1+ 1/2E1
Ei=1+ 1/2E2
E,=1+ 1/2E1 + 1/2E3
Es=1+ 1/2E2 + 1/2E3

1 1 1
= E2=1+§E1+(1+§E2) = E1=1+(2+§E1) = Ey=1+3)=4

(d) E[T5]
Similarly, let F; = E[T3 | Xo = i] for all i € S. Then we have

E[T3 | Xo=0] =E[T3 | Xo =0, X1 =0]P[X1 =0| Xo=0]+E[T3 | Xo =0, X1 =1]P[X1 =1 | Xo = 0]

E[T: | Xo=1]=E[T3 | Xo=1,X; =0]P[X; =0 | Xo =1]+E[T3 | Xo =1, X; =2]P[X; =2 | Xo =1]
E[T3 | Xo=2]=E[T3| Xo=2,X1 =1]P[X; =1| Xo = 2]+ E[T3 | Xo =2, X; =3]P[X; =3 | Xo =2]

Fo = 1+1/2F0+1/2F1 Fo=2+F;
s Fi=1+ 1/21:0 + 1/2P2 - Fi=1+ 1/2P() + 1/21:2 = 1+ 1/2F0 + 1/2F2 =2F -2 = Fy=3F-6
F2=1+1/2F1 F1=2F, -2

- F0=2+(2F2—2)=2F2 = =6 — Fy=12
Thus, we have

E[T3] = 12.

(e) P[Ts < To]
The probability that T3 < Tj is given by

P[Tg, < To] = P[Tg, < Ty | Xo = O] [P)[X() = 0]
We can find the probability of T3 < Ty by conditioning on the first step of the Markov chain. We have

P[T3<T0|X0:0]=[FD[T3<T0|X0:0,X1:O]P[X1:0|X0:0]+[FD[T3<T0|X0:0,X1:1]P[X1:1|X0:0]
P[T3<T0|X0=1]=P[T3<T0|X0=1,X1=0]P[X1=0|X0=1]+P[T3<T0|X0=1,X1=2]P[X1=2|X0=1]
P[T3<T0|X0:2]:P[T3<TO|X0:2,X1:1]P[X]:1|X0:2]+P[T3<T0|X0:2,X1:3]P[X]:3|X0:2]

Let G; =P[T3 < Ty | Xo = i] forall i € S. Then we have
Go = 1/2Gy

G1 = 12G, -
Gy =12G1 +1)2

2Go =G

e (126, 11y = 260 =12(Go+ 1) = Gy =1 = |PTs < Ty] = 1/s |

3. (The average number of jobs)

Jennifer is employed for one day at a time. When she is out of work, she visits the job agency in the morning to see if there
is work for that day. There is a job for her with probability 1/2. If there is no work, she comes back the next day. When
she has a job, she will be called back to the same job for the next day with probability 2/3. When she is not called back,
she goes to the job agency again the next morning to look for a new job that she had not had previously. Approximate the
average number of jobs Jennifer works in a year.

Let the state in which Jennifer is not working and the state in which she is working be the Oth and 1st states of a 2-state
Markov chain, respectively. Let X, be the state of Jennifer on day n with Xy = 1. The transition matrix is given by

_ |2 2
P=|ii 4
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Recall in class, we showed that the fraction of time spent in state j during the steps 0,1,2, ..., n is given by

n
m._ 1 _
H; .—7L+1;;]{Xk i}

The expected value given the initial state Xo = i is

n—oo

n n
™y g 1 T | k1. .
E[H, |Xo—z]—n+1kZOP[Xk—]|Xo—z]—n+1kZO[PL] =5 on

We use this result to find the average number of jobs Jennifer works in a year. We approximate that 365 days is enough for
the chain to reach its stationary distribution. Then, we have

365

E[Jobs worked in a year] = 365 X IE[H; ) | Xo =0] =~ 365 x m

where 7 = (110, 711) is the unique stationary distribution of the chain. We find 7 by solving the equation = = 7P to get

1 1 1 1 2
AR T i g it

Therefore, the average number of jobs Jennifer works in a year is

‘ E[Jobs worked in a year] ~ 219. ‘

. (Rain or no rain) Suppose that at day 0 it is not raining. Then each new day, if it rained yesterday, it will rain with
probability 0.7; if it did not rain yesterday, it will rain with probability 0.2.

Let the state in which it is not raining and the state in which it is raining be the Oth and 1st states of a 2-state Markov chain,
respectively. Let X;, be the state of the weather on day n with Xy = 0. The transition matrix is given by

08 02
P‘ks a4

(a) Find the stationary distribution.
We showed in class that the unique stationary distribution 7= = (719, 711) of the chain is given by

o= 1
T a+b

[b,a]

where a and b are the off-diagonal entries of the transition matrix P. Therefore, we have

1

T=02+03 55

maom:[32]

(b) How many days should we expect to wait to have rain for the first time?
For this part, we are interested in finding the mean first passage time from state 0 to state 1. We defined the
fundamental matrix of irreducible MC as

Z=(I-P+1n)!
In this case, we have
S ([t o] _[os 02] [o6 04\ _[08 02]"_ 1 [07 -02]_ [14 -04
“\lo 1|7 |03 07| |06 04| T|o3 07| T05|-03 08| |-06 16

The mean first passage time is given by

E[T) | Xo = i] = ———
ij
Therefore, we have
Z1—-Zyp 1.6-(-04)
E[T: | Xo =0] = = =5d
[T1 | Xo = 0] - Y ays
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5. (The game of roulette) A gambler plays the game of roulette, betting X dollars on red or black. The gambler wins X
dollars with probability p = 18/38 or loses the bet with probability g = 20/38. Suppose that the gambler starts the game with
$500 in his pocket and an upper limit on winnings is 1000.

Before we proceed, we derive the Gambler’s ruin formula which that the probability of ruin for a gambler starting with i
units of money is given by

)-(2)
-

where N is the upper limit on winnings. We will use this formula to compute the probability of ruin for the gambler.

<l

Plruin | Xy = i] =

Proof. Suppose we normalize our Markov chain such that the gambler starts with i units of money where 0 < i < N. Let
X, be the gambler’s fortune at time n with Xy = i. The gambler’s fortune evolves as

Xt = X, +1 with probability p
"TTX, -1 with probability g

The gambler’s ruin is the event that the gambler loses all his money, i.e., X;, = 0. We are interested in finding the probability
of ruin, i.e., P[X, = 0| Xo = i]. We begin by writing the recursive relation

P[Xy =0 Xo=i]= pP[Xuo1 = 1| Xo = i] + g P[Xoeq = =1 | Xp = i]
Letr; = P[X,, = 0| Xp = i]. We can write the above equation as
ri = priv1 + qri-1.
We then have
Xi=pxtagr™t = px®-x+q=0 = (x-1(x-q/p)=0

The roots of the above equation are x = 1 and x = g/p. Therefore, the general solution to the above equation is given By
i
ri=A+B (ﬂ)
p
We can solve for A and B by using the boundary conditions rgp = 1 and rn = 0. We have

N
ro=A+B=1 and rN:A+B(g) =0

Solving the above equations, we get

p 1
A= N and B = N
1-(3) 1-(3)
Therefore, we have
i N
1) — (14
() - ()
ri = N
|1
1= (7)
This completes the proof. O

(a) Compute the probability of the gambler’s ruin for X = $10.

Now that we have the formula for the probability of ruin, we can plug in the values of i and N to get the probability
of ruin for the gambler. We normalize our values such that the gambler starts with i units of money where0 < i < N.
We have i = 50 and N = 100. Also, note that q/p = 20/38/18/38 = 20/18 = 10/9. Therefore, we have

3"

oo ~ 0.9949

P[ruin | Xy = $500] = P[ruin | Xy = 50] =
1-(1
P
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(b) Compute the probability of the gambler’s ruin for X = $100.
We do the same for X = $100. We have i =5 and N = 10. Therefore, we have

(B -(3)
()

p

P[ruin | Xy = $500] = P[ruin | Xy = 5] = ~ 0.6287

(c) Compare the above results with the probability of ruin in the case the gambler bets everything on a single turn of the
wheel.

If we bet it all on a single turn of the wheel, the probability of ruin is simply the probability of losing the bet, i.e.,
q = 20/38 ~ 0.5263. This is much higher than the probability of ruin in the previous cases.
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STAT201A: INTRODUCTION TO PROBABILITY AT AN ADVANCED LEVEL (FALL 2024)
UC BERKELEY

Problem Set 1

Due: 10:00pm, Friday, September 13, 2024 (via Gradescope)
. (Basic probability) Assume that P(A) = 0.6, P(B) = 0.7 and P(C) = 0.8.

(a) Show that 0.3 <P(AN B) <0.6.
(b) Show that 0.1 <P(ANBNC) <0.6.

. (Independence) Suppose we roll an unbiased six-sided die n > 3 times. Let E;; denote the event
that the ith and the jth rolls produce the same number. Show that the events {E;; | 1 <i < j < n}
are pairwise independent but not independent as a family.

. (Expectation, joint distribution, uniform distribution) Let X be a random variable with
values {1,2} and Y a random variable with values {0, 1,2}. Initially we have the following partial
information about their joint probability mass function.

Y=0|Y=1|Y=2
X=1] 1/8
X =2 0

Subsequently we learn that E[XY] = 1@3 and that Y has uniform distribution. Use this information
to fill in the missing values of the joint probability mass function table.

. (Conditioning, cumulative distribution function) You flip a fair coin. If you get tails, you
choose a uniformly random number on the interval [0, 2]. If you get heads, you choose the number 1.
Let X be the random variable describing the outcome of that experiment.

(a) Using the law of total probabilities, calculate P(X < 1/2) and P(X < 3/2).

(b) Find the cumulative distribution function Fx of X.

(c¢) Is X a discrete random variable? Is X a continuous random variable?

. (Bounding even moments) Let X be a random variable. Show that E[X?*] > (E[X])?* for all
positive integers k.

. (Continuous distributions, probability density function, independence) Pick a uniformly
chosen random point (X,Y") inside the sector delimited by the z-axis, the y-axis and the parabola
given by the equation y = 1 — 2%; see Figure 1.

(a) Verify that the area of that sector is 2/3.

(b) What is the probability that the distance of this point to the y-axis is less than 1/27
(c) What is the probability that the distance of this point to the origin is more than 1/27
(d) Find the p.d.f. of X.

(e) Find the p.d.f. of Y.

(f) Are X and Y independent?

e
f
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Figure 1: Graph of y =1 — 22

7. (Events, indicators and basic probability inequalities) Recall that for an event A, we denote
the corresponding indicator random variable by I(A) (i.e., I(A) takes value 1 when A occurs and the
value 0 when A does not occur). Also recall that the probability P(A) of A equals the expectation
of the random variable E(I(A)).

(a)
(b)

Given events Ay, ..., Ay, show that I (U], A;) = maxi<i<n I (4;).

Using the fact observed above (and the following ordering property of expectation: X <Y
implies that E(X) < E(Y)), show that

P (UL A) < 3P (4).
=1

Note: This is known as the union bound and used quite frequently.

For every event A, show that I (A°) =1 — I(A) where A¢ denotes the event that A does not
occur.

For events A1, ..., Ay, show that T (N, A4;) = [ I (4).

Using the above two facts, prove the inclusion-exclusion formula: For events Aj,..., Ay,
PULA;) =% —Sg+33— X4+ + (_1)71712”

where

1<i1 <ig << <n

8. (Hypergeometric and exchangeability) We have an urn with R red balls and N — R white
balls, where 0 < R < N. We draw n balls in sequence from the urn without replacement. Let R;
denote the proposition that the i** draw results in a red ball.

(a)
(b)
()

Calculate P (R;) for each i =1,...,n.
Show that P(R; | Ry) =P (R | R;) for every 1 < j, k <n.
Calculate P (Ry, | Uiy 1 Ri) for a fixed 1 <k < n.
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(d) Let X be the random variable representing the minimum number of draws required to get at
least one red ball. Calculate E[X], the expected value of X. (Hint: Use exchangeability to
simplify the calculation.)

(e) Suppose that instead of only two colors, the urn has balls of k& different colors: Nj of color
1, No of color 2,..., Ni of color k. Let N = Ny + --- + Ni. Argue that the probability of
drawing r; balls of color 1, ry balls of color 2, ..., rg balls of color k in n =7y +--- 4 rp draws
without replacement is given by

() (%)
1 Tk

()
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STAT201A: INTRODUCTION TO PROBABILITY AT AN ADVANCED LEVEL (FALL 2024)
UC BERKELEY

Problem Set 2

Due: 10:00pm, Friday, September 27, 2024 (via Gradescope)

1. (Binomial tail bounds) Let S,, have the Binomial(n, p;) distribution of the number of successes
in n independent Bernoulli(p) trials. Use a suitable computational environment to evaluate the

right tail probabilities
S,
P (" > pi + 6)
n

for n = 100 and p; = i/10 for ¢ = 1,2,...,9, and € = 1/10, together with various approximations
and upper bounds as indicated. In each case,
e give an exact mathematical formula for the function of ¢ you are computing;

e indicate suitable code for evaluating the formula in your preferred environment and attach
the code at the end of the homework;

e give the numerical values correct to two significant decimal place.

(a) The exact probabilities.
(b) Markov’s upper bounds for these probabilities.

(c) Chebychev’s upper bounds for these probabilities (which can be halved for ¢ = 5 only: explain
why).

(d) Hoeffding’s upper bounds.
(e) Chernoff’s upper bounds.

2. (LLN) Suppose that X7, Xo,... form an i.i.d. sequence of random variables with E[X;] = u < oo
and Var[X;] = 0% < co. Evaluate

limi) > (Xi- X2

n—oo
(2 i,j:1<i<j<n

3. (Chebyshev & CLT) Let X, X5, X3,... be i.i.d. random variables with mean zero and finite
variance 2. Let S,, = X1 + --- + X,,. Determine the limits below, with precise justifications.

(a) limy, 00 P(Sp, > 0.01n).
(b) limnsee P(Sp > 0).
(¢) limp o0 P(S, > —0.01n).

4. (Convolution & MGF) The Laplace distribution has density fz(z) = 3 exp(—\|z|) and MGF

My(t) = )\2’\722, where A > 0. Let XY Y Exp(A). Prove that Z = X — Y follows a Laplace
distribution by using:

(a) Moment generating functions.

(b) The convolution formula.
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5. (Moments & MGF) Let X be a random variable with p.d.f. given by

2/9, if0 <z <1,
fx(z) =< (4—4—-2x])/9, ifl<z<A4,
0, otherwise.

(a) Verify that this is actually a p.d.f.

(b) Find the moment generating function of X.
(c) Find E[X] and Var[X].

(d) Find a formula for the moments of X.

6. (Distribution of sums using MGFs) Let S, := X; +---+ X,, for independent Xj,..., X,,. Use
MGPFs to find the distribution of S,,

(a) For X; with Normal (p;,07) distribution.

(b) For X; with Gamma (r;, \) distribution.
(c) For X; = Z? with Z; ~ Normal(0, 1).
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STAT201A: INTRODUCTION TO PROBABILITY AT AN ADVANCED LEVEL (FALL 2024)
UC BERKELEY

Problem Set 3

Due: 10:00pm, Friday, October 11, 2024 (via Gradescope)

1. (Approximating Binomial Distributions) The goal of this question is to empirically verify
three approximations to the exact Binomial probability P(X = k), where X ~ Binomial(n, p):

e P(Y = k), where Y ~ Poisson(np), the Poison approximation with rate parameter np;

e The normal approximation

1 (k — np)? }
k;np,np(1l — = ———————eXpy{ ———————
¢(k;np, np(1 — p)) S p{ 201 — )
e The entropic approximation
1
Ent(k;n,p) = —— —nKL
nt(k;n,p) T T ) exp(—nKL(f|[p))

where f = £ and KL(f||p) = flog £ + (1 - f)log {=£.

(a) Take n = 30 and p = 0.05. Create a table ( 31 rows and 3 columns) containing the absolute
errors for each approximation,
B(X = k) ~B(Y =), [B(X = k) — o(k; np, np(1 — p))|
and
[P(X = k) — Ent(k;n, p)|

for k =0,1,...,30. (Note: The entropic approximation does not exist for £k = 0 and k = 30,
so only list it for £ =1,...,29 ).

Based on the table, comment on the accuracy of each of the three approximations for the
Binomial distribution.

(b) Create a similar table for the relative errors

P(X =k) —PY =k)| |P(X =Fk)— ¢(k;np,np(1 —p))|

P(X = k) ’ P(X = k)
and
[P(X = k) — Ent(k;n, p)|
P(X =k)
for Kk = 0,1,...,30. Based on this table, comment on the accuracy of each of the three

approximations for the Binomial.
(c) Repeat exercises (a) and (b) above for n = 30 and p = 0.25.
(d) Repeat exercises (a) and (b) above for n = 30 and p = 0.5.
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2. (KL-Divergence, Multinomial) Let X and Y be discrete random variables with distributions
p and q respectively (So p(k) = P(X = k) and ¢g(k) = P(Y = k)). Remember that the Kull-
back—Leibler divergence is defined by

(a)
(b)

— P(X)\7 _ p(k)
KL(plq) = Ey| In (m)} - Zk:p(k) (0

Show that when ¢(k) is a Poisson distribution with parameter A > 0, then the KL-divergence
is minimized by setting A to be the mean of p(k).

Rememebr that the entropy H(p) is defined to be H(plq) := —E,[In(p(X))]. Assume that
we need to place n balls into d bins. The number of ways to place the balls resulting in k;
total balls in bin ¢, for ¢ = 1,...,d, is given by the combinatorial expression (k kQ’ 7kd) Now
consider the empirical dlstrlbutlon of the balls. Its probability mass function is p(z) = ki/n.
Let N, denote the number of configurations with empirical distribution p, show that

In(N,) = nH(p) + O(In(n)),

where h(p) is the entropy of p.

In other words, there are many more high-entropy configurations than low-entropy configura-
tions. This suggests the intuition that, if we consider a physical system at a “macro level”
(such as the distribution of gas particles in a container) then we should expect it to drift
toward high-entropy configurations.

Hint: Recall Stirling’s approximation

In(n!) = nln(n) — n+ O(In(n)).

3. (Poisson) Let K = X; + X5 + -+ + Xy, where N ~ Poisson (\) and X;, Xy, --- are independent
Bernoulli (p) random variables. Assuming that N and {X;};en are mutually independent, find the
distribution of K.

4. (Joint densities) Let the joint density function of (X,Y’) be

3xy(x , if (x, 0,1)?,
f“’y):{o y(x +y) els(@ﬂ y) € [0.1]

Calculate the covariance Cov(X,Y).

5. (Transformation of random variables)

(a) Suppose X has the Cauchy distribution with density:

1
fx(z):= m

Show that 1/X has the same distribution as X.

(b) Suppose Y ~ Exp(1). Find a function g : (0,00) — (—00,00) such that g(Y) has the Cauchy

distribution with density given by (a).

(c) Suppose Z ~ Exp(\), where A > 0. Show that the distribution of W := [Z] (here [z] is

the smallest integer that is larger than or equal to z) is Geometric. Explicitly express the
parameter of the Geometric distribution in terms of A.

6. (Transformation of random variables) Suppose X ~ Uniform[—m,27]|. Find the p.d.f. of
Y = sin(X).
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STAT201A: INTRODUCTION TO PROBABILITY AT AN ADVANCED LEVEL (FALL 2024)
UC BERKELEY

Problem Set 4

Due: 10:00pm, Tuesday, November 5, 2024 (via Gradescope)

1. (Order statistics) Let Xi,..., X, be ii.d. random variables with Exp(\) distribution, where
A >0, and let X(;) be the order statistics for i =1,...,n.

(a) Find the distribution of X ).

(b) Using the memoryless property, find the distribution of X ;1) — X fori=1,...,n— 1.

(c) Use the previous item to show that each X ;) has the same distribution as a sum of i indepen-
dent random variables.

(d) Calculate the expectation and the variance of X;) fori=1,...,n.

2. (Joint and conditional densities) Let X,Y be two random variables with the following proper-
ties. Y has density function fy(y) = 3y? for 0 < y < 1 and zero elsewhere. For 0 < y < 1, given

that ¥ =y, X has conditional density function fxy(z|y) = 22 for 0 < x < y and zero elsewhere.

Y

(a) Find the joint density function fxy (z,y) of X,Y. Be precise about the values (x,y) for which
your formula is valid. Check that the joint density function you find integrates to 1.

(b) Find the conditional density function of Y, given X = x. Be precise about the values of x and
y for which the answer is valid. Identify the conditional distribution of Y by name.

3. (Model selection) Given data xi,...,x,, consider the problem of selecting between the two
models: .
Model One : X1,...,X, &' N(0,1)

and
Model Two : X1,..., X, i1d N(p,1) for an unknown p.
To use probability to solve this problem, let us introduce an additional random variable © that
has the Bernoulli distribution with parameter 0.5. Assume that the conditional distribution of
Xi,..., X, given © = 0 is given by the following
Xi,..., X, |©=0 "% N(0,1)

and
X1, Xn | 1,0 =1 i N(p,1) andu\@zle(O,TQ).

Here 7 is a parameter which you can treat as a fixed constant in this exercise.

(a) Using the formula

prove that
Ly I a?
—1(x1,...,2p) = exp| =" |exp| —5 |,
le,.‘.,Xn|®—l ( 1 n) <m) \/W p < 2 p 2 (1 n ’I’sz)
where T is the mean of x1,...,x,.
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(b) Calculate the conditional distribution of © given X; = z1,..., X, = zy.
(c) Intuitively, we would prefer Model Two over Model One when 7 is far from zero. Is this
intuition reflected in your conditional distribution from the previous part?

4. (Gamma-Poisson) Consider random variables ©, X7, ..., X, such that
© ~ Gamma(a,A) and Xip,...,X, |0 =40 PN Poisson(6)
(a) Find the conditional distribution of © given X; = x1, X9 = z2,..., X,, = .
(b) Find E[O | X1 =z1,..., X = xy).
(c) Write E[© | X1 = z1,..., X, = z,] as a weighted linear combination of (z1 + ---+ z,) /n and

the mean of the marginal distribution (i.e., prior mean) of © and argue that the weight of the
prior mean goes to zero as n — oo.

5. (Law of total expectation) Let the joint probability mass function (p.m.f.) of (X,Y’) be

1 1\ '1
— 11— —, forl<n<oo and 1<k < oo,
n+1 n+1 2n

0, else.

pX,Y(ka n) =

Find the p.m.f. py(n) of Y and the conditional p.m.f pxy (k|n).
Calculate E[Y].

Find the conditional expectation E[X|Y].

Use parts (a) and (c) to calculate E[X].

b

(c
(d

(a
(

~—_— — —

6. (Expected number of coin tosses) Consider a sequence of coin tosses.

(a) On average, how many tosses of a fair coin does it take to see two heads in a row?
(b) How many tosses on average to see the sequence HTH for the first time?

(¢c) How does our answer changes if we have an unfair coin?
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STAT201A: INTRODUCTION TO PROBABILITY AT AN ADVANCED LEVEL (FALL 2024)
UC BERKELEY

Problem Set 5

Due: 10:00pm, Wednesday, November 20, 2024 (via Gradescope)

1. (Multivariate normal) Suppose Y ~ A, (¢, X) in this problem.
(a) If a is any fixed vector in R™, show that

a’ (Y — p)
VaTXa

(b) If A is now a random vector that is independent of Y, then show again that

~ N(0,1).

AT(Y —p)
VATY A
is distributed according to N'(0,1) and that it is independent of A.
(c) Using the above result, show that if Y ~ N3 (0, I3), then
Yie'3 4 Y3 log | Y3

~ N(0,1).
e+ (log %32

2. (Marginally normal but not bivariate normal) Give an example of a 2 x 1 random vector
Y = (Y1, YQ)T with positive definite covariance matrix such that each Y7 and Y5 is standard normal
but Y is not bivariate normal.

3. (Conditional distribution) Consider three random variables Y7, Y5 and Y3 that are independent
and standard normal. Let

X1 =Y +Ys3,
Xo =Y +7Ys3,
X3 =Y + Yo

Find the conditional distribution of X; given Xo = X3 = 0.

4. (More on jointly Gaussian distributions) Let X and Y be independent standard normal
variables.

(a) For a constant k, find P(X > kY).

(b) U =+vV3X+Y,and V=X —+/3Y, find P(U > kV).

(c) Find P(U%2 + V2 < 1).

(d) Find the conditional distribution of X given V = v.

. . X1 X3
9 —
5. (Wigner’s surmise) Let X = ( , ,

independent A (0,1/2). Let A1 and Ao be two eigenvalues of X and s = |A\1 — Ag|.

) with X; and X5 independent AV(0,1) and X3 another
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(a)
(b)
()

Prove that s = /(X1 — X2)2 + 4X2.
Find the density of s.

Plot the density function of s. What do you observe respect to the eigenvalues of the random
matrix X7

6. (1D Gaussian process) In this problem, you will implement a 1D Gaussian process that pre-
dicts outputs based on noisy training data. You will be given (noisy) 1D training data pairs
Dyain = {(z1,11), (x2,y2)...}. Your task is to predict the output for a set of test queries
Diest = {7, 25,...}, conditioned on the training data. Implement two separate kernel functions,

namely the

e Squared Exponential Kernel: This is the kernel we discussed in class.

_:L'.T Ti — Ti
k(zi,2) = 0 exp <—(ml i) é%( : j)>

where o is a scale factor for the kernel and M is a metric measuring distance between two
input vectors. In the 1D case, M = l% where [ is the length scale of the kernel.

Matérn Kernel: This kernel is used commonly in many machine learning applications.

I=v vr Y vr
o =155 () o ()

where v and [ are (positive) parameters of the kernel and r = |z; — z;|. K, is a modified bessel
function and I' is the gamma function. Good parameters settings for v are 0.25 - 3. You can
use scipy.special.kv() in Python or besselK() in R for implementing K.

Implement the squared exponential and Matérn kernel functions to compute similarity between
any pair of inputs. The output for each function should be a kernel matrix K.

Using your kernel functions, implement a Gaussion process regression function to predict the
posterior mean and variance of test data ¢*.

The simulation function and plotting function are provided in the file ps5_GP_1D.ipynb. Vary
the kernel parameters (e.g., 0,1, and v) and observe how they affect the predictive mean and
variance. What impact do these parameters have on the smoothness and uncertainty of your
GP predictions?

Note: It’s recommended to use Python (Jupyter notebook) and submit a pdf file including
code, plots and comments. If you prefer using another coding language, please make sure the
data simulation is the same with the provided code.
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STAT201A: INTRODUCTION TO PROBABILITY AT AN ADVANCED LEVEL (FALL 2024)
UC BERKELEY

Problem Set 6
Due: 10:00pm, Friday, December 6, 2024 (via Gradescope)

. (Branching process) A branching process starts with one individual, i.e. X (0) = 1, who repro-
duces according to the following principle:

# of children ‘
probability ‘

NI DN

0 1
T 1
6 3

Individuals reproduce independently of each other and independently of the number of their sisters
and brothers. Determine

(a) the probability that the population becomes extinct;

(b) the probability that the population has become extinct in the second generation, i.e. P(X(2) =
0);

(c) the expected number of children given that there are no grandchildren.

. (Random walk) Random walk on {0,1,2,3}. Consider the Markov chain (X,,) with transition
matrix

1 1

;2 00

= 0 5 0
P:21217

02 03

0055

started with Xog = 0. Define Tj as min {n > 1 : X,, = j}. Find explicitly the following distributions
and expectations.

) The distribution of Xs.
b) The limit distribution of X,, as n — oo.
(c) E[To]

(d) E[Ts]

(e) P[T5 < Tp]

(a
(

E
E

. (The average number of jobs) Jennifer is employed for one day at a time. When she is out of
work, she visits the job agency in the morning to see if there is work for that day. There is a job
for her with probability 1/2. If there is no work, she comes back the next day. When she has a
job, she will be called back to the same job for the next day with probability 2/3. When she is not
called back, she goes to the job agency again the next morning to look for a new job that she had
not had previously. Approximate the average number of jobs Jennifer works in a year.

. (Rain or no rain) Suppose that at day 0 it is not raining. Then each new day, if it rained
yesterday, it will rain with probability 0.7; if it did not rain yesterday, it will rain with probability
0.2.

(a) Find the stationary distribution.
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(b) How many days should we expect to wait to have rain for the first time?

5. (The game of roulette) A gambler plays the game of roulette, betting X dollars on red or black.
The gambler wins X dollars with probability p = 18/38 or loses the bet with probability ¢ = 20/38.
Suppose that the gambler starts the game with $500 in his pocket and upper limit on winnings is
$1000.

(a) Compute the probability of the gambler’s ruin for X = $10.
(b) Compute the probability of the gambler’s ruin for X = $100.

(c) Compare the above results with the probability of ruin in the case the gambler bets everything
on a single turn of the wheel.
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STAT201A: INTRODUCTION TO PROBABILITY AT AN ADVANCED LEVEL (FALL 2024)

UC BERKELEY

Problem Set 1 Solutions

1. (Basic probability) Assume that P(A) = 0.6, P(B) = 0.7 and P(C) = 0.8.

(a) Show that 0.3 <P(AN B) <0.6.

For the second inequality, since ANB C A then P(ANB) < P(A) = 0.6. For the first inequality
note that P(A U B) < 1. Using the principle of inclusion-exclusion on B and C' we have that

P(AN B) = P(A) + P(B) — P(AU B)

>06+07-1=0.3

We conclude that 0.3 <P(AN B) < 0.6.
(b) Show that 0.1 <P(ANBNC) <0.6.

For the second inequality, since AN BNC C A then P(IANBNC) <P(A) = 0.6. Note that
P((ANB)uUC) < 1. Using the principle of inclusion-exclusion again on C' and AN B we have

that

P(ANBNC)=P(ANB)+P(C)-P(ANB)UC)

>034+08-1=0.1

2. (Independence) Suppose we roll an unbiased six-sided die n > 3 times. Let E;; denote the event
that the ith and the jth rolls produce the same number. Show that the events {£;; |1 <1i < j < n}
are pairwise independent but not independent as a family.

Remark that P(E;;) = 1/6. We also have that P(E;; N Ey) = 1/36 and P(E;; N E;,) = 1/36. Since
P(E;j N Ey) = P(E;;)P(Ege) in all cases, we conclude that the events are pairwise independent. On
the other hand, remark that P(E12)P(E13)P(Fa3) = 1/6% while P(E12 N E13 N Eaz) = 1/62. Hence

the events are not independent.

3. (Expectation, joint distribution, uniform distribution) Let X be a random variable with
values {1,2} and Y a random variable with values {0, 1,2}. Initially we have the following partial

information about their joint probability mass function.

Y =0

Y =1

Y =2

1/8

0

Subsequently we learn that E[XY] = 43 and that Y has uniform distribution. Use this information
to fill in the missing values of the joint probability mass function table.

The missing values on the table are a =P(X =1,V =1),b=P(X =1,Y =2), c =P(X =2,Y =
0) and d = P(X =2,Y = 2). We know this must be a joint PMF so

1/84+a+b+c+d=1.
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We also know that
E[XY]=a+2b+ 4d =13/9,

and since Y is uniform we have that
1/84+c=a=b+d.

Using the last equation on the first two equations we obtain 3b 4+ 3d = 1 and 3b + 5d = 13/9. By

solving the system of equations we obtain b = 1/9, d = 2/9 and finally using the last equation again
we conclude a = 1/3 and ¢ = 5/24.

Y=0 | Y=1| Y=2
1] 1/8 [1/3]1/9
=2[5/24| 0 |2/9

. (Conditioning, cumulative distribution function) You flip a fair coin. If you get tails, you
choose a uniformly random number on the interval [0, 2]. If you get heads, you choose the number 1.
Let X be the random variable describing the outcome of that experiment.

(a) Using the law of total probabilities, calculate P(X < 1/2) and P(X < 3/2).
(b) Find the cumulative distribution function Fx of X.

(c¢) Is X a discrete random variable? Is X a continuous random variable?
Let T be the event in which we got tails and H be the event in which we got heads.

(a) We have that

P(X < 1/2) = P(X < 1/2|T)P(T) + P(X < 1/2|H)P(H)

472 2 8
and that
P(X <3/2) =P(X <3/2|T)P(T) +P(X < 3/2|H)P(H)
VR S S
472 2 8

(b) We want to find Fx(s) = P(X < s). We will proceed exactly as in part 1. If s < 0 then
directly P(X < s) = 0. If s > 2 then directly P(X <s)=1. If 0 < s < 1 then

P(X <s)=P(X <s|T)P(T) + P(X < s|H)P(H)
1 S

077
U5 =7

If 1 <s<2then
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()

Following the definitions given in lecture, this is neither a continuous or a discrete random
variable. It is not continuous since we have P(X = 1) = 1/2 # 0. It is not discrete since the
sum of probabilities of possible values X can take with positive probability is 1/2 instead of 1.
There are other ways to argue. For example showing that F'y is not continuous, that X don’t
have a p.d.f., that the cardinality of possible values X can take is infinite uncountable, etc.

5. (Bounding even moments) Let X be a random variable. Show that E[X?¥] > (E[X])?* for all

positive integers k. This is a direct application of Jensen’s inequality with the function ¢ (x)

= 22k,

To verify that ¢ is convex we can calculate the second derivative and verify it is nonnegative.

6. (Continuous distributions, probability density function, independence) Pick a uniformly
chosen random point (X,Y") inside the sector delimited by the z-axis, the y-axis and the parabola
given by the equation y = 1 — 2%; see Figure 1.

1

0.8 - a

0.6 |- a

0.4 :

0 | | | |
0 0.2 0.4 0.6 0.8 1

Figure 1: Graph of y = 1 — 22

What is the probability that the distance of this point to the origin is more than 1/27
Find the p.d.f. of X.

Find the p.d.f. of Y.

Are X and Y independent?

) Calculate fol 1—2%dr =[x — 23/3]§ = 2/3.

Let A be the described event, given that we are choosing a point uniformly, the value of P(A)
is given by the ratios of area described in event A and the total area of the delimited sector.
Given that, let’s note that for the distance between the y-axis and the point to be less than
1/2 then the point must be in the sector delimited by the y-axis, the x-axis, the equation

11

y = 1 — 22 and the line # = 1/2. The area of this sector is given by f01/2 1 —a2%de = TR
, 11/24 11
Finally P(A) = ERL
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(c) We proceed as in part 2., let B be the described event. the are we are looking for correspond

to the area of the original sector minus a quarter of disk of radius 1/2. More precisly P(B) =

2/3 — /16 3
20 1 - 22 & 0.705...
2/3 32

(d) The pdf of X is the only function px(t) such that P(a < X < b) = ffpx(t) dt. We get
px(t) =3(1—1¢?) for 0 <t <1 and 0 in other case.

(e) Similarly, the pdf of Y is py(t) = 3(v/I —¢) for 0 < ¢ < 1 and 0 in other case.

(f) Just taking I = [4/5,1], remark that P(X € I) # 0 and P(Y € I) # 0, however P(X € I,Y €
I)=0. Since P(X € LY € I) =0 # P(X € I)P(Y € I), we conclude that X and Y are not
independent.

7. (Events, indicators and basic probability inequalities) Recall that for an event A, we denote

the corresponding indicator random variable by I(A) (i.e., I(A) takes value 1 when A occurs and the
value 0 when A does not occur). Also recall that the probability P(A) of A equals the expectation
of the random variable E(I(A)).

(a) Given events Ay, ..., A,, show that I (U], A;) = maxi<i<n I (4;).
Recall the definition of the indicator function I(A) for an event A :

1 ifA
I(A) = { if A occurs

0 if A does not occur

The event U}, A; occurs if at least one of the A; occurs, meaning that:

1 if at least one A; occurs

I (U?:lAi) = {

0 if none of the A; occurs.

The maximum of the individual indicators:

{1 if 1 (A;) =1 for at least one 7

max [ (4;) =
x, 1 (A) 0 if I(A4;) =0 foralli

1<i<n
By definition, I (A;) = 1 if and only if event A; occurs. Therefore, the maximum max;<;<p I (4;)
takes the value 1 if at least one of the events A; occurs, and 0 if none of the events occur. This

shows
I (UL 4;) = max I (4;).

1<i<n

(b) Using the fact observed above (and the following ordering property of expectation: X <Y
implies that E(X) < E(Y)), show that

n
P(UL,A4) < P (4).
i=1
Note: This is known as the union bound and used quite frequently.
We know that for any collection of non-negative random variables X1, Xs, ..., X, the maxi-
mum of these random variables is always less than or equal to the sum:

n

max X; < X;
1<i<n —
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Applying this to our indicator random variables and from result from a)

ZI

I(UZ 4;) = max I(A

<i<n

We then have
P (Ui, 4i) =

s
Il
—

, we have:

where (i) follows the ordering property of expectation and (ii) holds because of linearity of

expectation.

(c) For every event A, show that I (A¢) =1 — I(A) where A€ denotes the event that A does not

occur.
By definition:
if A occurs

if A does not occur.

-4,

I(A°) = {(1)

if A° occurs (i.e., A does not occur)

if A does not occur (i.e., A occurs)

Thus, we observe that I (A°) =1 when I(A) =0, and I (A°) =0 when I(A) = 1. Hence,

I(A%) =1—I(A).

For events Ai, ..., Ay, show that I (NP, A4;) =", I (A4;).

The indicator I (N}, A;) is 1 if and only if all events A; occur simultaneously, otherwise it is

0. This can be expressed as

1
I (M 4q) = {0

This is exactly the product of the indicators:

if I (A;) =1 foralli
if I (A;) =0 for some i

(e) Prove the inclusion-exclusion formula: For events Ay,..., A4,,

IP’(U?:LA@) = E — 22 —+ 23 — 24 + cee 4 (_1)n—12n
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where

1< <t << <n

(Approach 1: induction) Base cases. For n = 1, the formula is simply P(A4;) = P(A;) and
for n = 2, the formula is

P(A; U Ay) =P(Ay) + P(A2) — P(A1 N Ay),

which holds as the standard inclusion-exclusion formula for the union of two events. Hence,
the base case holds for both n =1 and n = 2.
Inductive Step. Assume that the formula holds for n = k. That is, assume

P (Ui-e:lAl) = Z IP)(AZ) — Z P(Azl N Azz) + ...

1<i<k 1<i1 <ia<k
+ (-~ P (ﬂleAi) .
We need to show that the formula also holds for n =k + 1, i.e.,

P(Uf;LllAi): S OPA) - Y P(ANAy)+...

1<i<k+1 1<i1 <ip<k+1
+(—1)kP (mfjllAi) .
We can express the union of the k + 1 events as
P (ufjllAi) =P ((uleAi) U Ak+1)
—P (uleAi> +P(Ajsy) — P ((ug.;lAi) N A,m)
—P <U§:1Ai) FP(Apy) — P (uf;l (4; N Ak+1)) .
As we assume the formula holds for n = k, we can expand P (U¥_, (4; N Aj11)) as

P(UL (AN Ak)) = 30 P(AiNAgn) = > P4 0 A, N Ake)

1<i<k 1<i1<ia<k

ok (SR (N A
Substituting this into the expression for P (UfifAO, we obtain

P(ufiji): Yo OPA) - Y P4 NA) ..

1<i<k+1 1<iy <ip<k+1

+ (=1)kP (mfijO .
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This shows that the formula holds for n = k£ + 1, completing the induction.
(Approach 2: Direct proof) From parts (¢) and (d) it is clear that:

(Ui Ai) = 1= T (M A7)

n

=1-JJra-4)

i=1

(expand this product)

=1- 1—ZH:I(A1-)+ZI(A¢,AJ-)— > I(Ai A A+
=1

i<j i<j<k

n

=3 T(A) =) T(AjAj)+ > T(Ai Aj A) — ...
i=1 i<j i<j<k

Taking the expectation of both sides:

n
P(UPA) =Y P(A) =) P(A A+ > P(AAj Ay) — ...

i=1 i<j i<j<k
Note that the RHS can be written more simply such as:

S = > P (A, Ay, - .., As,)

1<i1 <9 <-<ip<n
Thus
PU A) =% =S+ 83 -4 +... 4+ (=1)"1%,

8. (Hypergeometric and exchangeability) We have an urn with R red balls and N — R white
balls, where 0 < R < N. We draw n balls in sequence from the urn without replacement. Let R;
denote the proposition that the i*" draw results in a red ball.

(a) Calculate P (R;) for each i =1,...,n.
Since there are R red balls out of N total balls, we have

R
By exchangability, it follows that when we consider one i at a time, we have
R

P(R) = Vie{l...n}

Exchanging the order in which we consider i does not change the underlying distribution.
(b) Show that P (R; | Ry) = P (Ry | R;) for every 1 < j, k < n.

Consider the definition of conditional probabilities:
P(R; N Ry)
P (R;)

_ P(R;NRy)
P (R;)

=P(R: | R

P(R; | R;) =

( by part (a))
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(c) Calculate P (Ry, | Uiy, Ri) for a fixed 1 <k <n.
For fixed 1 < k < n,

’ (Rk ’ LnJ Ri) =7 (B N (Ui Bi))

i=k+1 P (Ui Bi)
~ P(RiN (Ui Ri))
P (UL Bi)
P ()P (Ui Ri | By)
P (UL Bi)

) <1 — P ,, draw n—k white ball ))

from a urn with N—1 balls

( by exchangability )

(

Z|m

all of the first n—k
1 - P( draws are are white )

-3

—~
Z|m
~—

(d) Let X be the random variable representing the minimum number of draws required to get at
least one red ball. Calculate E[X], the expected value of X. (Hint: Use exchangeability to
simplify the calculation.)

Label the white balls as 1,2,..., N — R. Define the indicator variable I; for each white ball j,
where I; = 1 if white ball j is drawn before any red ball, and I; = 0 otherwise.
The probability that a specific white ball j is drawn before any red ball is given by

1

R+1

This is because, when considering the order in which one specific white ball and all red balls

are drawn, all possible orders are equally likely.

Let Y represent the number of white balls drawn before the first red ball. Then Y is simply
the sum of all indicator variables:

P(I;=1) =

Thus, the expected value of Y is

- R
eDLUES =

Since we are interested in the expected number of total draws X to get the first red ball, we
have X =Y + 1 (as the next draw after all white balls have been drawn must be a red ball).

Therefore,
N+1

e
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(e) Suppose that instead of only two colors, the urn has balls of k different colors: N;j of color
1, No of color 2,..., Ni of color k. Let N = Ny + --- + Ni. Argue that the probability of
drawing r; balls of color 1,ry balls of color 2, ..., rg balls of color k in n =7y +--- 4 rp draws
without replacement is given by

() (%)
T1 Tk

()
Use the concept of combinatorial counting.
Total Number of Possible Outcomes: The total number of ways to draw n balls from an
urn containing N balls (where N = Ny + Ny + - - - + N}) without considering the color is given
by the binomial coefficient (]X )
Number of Favorable Outcomes: The number of ways to choose ry balls from the Ny balls

of color 1 is (]T\,fll) Similarly, the number of ways to choose ro balls from the Ny balls of color

2 is (]X;), and so on. The total number of ways to achieve this specific configuration is given
by the product of these individual combinations
Ny
o

() ()

Probabilit Number of favorable outcomes (];fll) ) (J:f;) )
robabill = _
Y~ Total number of possible outcomes (17\17)

Probability:

(%)
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STAT201A: INTRODUCTION TO PROBABILITY AT AN ADVANCED LEVEL (FALL 2024)

UC BERKELEY
Problem Set 2

Due: 10:00pm, Friday, September 27, 2024 (via Gradescope)

1. (Binomial tail bounds) Let S,, have the Binomial(n, p;) distribution of the number of successes
in n independent Bernoulli(p;) trials. Use a suitable computational environment to evaluate the
right tail probabilities

IP’(Sn >pi+€>
n

for n = 100 and p; = i/10 for i = 1,2,...,9, and € = 1/10, together with various approximations
and upper bounds as indicated. In each case,

e give an exact mathematical formula for the function of ¢ you are computing;

e indicate suitable code for evaluating the formula in your preferred environment and attach

the code at the end of the homework;

give the numerical values correct to two significant decimal place.

The exact probabilities.
For a binomial random variable S,, ~ Binomial (n, p;), the exact probability is

B(Snznlpite)= ), <Z>P§“ (1—p)" "

k=[n(pi+e)]

Markov’s upper bounds for these probabilities.
Markov’s inequality provides a simple upper bound on the tail probability, which is

E[Sn] npi Di
P (S, > n(pi + ) < - —
Gnznite) < 0 S = Tt mte

Chebychev’s upper bounds for these probabilities (which can be halved for ¢ = 5 only: explain
why).

Chebyshev’s inequality uses the variance of S,,, which is Var (S,) = np; (1 — p;). It provides
an upper bound on the tail probability as

Var (Sw) _ i (1— pi)
n2e2 ne2

P(Sn > n(pi+e€)) <

When p; = 0.5, the probability distribution for S, is symmetric around its expectation 0.5n
S
P < = — 0.5‘ > e> =P (S, >n(0.54+¢) +P(S, <n(0.5—¢))
n
When p; # 0.5, the distribution is not symmetric and that’s why the bound can be halved for
1 =5 only.

= 2P (S, > n(0.5+¢)).
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(d)

Hoeffding’s upper bounds.
Hoeffding’s inequality provides an upper bound for the sum of independent bounded random
variables, such as a binomial variable S,,. The upper bound is

P (S; > pi + e) < exp (—2n62)

Chernoff’s upper bounds.
Here we use KL divergence form for Chernoff’s bound

P (Sn > n(pi +€)) < exp (=nD (pi + €[p:))

where the KL divergence KL(g||p) between two Bernoulli distributions with parameters ¢ and
p is given by

KL(lo) = o1 (5) + 1 - 18 (1)

For ¢ = p; + € and p = p;, the bound becomes:

P@gzn@n+d)éam<n[@i%@bg(mtf>*(1pi@bg<11?éf>})

Remark: The proof of equivalence of the standard form and the KL divergence form of Cher-
noff’s bound in Binomial distribution.

The standard form of Chernoff’s bound gives an exponential decay for the upper tail of a sum
of independent random variables. For S,, > n (p; + €), the bound is

P (S = n(pi + ) < min (B [e50] et

For binomial random variables, the moment generating function E [etsn] is
E "] = (pie + (1 - pi))"
Thus, the bound can be expressed as
P(Sn>n(pi+e€) < (pie’ + (1 —p;))" e et

Optimizing for ¢ using calculus, we get that the right-hand side is minimized if

of — (1 —pi) (pi +¢)
pi (1 —pi —e)

Substituting this back into the bound, we obtain the KL divergence form of the Chernoff
bound, which is equivalent to

P (Sn > n(pi +¢)) <exp(—nD (p; + €l|p;))
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2. (LLN) Suppose that X;, Xa,... form an i.i.d. sequence of random variables with E[X;] = u < oo
and Var[X;] = 0% < co. Evaluate

limi) > (X— X))

n—oo
(2 i,j:1<i<j<n

First notice that >y, <, (Xi — X)) =nd o XE— (X Xk)Q. Now using the law of larges
numbers we get

—1 n n 2
n Z 9 2n Zk:le 2 2

and that

() (= 2 (e

n—1 n

We then have that (g‘)_l Di<icjen(Xi — X;)? = 2(0? + p? — p?) =202
3. (Chebyshev & CLT) Let Xi, X, X3,... be i.i.d. random variables with mean zero and finite
variance o2. Let S, = X1 + --- + X,,. Determine the limits below, with precise justifications.
(a) limp—s0o P(Sp > 0.01n).
(b) limy, o0 P(S,, > 0).
(¢) limy 00 P(Sy, > —0.01n).

(a) Using Chebyshev’s inequality, we get that

2

no
b) Using CLT, we get that
( 8 8
Sh, 1
Pl—=>0) — —.
(\/ﬁ - ) 2
(b) Using Chebyshev’s inequality, we get that
P (S, < —0.01n) < ot
—0.0ln) < —— .
" ~ n2/104

Therefore,
P (S, > —0.01n) — 1.

4. (Convolution & MGF) The Laplace distribution has density fz(z) = %exp(—)\|z|) and MGF

My(t) = )\2’\712, where A > 0. Let X,V S Exp(\). Prove that Z = X — Y follows a Laplace
distribution by using:

(a) Moment generating functions.
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(b) The convolution formula.

(a) Our approach is to find the MGF of Z = X — Y and match it to the moment generating

function of the Laplace distribution, which is given to be /\2’\7_12 We have:

Mz(t) = Mx(t)M_y(t)
= Mx (t)E[e™"]
= Mx (t) My (—t)

A A A2

A—tA—(=t) A -2

and therefore Z is Laplace.

(b) Using the convolution formula:

fz(z) = / fx(@)f-y(z —x)dx
= / )\e_AII(x>O))\e_A(_(Z_x))I(z_x<0)dl‘

= / Ae Mg Ae AL da

—0o0

= )\26”/ ¢ L (p0) L (o—s>0)da

We can simplify the indicators:

I2>0)  L(z—250) = L(2>0)&(2>2) = Lz>max(0,2)-

Therefore:

fZ(Z) _ )\2€>\z/ e—QAxdx

max(z,0)

2 A L o]
-\ z | -2z
g

r=max(z,0)

1 _
_ )\26/\Z . —e 2A max(z,0)

2\
A
_ 56/\z . 672)\ max(z,0)
A
_ 567)\(2 max(z,0)—z)
_ A2
2

which is the Laplace(\) PDF.
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5. (Moments & MGF) Let X be a random variable with p.d.f. given by

2/9, ifo0<zx<1,
fx(z) =< (4—[4-2x])/9, ifl<az<A4,
0, otherwise.

(a) Verify that this is actually a p.d.f.
(b)
(c¢) Find E[X] and Var[X].

)

(d) Find a formula for the moments of X.

Find the moment generating function of X.

First note that the p.d.f. can also be written as

2/9if0<z <1
20/9ifl <z <2
(8—2z)/9if2<x<4

0 else.

fx(x) =

(a) Let’s verify that [ fx(z)dz =1.

/fo(a:)dx = /012/9d95+/122x/9dx+/24(8—233)/9d:c
= 2([ald + /2 + 1o — 2/213)

=S(1-0+@-1/2+@E-6)=

(b) Let’s do the full calculation,

E[e!X] = /_OO e fx(z) dz

9, f1 2 4
(/ e da + / ze' dx + / (4 —z)e™ da;)
0 1 2

9
2/ (tr—1)e!*, (144t —tx)e'® ,
= (S0 + R+ 1)
2 (et —1 (2t —1)e* —(t—1)et N (14 4t — 4t)et — (1 + 4t — 275)62'5)
9\ ¢t t2 t2
- 9 €4t + el —9 2t t
9 t2
(c) One way to solve this problem is to directly calculate E[X] and E[X?] using the formulas
EX] = [* zfx(z)dz and E[X] = [ z%fx(z)dz and then Var(X) = E[X?] — E[X]?.
49 25
Another way to solve this part is using part 4. We obtain E[X] = 77 E[X?] = r and then
1273
X) =22
VartX) = Ta5s
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n

(d) Let’s use the Taylor expansion for the exponential. We have that e* = Z;’LO_O . Replacing

the series on the formula obtained in part 2. we obtain the following.

2 et et —2e2t ¢

]E tx =
4nn tm 2mgn
2 > oo e + > o o 23 0% o t
=9 . 5
1
9 Lnzo (1 +4" - 2n ) — ¢
T 9 2
2i + 4n 2n+1 tn—2 _ gi 14 4n+2 _ 2n+3 o
9 9~ (n+2)!

We conclude from this that the general formula for the moments is

2(1 4 4n+2 _ 2n+3)

E(X") = 9(n+ 1)(n +2)

6. (Distribution of sums using MGFs) Let S, := X +---+ X,, for independent X,..., X,,. Use
MGFs to find the distribution of S,

(a) For X; with Normal (y;,02) distribution.
The MGF of a normal random variable X; ~ Normal (ui, J?) is given by

2.[:2
M, (t) = exp (Mz 9 >

Thus, for the sum S, = X7 + X9 + --- + X,,, the MGF is

HMX Hexp(,uzt—i- 222>—exp<tz,uz+ Zo)

=1

This is the MGF of a normal distribution with mean > ;| y1; and variance > ;" | o7. Therefore,
n n
Sp ~ Normal (Z i Z 03)
=1 =1

(b) For X; with Gamma (r;, A) distribution.
The MGF of a gamma random variable X; ~ Gamma (73, A) (where r; is the shape parameter
and A is the rate parameter) is given by

t\ "
Mx,(t) = <1—)\> , fort <A
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Thus, for the sum S, = X7 + X9 + - - - + X,,, the MGF is

Mg, (t) = ZﬁlMXi(t) = ﬁ (1 - ;)r _ (1 - ;)Z?_m

j— =1

This is the MGF of a gamma distribution with shape parameter ) ;" ; 7; and rate parameter

A. Therefore,
S, ~ Gamma (Z T, )\)

i=1

(¢) For X; = Z? with Z; ~ Normal(0, 1).
The MGF of X; is the expectation of 2l Applying the density function for Normal distri-

bution, we have
2 o0 2 1 22
Mx, ) =E [etzi} = / el? e 2dz
‘ oo 2

which is valid for t < % This is exactly the MGF for x3.
_1\" _n 1
Mg, (t) = ((1 —2t) z> = (12078, fort<;

Therefore, S, follows a chi-squared distribution with n degrees of freedom S,, ~ 2.
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STAT201A: INTRODUCTION TO PROBABILITY AT AN ADVANCED LEVEL (FALL 2024)
UC BERKELEY

Problem Set 3

Due: 10:00pm, Friday, October 11, 2024 (via Gradescope)

1. (Approximating Binomial Distributions) The goal of this question is to empirically verify
three approximations to the exact Binomial probability P(X = k), where X ~ Binomial(n, p):

e P(Y = k), where Y ~ Poisson(np), the Poison approximation with rate parameter np;

e The normal approximation

1 (k — np)? }
k;np,np(1l — = ———————eXpy{ ———————
¢(k;np, np(1 — p)) S p{ 201 — )
e The entropic approximation
1
Ent(k;n,p) = —— —nKL
nt(k;n,p) T ) exp(—nKL(f|[p))

where f = £ and KL(f||p) = flog £ + (1 - f)log {=£.

(a) Take n = 30 and p = 0.05. Create a table ( 31 rows and 3 columns) containing the absolute
errors for each approximation,
B(X = k)~ B(Y =), [B(X = k) — o(k; np, np(1 — p))|
and
[P(X = k) — Ent(k;n, p)|

for k =0,1,...,30. (Note: The entropic approximation does not exist for £k = 0 and k = 30,
so only list it for £ =1,...,29 ).

Based on the table, comment on the accuracy of each of the three approximations for the
Binomial distribution.

(b) Create a similar table for the relative errors

P(X =k) —PY =k)| |P(X =Fk) = ¢(k;np,np(1 — p))|

P(X = k) ’ P(X = k)
and
[P(X = k) — Ent(k;n, p)|
P(X =k)
for Kk = 0,1,...,30. Based on this table, comment on the accuracy of each of the three

approximations for the Binomial.
(c) Repeat exercises (a) and (b) above for n = 30 and p = 0.25.
(d) Repeat exercises (a) and (b) above for n = 30 and p = 0.5.

See attached PDF.
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2. (KL-Divergence, Multinomial) Let X and Y be discrete random variables with distributions
p and q respectively (So p(k) = P(X = k) and ¢g(k) = P(Y = k)). Remember that the Kull-
back—Leibler divergence is defined by

— p(X)\1 _ p(k)
KL(plg) = By | In (m)} = p(k)n (5.

(a) Show that when ¢(k) is a Poisson distribution with parameter A > 0, then the KIL-divergence
is minimized by setting A to be the mean of p(k).

(b) Rememebr that the entropy H(p) is defined to be H(plq) := —E,[In(p(X))]. Assume that
we need to place n balls into d bins. The number of ways to place the balls resulting in k;
total balls in bin ¢, for ¢ = 1,...,d, is given by the combinatorial expression (k1 k2” kd)‘ Now

------

consider the empirical distribution of the balls. Its probability mass function is p(i) = k;/n.
Let N, denote the number of configurations with empirical distribution p, show that

In(N,) = nH(p) + O(In(n)),

where h(p) is the entropy of p.

In other words, there are many more high-entropy configurations than low-entropy configura-
tions. This suggests the intuition that, if we consider a physical system at a “macro level”
(such as the distribution of gas particles in a container) then we should expect it to drift
toward high-entropy configurations.

Hint: Recall Stirling’s approximation

In(n!) = nln(n) — n+ O(In(n)).

(a) if (k) is Poisson with parameter X, then q(k) = e *\¥/kl. Let’s calculate now the KL-
divergence.

L(pllg) = Zp :)
_Zp Z (k) In (e *\*/k)
:zk:p(k)ln —|—)\Zp Zp (k1 (3) = (k1))
:§p(k‘)ln(p(/~c))—l—)\—ln(/\);k‘p —|—Zp ) In (K!)

Taking the derivative we can verify that there is a minimum precisly when A =Y, kp(k).

b) As stated at the beginning of the problem, N, = —%—— we can now use Stirling approxi-
p kilka!-kg!
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mation and do a calculation.

log(NV,,) = log(n!) Zlog (ki!)
= nlog(n) — n+ O(logn) — (Zk: log(k k:l-+O(logk:¢))
=nlog(n) —n+ O(logn) — (Zklog ki—l—O(logn))

Il
|
/N
[~
&
—~
P~
=}
09
—
o~
S
~
—
o
09
—
~
~—
N—
+
.
—
—
=}
o
S
~—

= —n(zd: % log (%)) + O(logn)

= nh(p) + O(logn)

The relevant identities we used are that k; < n and hence log(k;) = O(logn), that 2?21 ki=n
and since d is fixed and finite, O(logn) Z?:1 O(logn) is still O(logn).

. (Poisson) Let K = X1 + X9 + -+ + Xy, where N ~ Poisson (\) and X7, X»,--- are independent
Bernoulli (p) random variables. Assuming that N and {X;};en are mutually independent, find the
distribution of K.

7

oo £\
Ze‘A)_‘—e =3 ()‘e‘) _ e (e,
i=0 ’
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Here we used that e =Y, ””—,. We have

M (t) = ZE[@“X} (N =n)

I
(e 1
>
—~
>~
—
s
+
=
9
=

we used the fact ¢ — 1 = —p. This is the same as the MGF of Poisson (Ap), thus K ~ Poison (\p).

4. (Joint densities) Let the joint density function of (X,Y’) be

if 2
flz,y) = {ixy(‘” +9), ;1S(z,y) € [0,1]2,

Calculate the covariance Cov(X,Y). We want to calculate E[X], E[Y] and E[XY]. In all cases we

need to apply the formula
Elg(X,Y)] = / / 9(@,y) f(z,y) dz dy.
—00 J —00

Let’s do each one of the calculations and then conclude.

/ / f(z,y)dxdy
1,1
—/ / 32%y(z + y) dz dy
//3:n y + 322%y? dx dy

=/ = d
/041/‘1'92/

17

24"
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17
24

E[XY]Z/ / vy f(z,y) dz dy
//3:13 (x+y)dxdy
:/ / 3239 + 322y dx dy

0o Jo

132 3
=/4y+ydy
0

By symmetry we also have E[Y] =

N | —

We finally conclude using the formula Cov(X,Y) = E[XY]-E[X]|E[Y] = 1/2—(17/24)% = —1/576.

5. (Transformation of random variables)
(a) Suppose X has the Cauchy distribution with density:

1

fx(.%') = m

Show that 1/X has the same distribution as X.
We aim to find the probability density function of ¥ = % Using the change of variables

formula, we have
1
fr(y) = fx ()

m(L+y?)
Therefore, Y = % has the same distribution as X.

(b) Suppose Y ~ Exp(1). Find a function g : (0,00) — (—o00,00) such that ¢g(Y') has the Cauchy
distribution with density given by (a).
The CDF of X in (a) is

The CDF of Y is
Fy(y)=PY <y)=1—¢Y, y>0.

Suppose g is a strictly increasing function, we can relate the CDFs of Y and X as

Fy(y) =P <y)=P(g(Y) <g(y) = Fx(9(y))
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Substituting the CDFs, we have

1 T
L——y:—< ¢ —)
e”¥ = — (arctan(g(y)) + 5
Simplifying the above, we get
_ 7
g(y) = tan (7’[‘ (1—e?) - 5)

which is strictly increasing when y > 0. This is the required transformation that ensures g(Y")
follows the Cauchy distribution.

(c) Suppose Z ~ Exp(\), where A > 0. Show that the distribution of W := [Z] (here [z] is
the smallest integer that is larger than or equal to z) is Geometric. Explicitly express the
parameter of the Geometric distribution in terms of A.

Suppose X has an exponential distribution with rate parameter A, i.e., the density of X is
given by
fo(z) =X 2> 0.

Now consider Y = [X]. Since the ceiling function returns the smallest integer that is larger
than or equal to X, Y is a discrete random variable. The PMF of Y can be expressed as

PY =yl =Ply—1<z<y|

Y
= / e Mdx
y—1

= e A1) [1 — e_/\]

= (1= (1=e) (1)

The geometric distribution has the PMF P[X = x| = (1 — p)* !p. Recognizing p =1 — e,
we now have the PMF of Y = [X] in the form of a geometric distribution with parameter
p=1— e *. Therefore, for X ~ Exp()), we have Y = [X] ~ Geo(1 — ™).

6. (Transformation of random variables) Suppose X ~ Uniform[—m,27]|. Find the p.d.f. of
Y = sin(X).

4 \J

Plot of y = sin(z).

Here we have a transformation of the form Y = ¢g(X) for g(x) = sin(z). While X takes values on
[—7,27], Y takes values on [—1,1]. A picture of the function g on [—m, 27| show us that we have
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to make a distinction in two cases, either y € [—1,0] or y € (0,1]. We want to use the formula
Z fx(x T Note that fx(xz) = 1/(3x) for x € [—7,27|. ¢'(x) = cos(z). Now we
g(x)=

9 (w)séO
separate in two cases.

(a) If y € (—1,0) then y has 4 preimages, we obtain

ZfX <>r

g(z
g'(z )#0

1 1 4
- ,(io 3T % cos(arcsin(y) 3%\/@.

(b) If y € (1,0) then y has 2 preimages, we obtain

1 1 2
B Z; 3 cos(arcsin(y)  3r./1 — y2

We shouldn’t be concerned by the cases y = —1,0,1 since Y is a continuous random variable and
we can modify the p.d.f at a finite number of points without any repercussion. We conclude that

4
—— ify e (~1,0),
T y € (—1,0)
Fw={_"2  i,e(0.1
Ev e
0 else.
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STAT201A PS3 code
2024-10-06

Qla

## Given values

n <- 30

p <- 0.05

k <- 0:30

## Binomial Calculation

## P(Bin(n,p) = k)

binom <- dbinom(k, n, p)

## Poisson Approximation

## P(Pois(np) = k)

pois <- dpois(k, n*p)

## Normal Approximation

## phi(k; np, np(1-p))

norm <- dnorm(k, n*p, sqrt(n*p*(1-p)))
#n*xabs (k/n - p) 3 ## normal approz is good if this wvalue %is small

## Entropy Approximation

## Ent(k; n, p)

## Note that f=k/n and the entropy approximation DNE for k=0 and k=30
f <- k/n

entr <- 1/(sqrt(2*pi*n*f*(1-f)))*exp(-n*(f*xlog(f/p) + (1-f)*Llog((1-£f)/(1-p))))
## Error terms

## Binomial - Poisson

pois_diff <- abs(binom - pois)

## Binomial - Normal

norm_diff <- abs(binom - norm)

## Binomial - Entropy

entr_diff <- abs(binom - entr)

cbind(pois_diff, norm_diff, entr_diff)

## pois_diff norm_diff entr_diff
## [1,] 8.491396e-03 6.288532¢-02 NaN
## [2,] 4.208071e-03 3.277279e-02 2.865137e-02
## [3,] 7.615308e-03 4.749378e-02 1.096979e-02
## [4,] 1.538910e-03 2.470382e-02 3.605901e-03
## [5,] 1.930467e-03 7.845186e-03 9.679277e-04
## [6,] 1.766931e-03 7.810490e-03 2.143120e-04
## [7,] 8.209923e-04 2.434696e-03 3.976033e-05
## [8,] 2.675847e-04 4.806307e-04 6.268669e-06
## [9,] 6.786047e-05 7.384760e-05 8.496632e-07
## [10,] 1.412178e-05 9.515639e-06 9.992828e-08
## [11,] 2.493920e-06 1.051824e-06 1.027277e-08
## [12,] 3.828577e-07 1.006534e-07 9.284106e-10
## [13,] 5.205110e-08 8.387780e-09 7.409012e-11

page 96 — back to Homework 3



##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

[14,]
[15,]
[16,]
[17,]
[18,]
[19,]
[20,]
[21,]
[22,]
[23,]
[24,]
[25,]
[26,]
[27,]
[28,]
[29,]
[30,]
[31,]

P WO RNWOOORFRLNWDDOOITOOOONNO

.362462e-09
.081188e-10
.252526e-11
.896636e-12
.133846e-13
.132796e-14
.060356e-15
.047997e-16
.177936e-17
.485157e-18
.686240e-20
.063980e-21
.632400e-22
.095617e-23
.164232e-24
.236956e-26
.226012e-27
.613006e-28

6.112552e-10
3.906518e-11
2.193133e-12
1.082138e-13
4.690382e-15
1.782894e-16
5.926516e-18
1.715570e-19
4.299675e-21
9.
1
2
3
3
2
1
5
9

257674e-23

.694769e-24
.601619e-26
.286255e-28
.326169e-30
.593504e-32
.462502e-34
.308539e-37
.313226e-40

.237982e-12
.287950e-13
.834906e-14
.107894e-16
.019292e-17
.574848e-18
.466524e-20
.675528e-21
.514869e-23
.063399e-24
.173290e-26
.818433e-28
.701307e-30
.132860e-32
.360840e-34
.203044e-36
.487914e-38

NaN

plot(0:30, pois_diff, type="1", col="red", ylim=c(0,0.08),

ylab="Absolute Difference (Binomial - Approximation)", xlab="k",

main="Binomial Approximations with n=30, p=0.05") ### poisson best here since p is small
lines(0:30, norm_diff, col="blue")

lines(0:30, entr_diff, col='"green")

legend("topright", legend=c("Poisson", "Normal", "Entropy"),

col=c("red", "blue", "green"), lty=c(1,1,1), cex=0.8)

Binomial Approximations with n=30, p=0.05
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Based on this table, it seems that the Poisson approximation is doing a good job of approximating the
Binomial distribution for small k. As k increases, we see that the error between the actual Binomial values
and the approximations gets closer and closer to zero for all three approximations. It is important to note
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here though that the true Binomial values are inherently small, so the approximation differences are small.
The Entropy approximation is not valid when n — k or k is very small, which is why we have NaN values for
k=0and k =n.

Q1b

## Relative Errors

pois_rel_error <- pois_diff / binom

norm_rel_error <- norm_diff / binom

entr_rel_error <- entr_diff / binom
cbind(pois_rel_error, norm_rel_error, entr_rel_error)

#i# pois_rel_error norm_rel_error entr_rel_error
# [1,] 3.956134e-02 0.29298210 NaN
#t  [2,] 1.241673e-02 0.09670249 0.084541418
#  [3,] 2.944403e-02 0.18363122 0.042413904
##  [4,] 1.211267e-02 0.19444231 0.028381831
## [5,] 4.276996e-02 0.17381198 0.021444669
#t [6,] 1.430363e-01 0.63227346 0.017348947
# [7,] 3.030614e-01 0.89874474 0.014677142
##  [8,] 5.473854e-01 0.98320354 0.012823520
#  [9,] 9.174123e-01 0.99835288 0.011486679
## [10,] 1.483921e+00 0.99990583 0.010500489
## [11,] 2.371035e+00 0.99999689 0.009766593
## [12,] 3.803725e+00 0.99999994 0.009223841
## [13,] 6.205587e+00 1.00000000 0.008833103
## [14,] 1.040885e+01 1.00000000 0.008569223
## [15,] 1.812660e+01 1.00000000 0.008416573
## [16,] 3.306925e+01 1.00000000 0.008366598
## [17,] 6.373157e+01 1.00000000 0.008416573
## [18,] 1.307750e+02 1.00000000 0.008569223
## [19,] 2.878913e+02 1.00000000 0.008833103
## [20,] 6.851169e+02 1.00000000 0.009223841
## [21,] 1.776666e+03 1.00000000 0.009766593
## [22,] 5.065349e+03 1.00000000 0.010500489
## [23,] 1.604244e+04 1.00000000 0.011486679
##t [24,] 5.715375e+04 1.00000000 0.012823520
## [25,] 2.327005e+05 1.00000000 0.014677142
## [26,] 1.105331e+06 1.00000000 0.017348947
## [27,] 6.300392e+06 1.00000000 0.021444669
## [28,] 4.489030e+07 1.00000000 0.028381831
## [29,] 4.264579e+08 1.00000000 0.042413904
## [30,] 6.077024e+09 1.00000000 0.084541418
## [31,] 1.731952e+11 1.00000000 NaN

plot(0:30, pois_rel_error, type="1", col="red", ylim=c(0,10),

ylab="Relative Error", xlab="k",

main="Binomial Approximations with n=30, p=0.05") ### poisson best here since p is small
lines(0:30, norm_rel_error, col="blue")

lines(0:30, entr_rel_error, col='"green")

legend("topright", legend=c("Poisson", "Normal", "Entropy"),

col=c("red", "blue", "green"), lty=c(1,1,1), cex=0.8)
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Binomial Approximations with n=30, p=0.05
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The relative error is pretty small for all three approximations until we hit about k£ = 5. Overall, the relative
Entropy error is best and is consistently small. The Poisson approximation holds when we look at absolute
difference, but it does not hold in the context of relative error, which is why see a spike in relative error for
Poisson. For the Normal relative error, it stays at about 1 for £ = 8 and beyond.

Qlc

## Repeat this process for n = 30 and p = 0.25
n <- 30

p <- 0.25

k <- 0:30

## Binomial Calculation

## P(Bin(n,p) = k)

binom2 <- dbinom(k, n, p)

## Poisson Approximation

## P(Pois(np) = k)

pois2 <- dpois(k, n*p)

## Normal Approximation

## phi(k; np, np(1-p))

norm2 <- dnorm(k, n*p, sqrt(n*p*(1-p)))

#n*xabs (k/n - p) 3 ## normal approz is good if this wvalue %is small

## Entropy Approximation

## Ent(k; n, p)

## Note that f=k/n and the entropy approximation DNE for k=0 and k=30

f2 <- k/n

entr2 <- 1/(sqrt(2*pi*n*f*(1-£)))*exp(-n*(f*log(f/p) + (1-f)*log((1-£)/(1-p))))
## Error terms

## Binomial - Poisson
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pois_diff2 <-
## Binomial -
norm_diff2 <-
## Binomial -
entr_diff2 <-

Normal

Entropy

abs(binom2 - pois2)
abs(binom2 - norm2)

abs(binom2 - entr2)

cbind(pois_diff2, norm_diff2, entr_diff2)

## pois_diff2 norm_diff2 entr_diff2
## [1,] 3.745023e-04 9.548001e-04 NaN
## [2,] 2.362312e-03 2.148155e-03 1.509758e-04
## [3,] 6.924030e-03 2.799400e-03 3.660942e-04
## [4,] 1.203529e-02 9.512783e-04 7.621502e-04
## [5,] 1.249612e-02 3.802816e-03 1.295693e-03
## [6,] 4.646120e-03 8.218080e-03 1.816929e-03
## [7,] 8.737971e-03 7.738469e-03 2.134882e-03
## [8,] 1.975184e-02 1.723586e-03 2.131727e-03
## [9,] 2.198059e-02 5.202900e-03 1.829934e-03
## [10,] 1.536699e-02 7.910260e-03 1.363042e-03
## [11,] 5.034870e-03 5.645154e-03 8.874438e-04
## [12,] 3.450864e-03 1.547615e-03 5.079555e-04
## [13,] 7.510803e-03 1.259906e-03 2.567309e-04
## [14,] 7.686768e-03 1.983581e-03 1.149514e-04
## [15,] 5.874565e-03 1.495681e-03 4.569911e-05
## [16,] 3.721567e-03 7.971628e-04 1.615209e-05
## [17,] 2.046132e-03 3.299491e-04 5.077679e-06
## [18,] 1.003255e-03 1.104228e-04 1.419153e-06
## [19,] 4.471579e-04 3.054174e-05 3.521686e-07
## [20,] 1.838540e-04 7.073812e-06 7.742043e-08
## [21,] 7.055401e-05 1.382503e-06 1.502894e-08
## [22,] 2.550318e-05 2.287576e-07 2.564804e-09
## [23,] 8.744228e-06 3.202122e-08 3.825936e-10
## [24,] 2.858378e-06 3.772368e-09 4.952123e-11
## [25,] 8.940745e-07 3.702489e-10 5.510502e-12
## [26,] 2.683049e-07 2.978268e-11 5.210901e-13
## [27,] 7.740240e-08 1.915055e-12 4.128901e-14
## [28,] 2.150111e-08 9.472807e-14 2.698550e-15
## [29,] 5.759247e-09 3.385663e-15 1.440258e-16
## [30,] 1.489461e-09 7.782203e-17 6.599519e-18
## [31,] 3.723653e-10 8.625467e-19 NaN

plot(0:30, pois_diff2, type="1", col="red", ylim=c(0,0.03),
ylab="Absolute Difference (Binomial - Approximation)", xlab="k",
main="Binomial Approximations with n=30, p=0.25")

lines(0:30, norm_diff2, col="blue")

lines(0:30, entr_diff2, col="green") ## entropy is best here
legend("topright", legend=c("Poisson", "Normal", "Entropy"),
col=c("red", "blue", "green"), lty=c(1,1,1), cex=0.8)
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Binomial Approximations with n=30, p=0.25
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## Relative Errors

pois_rel_error2 <- pois_diff2 / binom2

norm_rel_error2 <- norm_diff2 / binom2

entr_rel_error2 <- entr_diff2 / binom2
cbind(pois_rel_error2, norm_rel_error2, entr_rel_error2)

## pois_rel_error2 norm_rel_error2 entr_rel_error2
# [1,] 2.097088e+00 5.34656148 NaN
# [2,] 1.322816e+00 1.20289525 0.084541418
## [3,] 8.021846e-01 0.32432490 0.042413904
##  [4,] 4.481840e-01 0.03542480 0.028381831
## [5,] 2.068200e-01 0.06293940 0.021444669
#  [6,] 4.436348e-02 0.07847035 0.017348947
# [7,] 6.007286e-02 0.05320136 0.014677142
#t [8,] 1.188183e-01 0.01036833 0.012823520
## [9,] 1.379744e-01 0.03265913 0.011486679
## [10,] 1.183829e-01 0.06093839 0.010500489
## [11,] 5.541030e-02 0.06212666 0.009766593
# [12,] 6.266342e-02 0.02810277 0.009223841
## [13,] 2.584172e-01 0.04334841 0.008833103
## [14,] 5.730215e-01 0.14786901 0.008569223
## [15,] 1.081940e+00 0.27546514 0.008416573
## [16,] 1.927728e+00 0.41292112 0.008366598
## [17,] 3.391593e+00 0.54691136 0.008416573
## [18,] 6.057917e+00 0.66676229 0.008569223
## [19,] 1.121563e+01 0.76604869 0.008833103
## [20,] 2.190430e+01 0.84277120 0.009223841
## [21,] 4.584970e+01 0.89842291 0.009766593
## [22,] 1.044118e+02 0.93654972 0.010500489
## [23,] 2.625296e+02 0.96137894 0.011486679
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## [24,] 7.401769e+02 0.97685460 0.012823520
## [25,] 2.381354e+03 0.98615246 0.014677142
## [26,] 8.932828e+03 0.99157154 0.017348947
## [27,] 4.020123e+04 0.99464042 0.021444669
## [28,] 2.261365e+05 0.99629656 0.028381831
## [29,] 1.696030e+06 0.99703786 0.042413904
## [30,] 1.908035e+07 0.99691874 0.084541418
## [31,] 4.293080e+08 0.99444867 NaN

plot(0:30, pois_rel_error2, type="1", col="red", ylim=c(0,10),

ylab="Relative Error", xlab="k",

main="Binomial Approximations with n=30, p=0.25") ### poisson best here since p is small
lines(0:30, norm_rel_error2, col="blue")

lines(0:30, entr_rel_error2, col="green")

legend("topright", legend=c("Poisson", "Normal", "Entropy"),

col=c("red", "blue", "green"), lty=c(1,1,1), cex=0.8)

Binomial Approximations with n=30, p=0.25
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As shown in the above plot and tables, the entropy approximation is behaving best here with p = 0.25. The
absolute difference for entropy is consistently small and the overall relative errors are smaller for entropy when
compared to the other two approximations. At k = 7, we actually do see that the Normal approximation
has a smaller absolute difference than the Entropy approximation, but overall the Entropy approximations
behave the best. In terms of relative error, for small £ Normal has the worst relative error. For k greater
than 14, the Poisson relative error is the worst. The relative error for Entropy is consistently small.

Q1d

## Repeat this process for n = 30 and p = 0.5
n <- 30

p <- 0.5

k <- 0:30
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## Binomial Calculation
## P(Bin(n,p) = k)
binom3 <- dbinom(k, n, p)
## Poisson Approximation
## P(Pois(np) = k)

pois3 <- dpois(k, n*p)

## Normal Approximation
norm3 <- dnorm(k, n*p, sqrt(n*px(1-p)))

#n*abs (k/n - p) 3 ## normal approx is good if this value is small

## Entropy Approximation
## Ent(k; n, p)

## Note that f=k/n and the entropy approximation DNE for k=0 and k=30

f3 <- k/n

entr3 <- 1/(sqrt(2*pi*n*f*(1-£)))*exp(-n*(f*log(f/p) + (1-f)*log((1-£)/(1-p))))

## Error terms

## Binomial - Poisson
pois_diff3 <- abs(binom3 - pois3)
## Binomial - Normal
norm_diff3 <- abs(binom3 - norm3)

## Binomial - Entropy

entr_diff3 <- abs(binom3 - entr3)
cbind(pois_diff3, norm_diff3, entr_diff3)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

[1,]
[2,]
[3,]
[4,]
[5,]
[6,]
[7,]
[8,]
[9,]
[10,]
[11,]
[12,]
[13,]
[14,]
[15,]
[16,]
[17,]
[18,]
[19,]
[20,]
[21,]
[22,]
[23,]
[24,]
[25,]
[26,]
[27,]
[28,]
[29,]

WL ND NP, PR, EREEREDONWDWRNERNERE RO WD W

pois_diff3

.049710e-07
.560595e-06
.400889e-05
.682889e-04
.197398e-04
.803069e-03
.286474e-03
.474307e-03
.399334e-02
.908260e-02
.062915e-02
.541175e-02
.306141e-03
.592824e-02
.299955e-02
.202858e-02
.940180e-02
.679950e-02
.940133e-03
.871436e-03
.382870e-02
.653993e-02
.491120e-02
.138368e-02
.746798e-03
.847157e-03
.847483e-03
.592333e-03
.546561e-04

B ONOORRPRRRDJNODORLODIIINBDRER,R,ROONDOOREND

norm_diff3

.363042e-08
.800940e-07
.458370e-06
.085087e-06
.019336e-05
.266949e-05
.049484e-04
.475841e-04
.040396e-04
.094041e-04
.675016e-04
.416804e-04
.069874e-04
.012203e-05
.428050e-04
.208676e-03
.428050e-04
.012203e-05
.069874e-04
.416804e-04
.675016e-04
.094041e-04
.040396e-04
.475841e-04
.049484e-04
.266949e-05
.019336e-05
.085087e-06
.458370e-06
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entr_diff3
NaN

2.362060e-09
1.718295e-08
1.073165e-07
5.473300e-07
2.302536e-06
8.116402e-06
2.431322e-05
6.261344e-05
1.399145e-04
2.732849e-04
4.692688e-04
7.115337e-04
9.557687e-04
1.
1
1
9
7
4
2
1
6
2
8
2
5
1
1

139902e-03

.208676e-03
.139902e-03
.557687e-04
.115337e-04
.692688e-04
.732849e-04
.399145e-04
.261344e-05
.431322e-05
.116402e-06
.302536e-06
.473300e-07
.073165e-07
.718295e-08

3



## [30,] 4.422451e-04 2.800940e-07 2.362060e-09
## [31,] 2.211356e-04 4.363042e-08

plot(0:30, pois_diff3, type="1", col="red", ylim=c(0,0.05),

ylab="Absolute Difference (Binomial - Approximation)", xlab="k",
main="Binomial Approximations with n=30, p=0.5") ### poisson best here since p is small

lines(0:30, norm_diff3, col="blue")
lines(0:30, entr_diff3, col='"green")
legend("topright", legend=c("Poisson", "Normal", "Entropy"),
col=c("red", "blue", "green"), lty=c(1,1,1), cex=0.8)

Absolute Difference (Binomial — Approximation)

0.02 0.03 0.04 0.05

0.00 0.01

NaN

Binomial Approximations with n=30, p=0.5

Poisson
Normal
Entropy

pois_rel_error3 <- pois_diff3 / binom3
norm_rel_error3 <- norm_diff3 / binom3
entr_rel_error3 <- entr_diff3 / binom3
cbind(pois_rel_error3, norm_rel_error3, entr_rel_error3)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

[1,]
2,1]
(3,1
[4,]
(5,]
(6,1
7,1
(s,]
[9,]
[10,]
[11,]
[12,]
[13,]
[14,]

pois_rel_error3 norm_rel_error3 entr_rel_error3

3

P NWNR,NPNE NN

.274601e+02
.632301e+02
.394658e+01
.450710e+01
.428172e+01
.3585661e+01
.751365e+00
.469603e+00
.567132e+00
.432136e+00
.372398e-01
.029299e-01
.862884e-02
.428093e-01

4.
.002495e+01
.599799e+00
.609313e+00
.911860e-01
.968495e-01
.897814e-01
.784027e-02
.908647e-02
.210703e-03
.670746e-02
.457830e-02
.522833e-03
.597258e-04

WNPP, PO, N, WNP W

684781e+01

O OO O OO OO OO oo

(@]

NaN
.084541418
.042413904
.028381831
.021444669
.017348947
.014677142
.012823520
.011486679
.010500489
.009766593
.009223841
.008833103
.008569223
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## [15,] 2.436553e-01 6.222929e-03 0.008416573
## [16,] 2.909268e-01 8.366598e-03 0.008366598
## [17,] 2.909268e-01 6.222929e-03 0.008416573
## [18,] 2.402787e-01 3.597258e-04 0.008569223
## [19,] 1.233985e-01 7.522833e-03 0.008833103
## [20,] 9.575183e-02 1.457830e-02 0.009223841
## [21,] 4.942070e-01 1.670746e-02 0.009766593
## [22,] 1.241311e+00 8.210703e-03 0.010500489
## [23,] 2.735518e+00 1.908647e-02 0.011486679
## [24,] 6.004096e+00 7.784027e-02 0.012823520
## [25,] 1.400878e+01 1.897814e-01 0.014677142
## [26,] 3.652194e+01 3.968495e-01 0.017348947
## [27,] 1.115658e+02 7.911860e-01 0.021444669
## [28,] 4.211218e+02 1.609313e+00 0.028381831
## [29,] 2.109609e+03 3.599799e+00 0.042413904
## [30,] 1.582857e+04 1.002495e+01 0.084541418
## [31,] 2.374425e+05 4.684781e+01 NaN

plot(0:30, pois_rel_error3, type="1", col="red", ylim=c(0,10),

ylab="Relative Error", xlab="k",

main="Binomial Approximations with n=30, p=0.5") ### poisson best here since p is small
lines(0:30, norm_rel_error3, col="blue")

lines(0:30, entr_rel_error3, col="green")

legend("top", legend=c("Poisson", "Normal", "Entropy"),

col=c("red", "blue", "green"), lty=c(1,1,1), cex=0.8)

Binomial Approximations with n=30, p=0.5

o _|
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k

The absolute error for Poisson is the worst among our approximations. The Poisson absolute errors have a
multi-modal shape, indicating that the Poisson approximations are only suitable for select values of k. The
Normal and Entropy approximations are small overall. Within the range of k = 12,13,14, 16,17, 18 we see
that the Normal approximation is actually lower than Entropy in terms of absolute error. In this scenario,

page 105 — back to Homework
3



Normal is the best approximation. For relative errors, Entropy again is the best. The Entropy relative errors
are consistently small. From k = 7 to k = 23, the Normal relative errors are pretty small. Outside of this
range, the approximation isn’t appropriate. For £k = 12 and k£ = 19, the Poisson relative error is small, but
outside of this range, the approximation worsens.
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STAT201A: INTRODUCTION TO PROBABILITY AT AN ADVANCED LEVEL (FALL 2024)
UC BERKELEY

Problem Set 4

Due: 10:00pm, Tuesday, November 5, 2024 (via Gradescope)

1. (Order statistics) Let Xi,..., X, be ii.d. random variables with Exp()\) distribution, where
A >0, and let X(;) be the order statistics for i =1,...,n

(a) Find the distribution of X ).
b) Using the memoryless property, find the distribution of X; 1y — X(;) fori=1,...,n — 1.
(i+1) (%)
(c) Use the previous item to show that each X(;) has the same distribution as a sum of i indepen-
dent random variables.

(d) Calculate the expectation and the variance of X(;) fori=1,...,n.

(a) Since X(1y = minje(y, .y Xi, P(Xq) > 1) = P(X; > )" = e~ "M Hence X (1) is distributed as
an exponential random variable with parameter nA.

(b) For each 4, consider the n —i random variables Y}, = X — X(;)|x, > Xy The key observation is
that these random variables have exponential distributions, an application of the memoryless
property gives

P(Yk > t) = P(Xk — X(i) > t|Xk > X(z)) = P(Xk > t).
Moreover, X ;1) — X(;) corresponds to the minimum of the random variables Y} and hence
has exponential distribution with parameter (n — i)\.

(¢) Tt follows from our prveious argument that we can write X; = Zzzl Xy — X(k—1) where
X = 0. Hence we can describe X;) = > i1 Zr, where Zj is a collection of independent
random variables, Zj with exponential distribution with parameter (n — k + 1)A.

(d) Finally, using our previous formula we have that

1

E[X E[Zy] —_—
o= SE= X

Similarly for the variance,

i

1
Var ZV&I‘ Zk = m
=1

2. (Joint and conditional densities) Let X, Y be two random variables with the following proper-
ties. Y has density function fy(y) = 3y? for 0 < y < 1 and zero elsewhere. For 0 < y < 1, given
that Y = y, X has conditional density function fxy(x|y) = f/—;“ for 0 < x < y and zero elsewhere.

(a) Find the joint density function fx y(z,y) of X,Y. Be precise about the values (x,y) for which
your formula is valid. Check that the joint density function you find integrates to 1.
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(b) Find the conditional density function of Y, given X = x. Be precise about the values of = and
y for which the answer is valid. Identify the conditional distribution of Y by name.

(a) The joint density is given by

2x
fX,Y(xay) = fX|Y(m‘y)fY(y) = ?10<x<y : 3:9210<y<1 = 6z - 1O<ac<y<1-

L ry
//fX,Y(x,y)dmdyz/ / 6z dedy = 1.
RJR 0 0

(b) We first calculate the maringal density of X, fx(z) = [; fx,y(z,y)dy = fxl 6x dr = 6x(1 —
x) - lo<z<1. We can now calculate the conditional density of Y given X.

‘We have that

1
frix(ylz) = fX]L;((i’)y) =1, Le<u<t-

We conclude that the conditional distribution of Y given X is ¢(X, 1), uniform on the interval
(X,1).

3. (Model selection) Given data x1,...,x,, consider the problem of selecting between the two

models: B
Model One : Xi,..., X, thd N(0,1)

and
Model Two : Xi,...,X, i N(u,1) for an unknown .

To use probability to solve this problem, let us introduce an additional random variable © that
has the Bernoulli distribution with parameter 0.5. Assume that the conditional distribution of
Xi,..., X, given © = 0 is given by the following

Xi,.., Xn|©=0 "% N(0,1)

and
X1, ., Xn | 11,0=1 tid N, 1) andy\@zle(Oﬂj).

Here 7 is a parameter which you can treat as a fixed constant in this exercise.

(a) Using the formula

le,...,Xn|e:1 (T1,...,2n) = /le,...,Xnm,@l (w1,...,20) fu|@:1(/¢)dﬂ

prove that

—1(T1,... ) = exp| ———F—]exp| —— |,
X1,.,Xn|0=1 T1 n m m p 2 P 2 (1 + ’rl7'2)
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where Z is the mean of x1,...,z,.

le,...,Xrn\@):l(xla ceey xn) = /fX17...,Xn|u,®1 (xlv LR J}n) f,u\(a:l(,u)d,u
1 \" [ 1 & ) 1 1
( 27T> /OO eXp< 5 ;(:cz ) ) = exp( 272) I
e AN 2 2 >
< > /Oo exp —3 ; Tj — 2unT + nu exp <_27'2) du
1\ Iem 5\ [ 1 1\ .
— exp | —= x; exp| —=|(n+ = |p”—2nux ) ) du
2 2 P oo 2 T2
el I 5 2 n?r2z?
xp [ —= ~ Xp | ————
PN T L TP\ o1 1 nr)
( 1 )" 1 < > m%) < n?r2z? )
= exp | —=T—"exp| o |-
Vor ) 1+ nr2 2 2(1 4 nt?)

(b) Calculate the conditional distribution of © given X; = z1,..., X, = xy.
From Model One, we know

1 A\" die mf
le,...,Xn\GZO (71, Tn) = (M) exp (—2 .

By Bayes’ theorem,
]P)(@: 1 ‘ X1 :xl,...,Xn:xn)

B PO =1)fx, . x,0=1 (71, 2n)
P(O© =0)fx,, . xn0=0 (T1,- -, 7n) + P(O =1)fx, . x.0=1 (T1,.--,Tn)

B Ixi,xp0=1 (%15, Tp)
Ix1rXn0=0 (T15 -+ Tn) + fx; . xa0=1 (T15 -+ - Tn)

1 n2r2z>2
Vtnr? XP (2(1+m2))

- 1 2,272
1+ V14nr2 exp (2?117{:'2))

Similarly,
IP’(@:O]Xl::cl,...,Xn:xn):l—IP’(@:l|X1:a:1,...,Xn:xn)
1

- 1 2,272
1 g exp (522

(c) Intuitively, we would prefer Model Two over Model One when 7 is far from zero. Is this
intuition reflected in your conditional distribution from the previous part?
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Yes. When T is close to zero, the exponential term exp ( (llng)> is approximately 1, and
1 . .
the square root term i 8 small for large n, so (© = 1) remains small, meaning we favor

Model One. As & moves away from zero, the exponential term grows rapidly, dominating the
expression, so P(© = 1) increases and close to 1, favoring Model Two.

4. (Gamma-Poisson) Consider random variables ©, X, ..., X, such that
© ~ Gamma(a,A) and Xip,...,X, |0 =40 Lig Poisson(6)

(a) Find the conditional distribution of © given X; = x1, Xo = z9,..., X,, = p.
The conditional distribution of © given X1 = x1, Xo = x2,..., X, =z, is

f@\X1:ml,ngxg,...,Xn:xn(9) X fX17X27...,Xn‘9:9($1’ 2, ... 7xn)f@(9)

x (H fxieze(ﬂfi)> fe(0)
i=1
_ <H grie—0 1 {sz c NO}) <)(‘)9a 1 —>\61{9 > 0})

§2-zig—nld
—nil ZCZEN
[Tt e € Hod ( ]

o 9&71‘#222167("4'/\)91 {xz & No} 1{9 > 0}

ea—le—W{e > 0}

The above is in the form of a Gamma (a + ) z;,n + A) distribution. Therefore, the exact
distribution of © given X1 = 21, Xo = x2,..., X, =, is
(n+ Nt

foix1=21,Xo=a2,.... Xn=2n (0) = Wewrzzﬁle*(n“)el{e > 0},

where z; € Np.

(b) Find E[O | X1 = z1,..., X, = xy).
We know that for Y ~ Gamma(a, 8), E(Y) = % Since © | Xj =21, Xo=z9,..., X;y =2, ~
Gamma(a + Y xz;,n + \), we have

a+> x;

E[@]X1:x1,X2:a:2,...,Xn:xn]: .

(c) Write E[® | X; = x1,..., X, = z,] as a weighted linear combination of (z1 + -+ z,) /n and
the mean of the marginal distribution (i.e., prior mean) of © and argue that the weight of the
prior mean goes to zero as n — oo.

We can express E [0 | X = z1, Xo = z9,..., X, = z,,] as a weighted linear combination of the
sample mean T = % > iy x; and the prior mean §. Specifically, we have

o+ Z?:l Ti A n

«
E[@‘Xl:xl?XQ:x?v'”aXn:xn]: n—+ A _n—F}\'X—’_n—F)\'

Asn — oo, the weight on the prior mean, ﬁ, tends to 0, meaning the prior mean becomes less

influential. Conversely, the weight on the sample mean, ;7. tends to 1, meaning the sample
page 110 — back to Homework
4



mean dominates as n increases. Thus, as n — oo, the conditional expectation of © approaches
the sample mean Z, which aligns with the intuition that with more data, the influence of the
prior diminishes, and the posterior is dominated by the data.

5. (Law of total expectation) Let the joint probability mass function (p.m.f.) of (X,Y) be

on’
0, else.

1 1\
—(1- — forl<n<ooand 1<k < o0,
pxy(k,n) =< n+1 n+1

Find the p.m.f. py(n) of Y and the conditional p.m.f pxy (k|n).
Calculate E[Y].

Find the conditional expectation E[X|Y].

Use parts (a) and (c) to calculate E[X].

We start with a calculation.

k
w1 ( 1 = 1
=t n+1’ 2n
1 - J
B (n+1)2”;( a n—i—l)
1
_ 1 —_
mrnz =3
k 1 1 _
Now we have that pyy (kn) = pX;;En’)n) = (1 o 1)k ', We are able to recognize

this distributions.
Y ~ Geom(1/2) and X|y—, ~ Geom(1/(n + 1)).

We automatically conclude from (a) that E[Y] = 2.

Since X|y=n ~ Geom(1/(n + 1)) we automatically conclude that E[X|Y = n] =n+ 1. It
follows that E[X|Y] =Y + 1.

We finally have that E[X] =E[E[X|Y]]=E[Y +1] =E[Y]+1=3.

6. (Expected number of coin tosses) Consider a sequence of coin tosses.

(a)
(b)
()

On average, how many tosses of a fair coin does it take to see two heads in a row?
How many tosses on average to see the sequence HTH for the first time?

How does our answer changes if we have an unfair coin?
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(a)

Let X be the random variable describing the number of tosses needed to see tho heads in a
row. Let A be the even that the first toss is tails, B the event that the first two tosses are
heads and C' the event that the first toss is head and the second is tails. Observe that the
following equation is satisfied

E[X] = E[X|AJP(A) + E[X|B|P(B) + E[X|C]P(C).

Now the key observation is that E[X|A] = E[X]+ 1, E[X|B] = 2 and E[X|C] = E[X] + 2. We
can now solve the equation

We get E[X] = 6.

We repeat the previous argument. Let z represents the expected number of tosses to get
HTH, y the expected number of tosses to get HT H given that our last toss is H and z the
expected number of tosses to get HT H given that our last toss is HT. We then obtain the
following system of equations. a = “TH + HTl. b= HTl + % and finally ¢ = % + “TH Solving

the system of equations gives a = 10.

This is completly analogous to part (a) and (b) only that the probability to get H is now p.

Solving the equations we get that the expected number of tosses to get HH is lp# while the
expected number of tosses to get HT H is ;1);(?:2 2)
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STAT201A: INTRODUCTION TO PROBABILITY AT AN ADVANCED LEVEL (FALL 2024)
UC BERKELEY

Problem Set 5

Due: 10:00pm, Wednesday, November 20, 2024 (via Gradescope)
1. (Multivariate normal) Suppose Y ~ N, (11, X) in this problem.

(a) If a is any fixed vector in R™, show that

-
Yy —
@ =) w0 1).
Va'Xa
(b) If A is now a random vector that is independent of Y, then show again that
AT(Y —p)
VATYA
is distributed according to A(0,1) and that it is independent of A.

(c) Using the above result, show that if Y ~ N3 (0, I3), then

Yie'® 4 Y3 log | Vs

e + (log Y3)?

~ N(0,1).

(a) Suppose Y ~ Ny(u,Y) and a € R™. Then, since Y is Multivariate Normal,
a'VY ~ N (aT,u, aTZa>

=a'Y—a'p~ N <0, aTZ)a)

-
a (Y —
Il VBN
a’Ya
(b) We note that from part (a), when a is fixed, * \/(XTM) N(0,1). Hence, its moment generation
function is given by
-
e o 1,2
MaT(ny,) (t) = ]:E e Vv ol Za e eit
VaTSa
Now, when a is a random vector independent from Y, we have
T(Y )
M T (v— u VaTsa
TZ(J
T(Y )
= TE"‘ a
= 62

1,2
:eit

page 113 — back to Homework
5



(c) Let Y = (Y1,Y2,¥3)" ~ N3((0,0,0)7,1), then W = (Y1,Y2)" ~ Nu((0,0)7,1). Letting
a = (e¥3,log|Y3|) we see that aW. Then,
T(W —
aW—p | N(0,1)
a’Ya

a' W

Va'a
Yie¥s 4 Y log |Y3|

e + (105 13

—

~ N(0,1)

N(0,1).

2. (Marginally normal but not bivariate normal) Give an example of a 2 x 1 random vector

Y = (Y1, Y2)T with positive definite covariance matrix such that each Y; and Y3 is standard normal
but Y is not bivariate normal.
This was covered in lecture 19. See the first slide. Take Y3 ~4 N(0,1) and X a random variable
taking value —1 and 1 with probability 1/2 in each case. Then Y_ X7 is also a normal. Moreover the
covariance matrix of (Y7, Y2) is the identity matrix, so it is positive definite. However This random
vector is not bivariate normal since Y7 + Y3 is not normal. For instance, P(Y; + Y2 =0) = 1/2.

3. (Conditional distribution) Consider three random variables Y7, Y5 and Y3 that are independent
and standard normal. Let

X1 =Y, +7Ys3,
Xo=Y] +7Y3,
X3=Y +Yo.

Find the conditional distribution of X; given Xs = X3 = 0.
This problem is an application of the formulas for conditional normal random variables given

0 1 1
in lecture 19. Since Y ~y N((O,O,O)T,Ig), taking the matrix A = [1 0 1|, we have that
1 1 0

(X1, X2, X3)T = A(Y1,Y3,Y3)". Hence

(X1, Xa, X3) ~a N'((0,0,0)T, AI3AT).

Here AI;AT = . Using the formulas given in lecture we obtain for Z = X |x,=x,-0,

[EEC)
— N
DO =

E[Z] =0 and Var(Z) =2 — (1,1) G ;) B (1,7 =4

4. (More on jointly Gaussian distributions) Let X and Y be independent standard normal
variables.

(a) For a constant k, find P(X > kY).
(b) U =+vV3X+Y,and V=X —+/3Y, find P(U > kV).
(c) Find P(U? + V2 < 1).
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(d) Find the conditional distribution of X given V = v.

(a) We can use the radial symmetry of the joint distribution of two standard independent random
variables. Since the line © = ky goes through 0 it divides the plane in two sections where
the total density is the same. We automatically have P(X > kY) = 1/2. Alternatively,
X — kY ~N(0,1+k?) and P(X — kY >0) =1/2.

(b) Notice that U ~ N(0,4) and V ~ N(0,4). Furthermore, Cov(U,V) = Cov(v/3X +Y, X —
V/3Y). Using bilinearity properties of covariance this is v/3Var(X)—3Cov(X,Y)+Cov(Y, X)—
V3Var(Y) = —2Cou(X,Y) = 0. It follows that the joint (U,V) is uncorrelated bivariate

normal and that P(U > kV) = % by radial symmetry of uncorrelated bivariate normal.
Alternatively, you can check that U —kV ~ N(0, (v3—k)%2+(1—kv/3)?) and thus P(U —kV >
0) = 1.

(c) U,V ~ 1id N(0,4) so U/2,V/2 ~iid N(0,1). It follows that

(3) +(5) -2 (3):

Then ) )
1
P2 +vi<1)=rP(Y) £+ (YY) <lyoq et oq et
2 2 4
(d) Cov(X,V) =Cov(X,X —3Y) = Var(X). It follows that

Cov(X,V) Var(X) 11
Cormixv) = SD(X)SD(V) VVar(X)Var(V) Va2

Hence (X,V) ~ BVN(0,0,1,4, p= %) which implies that (X, %) ~ BVN(0,0,1,1,p = 1).
Hence X|(% = §) ~ N(p§,1—p?) = N(3v, }).

5. (Wigner’s surmise) Let X = (X X > with X7 and X» independent N'(0,1) and X3 another
3 A2
independent N(0,1/2). Let A1 and Ay be two eigenvalues of X and s = |\ — Ag|.

(a) Prove that s = /(X1 — X2)2 + 4X2.
(b) Find the density of s.

(c) Plot the density function of s. What do you observe respect to the eigenvalues of the random
matrix X7

Start by noticing that since all the entries of the random matrix are continuous, the probability of
the eigenvalues to be equal is 0.

(a) Since this is a 2 x 2 matrix an explicit calculation of the characteristic polynomial gives
p(t) =12 — (X1 + Xo)t + X1 X — X2

The roots are

\ X1+ Xo+ /(X1 + X2)2 —4X1 Xy + 4X72 and A\ Xy + Xo — /(X1 + X2)2 —4X1 X +4X73
1= 1= .

2 2

This gives s = /(X1 — X»)2 + 4X2.
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(b)

()

0.4

0.3 1

0.2 1

0.1

0.0 4

Figure 1: Wigner’s surmise

Notice that X; — Xo ~g N(0,2) and X3 ~4 N(0,2). Hence s ~q v2v/U2? + V2 where U
and V are independent standar normals. We get that s ~g v/2x(2), so s has the same
distribution as a reescaled by v/2 chi-2 distribution. The pdf of a chi-2 distribution is given by
p(x) = :Jce_’”Q/QIxZO. We conclude that the density function of s is given by p(s) = %652/41520.

Using python we obtain a nice graph. The observation is that while the probability of the
eigenvalues being far away decreases exponentially, the probability of them being arbitrarily
close goes to 0.

6. (1D Gaussian process) In this problem, you will implement a 1D Gaussian process that pre-
dicts outputs based on noisy training data. You will be given (noisy) 1D training data pairs
Dirain = {(x1,91), (z2,92)...}. Your task is to predict the output for a set of test queries
Diest = {7, 25,...}, conditioned on the training data. Implement two separate kernel functions,
namely the

e Squared Exponential Kernel: This is the kernel we discussed in class.

k (w5, 25) = of exp <—(ml J) ;\4( : j)>

where o is a scale factor for the kernel and M is a metric measuring distance between two
input vectors. In the 1D case, M = l% where [ is the length scale of the kernel.

Matérn Kernel: This kernel is used commonly in many machine learning applications.

1= v\ vr
e =155 (1) (F)

where v and [ are (positive) parameters of the kernel and r = |x; — ;|. K, is a modified bessel
function and I" is the gamma function. Good parameters settings for v are 0.25 - 3. You can
use scipy.special.kv() in Python or besselK() in R for implementing K.

Implement the squared exponential and Matérn kernel functions to compute similarity between
any pair of inputs. The output for each function should be a kernel matrix K.

Using your kernel functions, implement a Gaussion process regression function to predict the
posterior mean and variance of test data ™.
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(¢) The simulation function and plotting function are provided in the file ps5_GP_1D.ipynb. Vary
the kernel parameters (e.g., o,, and v) and observe how they affect the predictive mean and
variance. What impact do these parameters have on the smoothness and uncertainty of your
GP predictions?

Note: It’s recommended to use Python (Jupyter notebook) and submit a pdf file including
code, plots and comments. If you prefer using another coding language, please make sure the
data simulation is the same with the provided code.
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STAT201A: INTRODUCTION TO PROBABILITY AT AN ADVANCED LEVEL (FALL 2024)
UC BERKELEY

Problem Set 6

Due: 10:00pm, Friday, December 6, 2024 (via Gradescope)

1. (Branching process) A branching process starts with one individual, i.e. X (0) = 1, who repro-
duces according to the following principle:

# of children ‘
probability ‘

1
I
3

Individuals reproduce independently of each other and independently of the number of their sisters
and brothers. Determine

NI DN

0
T
6

(a) the probability that the population becomes extinct;
The probability generating function of the number of offspring is

1 15
Zspk—f—i-fs%-is

The probability of extinction is the smallest solution s to the equation

s = ¢(s).

Solving this equation, the probability of extinction is

g.
(b) the probability that the population has become extinct in the second generation, i.e. P(X(2) =
0);

(¢) the expected number of children given that there are no grandchildren.

E[X(1) | X(2) =0 =P(X(1) =1 X(2) =0)- 1+ P(X(1) =2 | X(2) =0)-2

_ PO =0 X0 S ) B =Y
P(X(2) = 0)
P(X(2) =0 X(1) =2) - P(X(1) =2)
* F(X(2) = 0) ’
0D Ged
72 72

6
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2. (Random walk) Random walk on {0,1,2,3}. Consider the Markov chain (X,) with transition
matrix

1 1
;200
= 0 = 0
P:21217
02 03
0055

started with Xy = 0. Define T} as min {n > 1: X,, = j}. Find explicitly the following distributions
and expectations.

(a)

The distribution of Xs.

1 1 1

2 17 1 0

L 1 5 1

pP2—1] 4 2 2
1911

1 7 1

o 1 1 1

i 4 2

P(X=0)=3,P(Xo=1)=P(Xy=2)=1,P(Xy=3)=0.

The limit distribution of X,, as n — oo.

By solving 7P = 7, we have m = (i, %, %, i) Since the MC has finite state space S and
it’s irreducible and aperiodic, in limiting distribution theorem, we know for i,j € 0,1, 2,3,

limy, 00 [P™]; ;= L Therefore the limit distribution of X, is also .

4
E[To]
Define hy = E [min{n > 0: X,, = 0} | Xo = k]. By one-step analysis, we derive the following
system of equations
ho = 0,
hi1 = %ho + %hg + 1,
ho = Shy + Shs + 1,
hy = 1hy + Lhy + 1.

Solving this system, we find

ho =0,
hy =6,
hy = 10,
hs =12.

Finally, the expected value of Tj is given by:

3
E[To) =1+ Y mP(X1=k) =
k=0

1
><0—|—§><6+1:4.

N | =

(d) E[T3]
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Define g = E [min{n > 0: X,, = 3} | Xo = k|]. Similar to (c), by one-step analysis, we derive
the following system of equations

9o =390+ 391+ 1,
g1 =390+ 392 +1,
92 =391+ 393 + 1,

g3 =0.
Solving this system, we find
9o =12,
g1 =10,
g2 = 6,
g3 =0.

Finally, since it definitely takes more than one step from 0 to 3,

E[T3] = E[min{n > 1: X,, = 3}|Xo = 0] = E[min{n > 0: X,, = 3}| X, = 0] = 12.

(e) P[T5 < Tp)
Define f, = P(T5 < Ty | X1 = k). We can derive the following system of equations by condi-
tional probabilities

fO :01
fi=%fo+ %/
fo=3f1+ 315,

J3=1
Solving this system, we find
fo=0,
fi=1,
f2 =12,
f3=1.

Finally,

P(T3<T1):P(T3<T1|X1:1)P(X1:1)+]P)(T3<T1‘X1:O)P(X1:O):1/6

3. (The average number of jobs) Jennifer is employed for one day at a time. When she is out of
work, she visits the job agency in the morning to see if there is work for that day. There is a job
for her with probability 1/2. If there is no work, she comes back the next day. When she has a
job, she will be called back to the same job for the next day with probability 2/3. When she is not
called back, she goes to the job agency again the next morning to look for a new job that she had
not had previously. Approximate the average number of jobs Jennifer works in a year.

There are multiple solutions to this problem. A short approximation consist in calculating the
average number of days on the same job and the average number of days without a job. Let X be
the random variable representing the number of days on a fixed job, X has geometric distribution
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with parameter 1/3. Let Y be a random variable representing the number of days without job, ¥
also has geometric distribution but starts at 0, with parameter 1/2. We get E[X] =3 and E[Y] = 1.
Hence E[X + Y] = 4. We obtain 365/4 ~ 91.25.

. (Rain or no rain) Suppose that at day 0 it is not raining. Then each new day, if it rained
yesterday, it will rain with probability 0.7; if it did not rain yesterday, it will rain with probability
0.2.

(a) Find the stationary distribution.
This is an irreducible finite state Markov chain. Hence an stationary distribution exists and
is unique. It is enough to find m, and m,, the stationary distribution for rain and not rain
respectively, by solving the system of equations —0.37,. + 0.2w, = 0, 0.37. — 0.27, = 0,
T + 7 = 1. We get (7, m,) = (2/5,3/5).

(b) How many days should we expect to wait to have rain for the first time?
Suppose we start from a non-rainy day. Then by considering non-rainy days as failures and
rainy days as successes. Then for X the random variable giving the first day with rain, X is
geometric with parameter 0.2 = 1/5. Hence E[z] = 5.

. (The game of roulette) A gambler plays the game of roulette, betting X dollars on red or black.
The gambler wins X dollars with probability p = 18/38 or loses the bet with probability ¢ = 20/38.
Suppose that the gambler starts the game with $500 in his pocket and upper limit on winnings is
$1000.

(a) Compute the probability of the gambler’s ruin for X = $10.

This problem can be solved by considering a Markov chain on {0,1,..., N}, where N is a
positive integer; 0 and N are absorbing boundaries; and for j =1,..., N — 1,

PXi1=j—-1[Xi=j]l=q=1-p,
PXi1=7+1] X =j]=p.

Let R denote the event that you hit the boundary 0 before hitting the boundary N. Define
uj :=P[R| Xo = j]. Then, up =1 and uy = 0, while for j =1,...,N —1,

uj =P[R | Xo = j]
=PR|Xo=j,X1=7—-1PX1=7—-1]Xo=]]
+PR|Xo=75X1=7+1PX1=75+1]|Xo=7]
=1 =p)uj1+puj.

Now, rewrite the left hand side as pp; + (1 — p)p; and rearrange terms to get

pluj+1 — pjl = (1 = p)uj — pj—1].
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Define r := 1;% and Aj := pj — pj—1. Then, we obtain
Ay =1/
As = 1Ay = r2A;
Ay =103 =71?Ay =13A

Ay =rN-1A;.

Further, for all j =1,..., N, we have Ay + Ao + -+ Aj = pj — po = ptj — 1, where we have
used the boundary condition in the last equality. Hence,

pi=14+A1+ Ao+ +Aj =1+ A1 +7 4+

Since puy = 0, we obtain Ay = —1/[14+7r+---+7r¥71] so

J :
- 1-= fr=1
R B I N BT W
Hi = Lbr+- N1 ) pd — N
TN if r £ 1.

Using N = 100 and Xy = 50 in (1) gives P[R | X = 50] ~ 0.995.

(b) Compute the probability of the gambler’s ruin for X = $100.
Similarly, this is equivalent to having N = 10 and Xy = 5 in the ruin problem, and we
immediately obtain P[R | Xo = 5] ~ 0.629.

(¢) Compare the above results with the probability of ruin in the case the gambler bets everything
on a single turn of the wheel.

If the gambler bets everything on a single turn of the wheel, the probability of ruin is ¢ =
1 —p =20/38 ~ 0.526. This probability is lower than either one of the cases above.
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STAT201A: INTRODUCTION TO PROBABILITY AT AN ADVANCED LEVEL (FALL 2024)
UC BERKELEY

Final Practice Problems

1. (True/False) Determine whether each of the following claims is true or false. If true, provide an
argument or proof; and if false, give a counterexample.
(a) Suppose X and Y are distributed Uniform in [0, 1]. Then, (X,Y) is uniform on [0, 1]2.

(b) For every random variable X, one can find a function g such that g(Z) has the same distribution
as X (here Z ~ U(0,1) ).

(c) For every random variable X, one can find a function h such that h(X) ~ N(0,1).
(d) For any random variables X and Y, Var[X| = Var[Var[X | Y]].
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2. (Short questions, no explanation is needed.) A random variable X has moment generating
function Mx (t) < oo for |t| < e for some € > 0.

Suppose Mx(t) = 3" What is the distribution of X? Explain.

Find Mx(t) for X = Wy + - - - + W), where the W}, are IID with P (W), > w) = e~ for w > 0.
Suppose X1, ..., X, are independent normal (/L,O‘Q) random variables. Let X,, := %Z?:l X;.
What is the distribution of >, (XZ- — Xn)2?

Suppose Ui, ..., U, are independent uniform [0, 1] variables. Determine a constant ¢, where
([T, U S e

Suppose X; for 1 < i < 6 is the number of dice showing face ¢ when a Poisson(u) number of
fair six-sided dice are rolled. Describe the joint distribution of (X1, ..., Xg).
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3. Suppose a coin (about which you know nothing) has been tossed n times (n is a large number) and
it shows heads 75% of the time. What probability should one assign to the coin showing heads in
the next toss? Answer this question using the following model. Let X1,..., X;,+1 be the results of
the n + 1 coin tosses (X; = 1 if the ith toss is heads and X; = 0 if tails). Assume that

X1,y Xn, Xpng1 |0 ~Ber(f) and 6 ~ Unif(0,1)

(a) Calculate the conditional density of 6 given X7 = x1,...,X,, = .
(b) Calculate the conditional distribution of X, 11 given X1 = z1,..., X,, = x.

(c) What happenstoP{X,,y1 =1| X1 =x1,...,X,, = z,} when nislarge and (z1+ -+ z,) /n =
0.757

125



4. Let Fy(z) := 15"  1(X; < x) be the empirical cdf for X,...,X,, assumed to be independent

T on

with common cdf F(z) := P (X; < z). Suppose z < y.

(a) Find a simple formula for Cov (F,(z), Fj,(y))-
(b) Find the conditional distribution of nF,(z) given nF,(y) = k for each 0 < k < n.

(c) Suppose F' is continuous. What is the distribution of F'(maxj<i<, X;) — F (minj<j<, X;) 7
Explain and evaluate the mean of this distribution.
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5. Let X1, Xs,... be ii.d. random variables with positive integer values (on the set {1,2,...}).
Assume that P(X; = 1) > 0. Let Z, = min{X;, Xo,..., X, }. Show that

lim P(Z, =1) = 1.

n_y 00

How does this change if the random variables are not identically distributed?
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6. Consider the following finite-state Markov chain.

Identify the transient states and identify each class of recurrent states.

Is the stationary distribution = = (71, ..., 75) unique in above Markov Chain? If it’s unique,
explain the reason and calculate the stationary distribution. If not, give at least two stationary
distributions.

(n

Find the n-step transition probabilities pij) =P{X, =j| Xo=1i} as a function of n. Give a

brief explanation of each.

i pfﬁ)
ii. pfy) + plfy)
(n)

ees . n
ii. limy, 00 Pi3
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7. You may use the approximation 2%(2") ~ \/217” and that >°°° L = o0 for a < 1.

n n=1 no
(a) Show that the one-dimensional symmetric random walk is recurrent.

(b) Using item (a), show the two-dimensional symmetric random walk is recurrent.
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. . on 9 8/n 0o n
8. You may use the approximation 971(7?) ~ v and that ) 7 % <oofor0<zx<1.

(a) Suppose that you have a one-dimensional biased random walk with bias p = % to the right.
Show that this random walk is transient.

(b) Consider a symmetric random walk on the infinite binary tree with root r (depicted below)
starting at r. Is it recurrent or transient?
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STAT 201A Introduction to Probability at an Advanced Level, Fall 2024

Final Exam Solutions
7:00-10:00pm, December 20, 2024

Your First Name: Your Last Name:
SIGN Your Name: Your SID Number:
Instructions:

(a) As soon as the exam starts, please write your student ID in the space provided at the top of every page!
(We will remove the staple when scanning your exam.)

(b) There are 8 double-sided sheets (15 numbered pages) on the exam. Notify a proctor immediately if a sheet
is missing.

(c) We will not grade anything outside of the space provided for a question (i.e., either a designated box if
it is provided, or otherwise the white space immediately below the question). Be sure to write your full
answer in the box or space provided! Scratch paper is provided on request; however, please bear in mind
that nothing you write on scratch paper will be graded!

(d) You may use, without proof, theorems and lemmas that were proved in lecture and/or in homework.

(e) You may consult two double-sided “cheat sheets” of notes. Apart from that, you may not look at any other
materials. Calculators, phones, computers, and other electronic devices are NOT permitted.

(f) You have 180 minutes: there are 7 questions on this exam worth a total of 120 points.

Problem | Points
1 14
2 30
3 16
4 11
5 18
6 16
7 15

(g) On questions 1-2, you need only give the answer in the format requested (e.g., True/False, an expression, a
statement.) An expression may simply be a number or an expression with a relevant variable in it. For short
answer questions, correct, clearly identified answers will receive full credit with no justification. Incorrect
answers may receive partial credit.

(h) On questions 3-7, you should give arguments, proofs or clear descriptions if requested. If there is a box,
you must use it for your answer; answers written outside the box may not be graded!
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Your SID Number:

Page 2

1. True/False [No justification; answer by shading the correct bubble. 2 points per correct answer; total of 14
points. No penalty for incorrect answers.)

Indicate which of the following statements is TRUE or FALSE by shading the appropriate bubble.

TRUE FALSE

O

O @& @ O
® O O @

O

The c.d.f. F'x of a random variable X is a random variable.

If X,, 2% X as n — oo, then lim,,_,, F, (z) = Fx(z) forall z € R, where F,, and Fx denote
the cumulative distribution functions of X,, and X, respectively.

If X and Y are normal random variables, then (X, Y") is bivariate normal.

If a square matrix M is positive definite, then there exists a square matrix A such that M = A2,

If X ~ Exp()) for some A > 0, then e~ is uniformly distributed over (0, 1).

Let Fn denote the empirical c.d.f. from X7, ..

Then, /nD,, = 0 as n — oo.

iid
X,

F and define D,, := sup, |Fy,(z) — F(z)|.

It k1, ko, k3 are valid kernels, then a function g defined as g(x, 2') = ky(x, 2" )ko(x, 2') — ks(z, 2)

is also a valid kernel.
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2. Short Answers [Answer is a single number or expression; write it in the box provided; no justification necessary.
Total of 30 points. No penalty for incorrect answers.)

(a) Let X ~ Uniform(0,2) and Y ~ Uniform(0, 3) be independent random variables. Find the p.d.f. fz(z) of 4pts

Z=X+Y.
2/6, 0<2<2,
1/3, 92 < 2<3,
fz(2) =
(5—2)/6, 3<z<b5,
0, otherwise.
[This follows from convolution: fz(z f Ix(@)fy(z — x)de = I{z € (0,5)} [ m;{légj 3) albd:r ]
(b) Let X, Y " Exp()) for some A > 0. Find P[X < 1| X +Y = 3.

%. [This was covered in Lab 8, Problem 2, which showed that the conditional distribution of X given
X +Y = ais uniform over [0, a]. ]

(©

Consider an urn containing IV balls, B of which are blue and R are red, with N = B + R. Suppose n < N
balls are sampled uniformly at random from the urn without replacement. What is the expected number of
color changes in the sequence of observed balls? (Note: If the observed sequence is RBBBRB forn = 6,
the number of color changes is 3.)

%. [Let X; denote the color of the ith ball. Then the number of color changes is given by

S I{X # Xl+1} By exchangeability, for all i = 1,...,n — 1, P[X; # X;11] = P[X; # Xo| =
ol so B[S X # Xon}] = 2oy

(d)

Alice and Bob are playing a game. Alice initially has 10 marbles and Bob has 7 marbles. In each round, a
fair coin is tossed. If it shows heads, then Bob gives 1 marble to Alice; if it shows tails, then Alice gives
1 marble to Bob. They keep playing until either one has no marble left, when the game ends. What is the
probability that Alice ends up winning all the marbles?

%g. [This problem is essentially the same as Problem 3 from Lab 9.]

(e)

2z, ifz €0,1],

Suppose X1, ..., X, are i.i.d. random variables with p.d.f. f(z) = )
0, otherwise.

Find the p.d.f. of the second order statistic X o).

2n(n — 1)a®(1 — 22" 2I{z € [0,1]}. [The c.d.f. corresponding to this problem is F/(x) = 22, so the
answer follows from the general formula fx , (z) = n(n—1)f(z)F(x)[1 - F(x)]"~2, which was covered
in Lecture 15. It should be straightforward to derive this formula from scratch using the approach discussed
in the lecture.]

®

Let fx,y(x,y) denote the joint density of random variables X and Y. For U = X?and V = X + Y, find
the joint density fy v (u,v) in terms of fx y.

sz |[fxy (Vv = V) + fxy (—vu v+ V) [ T{u € [0,00)}
[This follows from the fact that the transformation 7'(X,Y") = (U, V) is two-to-one and that | det(.J)| =

5 \F for each preimage.]
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(g) Suppose <§1> ~ Ny(ji, X)), where fi = <Z 1> and ¥ = G }) Find the mean and covariance of 3pts
2 2

P=(n)=0 ) ()
=)= (1 02

Cov[V] = (8 2)

[These results follow from the fact that if ¥ = AX, then E[Y] = AE[X] and Cov(Y) = A Cov(X)AT ]

1
(h) Let Xi,..., X, be asequence of i.i.d. random vectors in R? with E[X;] = (8) and Cov(X;) = <} %) 3pts
2

foralli € {1,...,n}. Find lim,, . PP L\/{X” < <Z> }, where a, b are real constants. Your answer

may be left as an integral.

7I'L\/g ffoo filoo e_%(x%_xlx2+x%)dxldx2~
[This follows from the multivariate CLT discussed in Lecture 20 and the p.d.f. of a bivariate normal distri-
bution with mean zero and covariance ¥ = Cov(X;), for which | det(3)| = 3 and the precision matrix is

1 -1
-1 _ 4
-4 1)

(i) Consider a discrete-time branching process { X,,, n € Ny} with Xy = 1 and the geometric offspring number 4pts
distribution P, = q(1 — q)* for k € Ny, where ¢ € (0, 1). Find the extinction probability.

{1, if g € [3,1),

. ifge(0,3).

g

[The probability generation function for this case is given by ¢(s) = >, _, q(1 — q)Fs* = ﬁ.
Letting s = ¢(s), we obtain (s — 1)[s(1 — ¢) — ¢] = 0, so the two roots are s = 1 and s = ¢/(1 — ¢). The
smaller non-negative root corresponds to the extinction probability.]
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. Tail bounds [Total of 16 points.]
Let Xi,..., X, be independent random variables taking values in {0, 2}, with P[X; = 0] = 3 and P[X; = 2] =
s.foralli=1,...,n. LetS, = X1 + -+ X,,.

(a) Find an upper bound on P[S,, > n] using Markov’s inequality. No justification required. 3pts

1

- 3 .1

(See Lecture 5) We have that E[X;] =0 - 1 +2- 1= 3. Hence E[S,,] = n/2. Markov’s inequality gives

E[S, 2 1
Pl5, > n) < Mo 12 _ 1
n n 2

(b) Find an upper bound on P[S,, > n] using Chebyshev’s inequality. No justification required. 4pts

3

n:

1
(See Lecture 5) We have that E[X?] == 0% - % +22. 7= Lo Var[X;] = E[X ]2 — E[X;]? = 2 and
— 3n

Var[S,,] = 4*. Chebyshev’s inequality gives
P[S, > n] = P[S,, — E[S,] > n — E[S,]]
< P|S, — E[S,]| = n/2]
Var[S,] 3n/4 3

S22 " wd w

(c) Find the moment generating function of S,,. No justification required. 4pts
n
Ms, (1) = (3 + )"
(See Lecture 7) Since the random variables X; are IID we have that Mg, (t) = Mx, (t)". It is then enough

to compute Mx, (t).
Mx, (t) = E[etXI]

3 1
_ 0?2 t2 *
=e 4+e 1
31y
—4+46.
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[Q3 continued on next page]




Your SID Number: Page 6

(d) Find the best upper bound on P[S,, > n] using the Chernoff bound. Write your final answer in the box 5pts
below, and justify your answer in the space provided.

(#)
5 ) -
(See Lecture 8) Chernoff’s bound gives
P[S, > n] < %gg Mg, (t)e ™.

So we need to minimize Mg, (t)e~'", to this end we compute the logarithmic derivative to simplify calcu-

lations.
d d 3 1
oI (Ms, ()e™) = = [” In (3 +5¢*) - m]
2ne?!
T3pe2
We want to solve gﬁf;tt —n =0,
2ne” 2t 2t
m =N < 26 = 3 + e
= =3
1
— ¢= B
2
d
We can check that pn In (Mg, (t)e~"™) is actually increasing, then @ gives a minima of Mg, (t)e™'".

D > < 3 f ]‘ Z t —in

= Msn(lnég))e_"'@
= (% + 262.@)716_”.#
3 3\n
B e 3—n/2
(1+3)
_ 3" e (\/5)”
AL 2 '
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4. A run of consecutive heads [Total of 11 points.]

A biased coin shows heads with probability p € (0,1). Let X,, denote the number of tosses until a run of n
consecutive heads is obtained.

(a) Find E[X7]. No justification required. 3pts

%. [This follows from the fact that X; ~ Geometric(p).]

(b) Forn > 2, find an equation involving E[X,,] and E[X,,_1]. No justification required. 4pts
E[X,] = L+ 1IE[X 1] [This result follows from E [X,,] = E[E [X,|X,—1]] = p(E[Xp—1] + 1) +
(1-— Ean 1] + 1+ E[X,,]), simplifying which yields the answer.]
(c) Find a closed-form expression for E[X,,] for n > 1. No justification required. 4pts
1 1- nl i_ nl L7171
[Parts (a) and (b) imply E[X,,] = > "}_; ik = 1i;1 -1=2 1f£1 =4
137
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5. Uniform distribution over a triangle [Total of 18 points.]
Consider a solid triangle A € R? with corners at (0, 0), (a,0), and (0,b), where a,b > 0, as shown in the figure
below. Suppose (X, Y') is uniformly distributed over A.

(a)

Y

b

0.A . >
0 a x

Find the joint density fx y (x,y). No justification required.

2J{(z,y) € A}. [Since (X,Y) is uniformly distributed over A, fx y should be a constant function
over A. The normalization constant is determined by [ fxy(z,y)dzdy = 1, yielding fxy(z,y) =

e H{(y) € A} = Z1{(x,y) € A}]

(b)

Find the marginal density fy (y). No justification required.
2(1—¥)1{0 < y < b}. [The line going through (a,0) and (0, b) is defined by the equation y = b — 2:1:, SO

fy(@) = [° fxy(z,y)de = I{0 < y < b} Jiy 2dr = 2 (a— $y)I{0 < y < b}, which simplifies
to the desired result.]

©

Find fx|y—,(z), the conditional density of X given Y = y. No justification required.
Given y € [0,b], fxjy—y(x) = ———~1{0 < 2 < a(1 — %)} [This result follows from combining the

a(1-%)
results from parts (a) and (b): fy|y—y(z) = fXJ;;((Z)’y) ]

(d)

ElY
Show E[X] = % (1 — [b]) . Justify your answer in the space provided.

EX)Y =y = [T afxy—y(z)dz = foa(k%)xa(llfg)da: = 3a(1 — ¥). So, by the Law of Total
b

Expectation, E[X] = E[E[X|Y]] = E[3a(1 — ¥)] = a(1 — @) where the last equality follows from
the linearity of expectation.

(e)

Find E[X] and E[Y]. No justification required.
E[X] =%
E[Y] =12

In part (d), we showed E[X] = $(1 — %). By symmetry, we have E[Y] = 3(1 - @) Solving this
coupled system of linear equations for E[X] and E[Y] yields the above results.

138 [exam continued on next page]
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. Brownian motion and bridge [Total of 16 points.]

A stochastic process { Xy, ¢t > 0} is said to have independent increments if, for every choice of times 0 < s; <
t1 < sp <ty < - < sy <ty < 00, {Xy;, — X, = 1,...,n} are jointly independent. Furthermore,
increments are called stationary if, for all 0 < s,t < 00, Xy — X has the same distribution as X; — X . Let
{B¢,t > 0} be a Brownian motion.

(a) Show that { B;,t > 0} has independent increments. Justify your answer in the space provided. 4pts

(See Lab 10) Because the distribution of the increments {B;, — Bs,,7 = 1,...,n} is a multivariate Gaus-
sian, it is enough to prove that their covariance is 0 to verify independence. Given a < b < ¢ < d we
want to compute Cov(B; — B., By — B,,) by using the bilinearity of the covariance and that the kernel of a
Brownian motion Cov(Bs, B;) = min(s, t) (See Lecture 21).

Cov(By — B., By — B,) = Cov(By, By) — Cov(By, B,) — Cov(B., By) + Cov(B,, By)
= min(d, b) — min(d, a) — min(c¢, b) + min(c, a)
=b—a—-b+a=0.
This proves that the increments are independent.

(b) Show that {B;,t > 0} has stationary increments. Justify your answer in the space provided. 3pts
(See Lab 10) Similarly to (a), we know that the increments are Gaussian with mean 0, it is then enough to
verify they have the same variance.

Var(Bt_s_S — BS) = COV(Bt+5 — BS, Bt+5 — BS)
Using part (a) witha = c = sand b = d = t + s we obtain
Var(By4s — Bs) = t.
Since the result doesn’t depend on s we conclude that the Brownian motion has stationary increments.

(c) Show that X; = B; — tBy is a Brownian bridge for ¢ € [0, 1]. Justify your answer in the space provided. 4pts

(See Labs 10 and 11) Since each X; is a linear combination of the B; we get that {X;,0 < ¢ < 1} isa
Gaussian process. Hence, it is enough to compute it’s kernel (i.e. Covariance function) to determine if it is
a Brownian bridge.

Cov(Xy, Xs) = Cov(By — tBy, Bs — sBy)
= Cov(By, Bs) — sCov(By, B1) — tCov(Bi, Bs) + stCov(By, By)
= min(t, s) — st — st + st = min(t, s) — st.
This is precisely the kernel of a Brownian bridge (See Lecture 21).

(d) Find the conditional density fg,|(B,,B,)=(x,y)(#) Of B3 given (B1, B2) = (z,y). No justification required. = Spts

1 z—y)?
T2~ (2) = = exp (= (Qy))-

(See Lecture 19 and Homework 5) Intuitively, By parts (a) and (b) the distribution of a Brownian motion
at time 3 will only depend on the information we have at time 2 and not at time 1, we should have that B3
has normal distribution centered at 0 with variance given the the distance between 2 and 3, hence A (y, 1).

Formally, by part (a), B3 — Bs is independent of B = By — By and of By = B} — By. since, con-
ditioned to (B1, B2) = (z,y), B3 = Bs — By + y we have that Bs given (B, By) = (z,y) is distributed
as Bs — By + y without any conditional. By part (b) we know that the distribution of B3 — By is the same
as By — By = By ~q N(0,1). We conclude that Bs given (By, By) = (z,y) is distributed as N (y, 1).

An alternative solution consists in using the conditional distribution formulas for multivariate Gaussians
given in lecture 19.
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. Random walk on an undirected binary tree [Tozal of 15 points.]
Consider a perfect rooted binary tree of depth d, which has n = 2¢ leaves. Let V denote the vertex set. Shown
below is an example for d = 3.

Root

level 3
1 2 3456 7 8

In this problem, we will analyze the following random walk {X,,, n 6 Np} on the tree: From a vertex v € V
of degree deg(v), one moves to a specific neighbor with probability 3 ( - (The degree of a vertex refers to the
number of edges attached to the vertex. The root has degree 2, while all other internal nodes have degree 3. All
leaves have degree 1.) Let P denote the transition probability matrix for this Markov chain.

(a) Show that m, = 2(;%7(11}22) for v € V is a stationary distribution of the Markov chain. 4pts
We need to prove both that 7P = 7 and that 7 is a probability measure. We start by verifying 7P = .
Each vertex v has deg(v) vertex neighborhood {v1, ..., Vgeg(v)}- Additionally the transition probabilities
P(v; »v) = deg( - We get

deg(v) deg(v)
deg(v) 1
P(v; = v) = :
; T, (Uz U) ; 2(2d+1 _ 2) deg(vi)
- d+1 _
— 2(2 2)
deg(v)

= —"— =T,.
2(2d+1 _ 2) v
Let’s verify it is a probability measure, i.e. we want to verify that ) | 7, = 1.

deg(v
zm—zfﬁﬁm

veV veV
2d+1 Z deg(v
UEV
1
~ it oy (2#{Edges})
1
- = . 9.(29444+...49¢
2T ) (2+44---+29
1
- = 4. (1424 ... 4941
2T ) (T+24---+277)
_ 1 429-1) )
20241 —2) 21 7
(b) Can there be other stationary distributions? Shade the correct bubble. O Yes . No 2pts

This finite state Markov chain is irreducible so a stationary distribution must be unique.

(c) Foru,v € V, does lim,,_; o0 [P"]4y exist? Shade the correct bubble. O Yes ‘ No 2pts
If YES, what does it converge to? If NO, leave the box blank.
This Markov chain has period 2, h 140 ’t have convergence.
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(d) Let A denote the set of 2¢ leaves and define Ty = min{n € Ny : X,, € A}. We wish to compute 7pts
E[T4 | Xo = Root], the expected time of hitting A given that the walk starts from the root. Let h; ; denote
the expected hitting time from level 4 to level j of the tree. Then, note that hg 4 = E[T4 | Xo = Root].
Find a system of equations relating h; ;, together with a suitable boundary condition that will allow us to
find hg 4. No justification required.

haq =0 )

hog=1+higq 2
1 2

hig=1+ ghi—l,d + §hi+1,da fori e {1,...,d—1} (3)

Let X; ; the random variable denoting the hitting time starting from level 4 to level d of the tree, then
E[X; 4] = hi 4. Let A the event in which we move a level up as a first move and B = A° the event in which
we move a level down as a first move. For ¢ < d Conditioning on A and B we have that

E[Xia] = E[X;a|AP(A) + E[X; 4| BIP(B).
Notice that E[X; 4|A] = E[X;_1 4] + 1 and E[X; 4| B] = E[X;41 4] + 1 Additionally, X;4 = 0, if ¢ = 0,
then P(A) = 0and P(B) = 1andif 0 < i < d, then P(A) = 1/3 and P(B) = 2/3 and X;4 = 0. We
obtain the equations (1), (2) and (3) respectively.

Intuitively, this system of equations allow us to calculate hg 4 since it provides a recurrent formula. We
have that h; g = 3h;41,4 — 2hip0q — 3 for 0 < ¢ < d — 2, since hgq=0. Let g; g = h;q + 3i — 3d, we
recover the relations g4 4 = 0, go,q = 91,4 — 2 and
9i,d = hiq+ 31— 3d

=3hiy1,4 — 2hit2q — 3+ 31— 3d

=3(hiy1,d4 +3( + 1) — 3d) — 2(hiyo,q + 3(1 +2) — 3d)

=39i+1,d — 20i+2.d-
This relation gives g4 4 = (2° — 1)gq_1.4 for 0 < i < d. In particular we have 90,d = (24 — 1)gd—1.4
and g1 4 = (247! — 1)gq_1.4. Using equation (2) gives (2¢ — 1)gg_14 = (2971 — 1)g4_14 — 2 and
ga—1.4 = —1/2972 Hence go g = —(2% — 1)/2%72 = 1/2972 — 4 and finally hg 4 = 3d — 4 + 1/2472.

141 [End of Exam!]




STAT201A: INTRODUCTION TO PROBABILITY AT AN ADVANCED LEVEL (FALL 2024)
UC BERKELEY

Practice Problems for the Midterm Exam

Note: You are not expected to solve all these problems in just 80 minutes.

1. Determine whether each of the following claims is true or false. Provide reasons in each case.

(a) It is often said that Bin(n,p) is well-approximated by the N(np,np(1 — p)) distribution.
When n = 3710 and p = 0.2, this would mean that Bin(3710,0.2) is well-approximated by
N(742,593.6). Therefore

P(Bin(3710,0.2) > 941)
P{N (742, 593.6) > 941}

should be close to 1 (you might note here that 941/3710 ~ 0.254 ).

(b) Suppose X has the Negative Binomial distribution with parameters k and p (for example,
X can be thought of as the distribution of the number of independent tosses of a coin with
probability of heads p required to get the k" head). Let Fx(-) denote the cdf of X. Then
Fx(X) has the uniform distribution on (0, 1).

(c) Suppose X has the geometric distribution with parameter p(X can be thought of as the number
of independent tosses of a coin with probability of heads p to get the first head). Then

P{X >35+4+15|X > 15} =P{X > 3.5}
(d) We can generate a random variable having any specified distribution by first generating a

uniformly distributed random variable on (0, 1) and then by applying an appropriate transfor-
mation to the uniform random variable.
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2. Short questions.

(a)

(f)
(2)

There are 8 parents, 24 students and 3 teachers in a room. If a person is selected at random,
what is the probability that it is a teacher or a student?

Find the probability to see 3 or less tails in 4 flips of a coin.
Suppose that A and B are independent, P(A) = 1/3 and P(B) = 1/7. Calculate P(A N B€).

Suppose a box has 4 red marbles and 3 black ones. We select 2 marbles. What is the probability
that second marble is red given that the first one is red?

Suppose the random variable X has possible values {1, 2,3} and probability mass function of
the form P(X = k) = ck. Find c. Find E[X]. Find Var(X).

Let X be a random variable with exponential distribution with parameter 2. Find
P(X >14| X > 4).

Russel has a biased coin for the which the probability of getting tails is an unknown p. He
decide to flip the coin n and writes the total number of times X he gets tails. How large should
n be in order to know with at least 0.95 certainty that the true p is within 0.1 of the estimate
X/n? What if he wants 0.99 certainty?

Let X and Y be independent random variables with exponential distribution with parameter
A, find P(X >Y).

Let X be a random variable with m.g.f. Mx(t) =e
of X.

Let X be a non-negative random variable with E[X] = 2 and E[X?] = 5. Use Markov’s
inequality to find an upper bound for P(X > 10). Use Chebyshev’s inequality to find an upper
for P(X > 10).

5 _ ¢3t Find a formula for the moments
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3. Consider the urn setting that we discussed in lecture. We have an urn with R red balls and N — R
white balls. We draw balls in sequence from the urn without replacement.

(a) Calculate P(F) where F' denotes the proposition that the first red ball is drawn before the
third white ball.

(b) Calculate P(E) where E denotes the proposition that, when we draw n balls, our sample
contains at least one red ball and at least two white balls.

144



4. Take random variables X1, X9, X3, ... such that each of them has mean p and variance 1.

(a) Suppose that X; are negatively correlated, i.e. Cov(X;, X;) < 0 for all 4, j. Set S, = X1 +---+
Xp. Show that (IMPORTANT: X; are not independent!)

() < 1 o

n

(b) Assume instead that X; are positively correlated, i.e. Cov(X;, X;) > 0 for all ¢ and j. Is (1)
still true? Either give a proof or provide a counterexample.
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5. (a) In Bernoulli (p) trials let V,, be the number of trials required to produce either n successes or
n failures, whichever comes first. Find the distribution of V.

(b) Suppose n balls are thrown independently at random into b boxes. Let X be the number of
boxes left empty. Find expressions for E[X] and Var(X).
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6. Suppose X and Y are independent random variables with X having the Exponential distribution
with rate parameter A and Y having the Standard Cauchy distribution. Let

(a) Find the joint density of U and V.
(b) Find the marginal densities of U and V.
(¢) Are U and V independent? Why or why not?
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STAT 201A Introduction to Probability at an Advanced Level, Fall 2024

Midterm Exam Solutions
3:40-5:00pm, October 17, 2024

Your First Name: Your Last Name:
SIGN Your Name: Your SID Number:
Instructions:

(a) As soon as the exam starts, please write your student ID in the space provided at the top of every page!

(b)

(c)

(d)
(e)

()

(g)

(h)

(We will remove the staple when scanning your exam.)

There are S5 double-sided sheets (10 numbered pages) on the exam. Notify a proctor immediately if a sheet
is missing.

We will not grade anything outside of the space provided for a question (i.e., either a designated box if
it is provided, or otherwise the white space immediately below the question). Be sure to write your full
answer in the box or space provided! Scratch paper is provided on request; however, please bear in mind
that nothing you write on scratch paper will be graded!

You may use, without proof, theorems and lemmas that were proved in lecture and/or in homework.

You may consult a single two-sided “cheat sheet” of notes. Apart from that, you may not look at any other
materials. Calculators, phones, computers, and other electronic devices are NOT permitted.

You have 80 minutes: there are 4 questions on this exam worth a total of 75 points.

Problem | Points
1 12
2 21
3 20
4 22

On questions 1-2, you need only give the answer in the format requested (e.g., True/False, an expression, a
statement.) An expression may simply be a number or an expression with a relevant variable in it. For short
answer questions, correct, clearly identified answers will receive full credit with no justification. Incorrect
answers may receive partial credit.

On questions 3-4, you should give arguments, proofs or clear descriptions if requested. If there is a box,
you must use it for your answer, answers written outside the box may not be graded!
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1. True/False [No justification; answer by shading the correct bubble. 2 points per answer; total of 12 points. No
penalty for incorrect answers.]

Indicate which of the following statements is TRUE or FALSE by shading the appropriate bubble.

In this problem, let (€2,.7,P) denote a probability space.

TRUE FALSE

O

O

If A; € # foralli € N, then N2, A4; € 7.

Let X be a non-negative random variable and ¢ > 0 some constant. Chebyshev’s inequality always
gives a stronger bound on P[X > ¢] than that given by Markov’s inequality.

If X1, X5, X3, ... are iid. random variables, then the sample average 22 := 1t garisfies

n

limy, 00 P[22 — E[X1]| < 0.01] = 1.

Let X1, X9, X3,... and X be random variables on the sample probability space, and suppose
X, 2% X as n — oo. Then, lim,, o X, (w) = X (w) forall w € Q.

Let X;, X5, X3,... and X be random variables on the sample probability space. It is possible to
have lim, o E[ (X;, — X)*] = 0 while X,, does not converge in distribution to X as n — oc.

For all random variables X with E[X] = p < oo, their moment generating functions Mx (t) satisfy

e < Mx(t) forall t € R.
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2. Short Answers [Answer is a single number or expression; write it in the box provided; no justification necessary.
Total of 21 points. No penalty for incorrect answers.)

(a) Given a probability space (€2, .%#,P), suppose 4, B €

what is P[A° N B€]?

%. [Note that P[A° N B¢] = P[(AU B)|]], w
Hence, P[(AU B)] =1 —P[(AUB)] = % ]

hile P[A U B|

= P[A] + P|

B -PAnB]=1+1-

F.IfP[A] = 1/2,P[B] = 1/2 and P[ANB] = 1/5,

U=
I
[SUFN

(b) Suppose X1, X2, X3, X4 are i.i.d. Normal(0, 1) random variables. Find P[X3 < X; < Xo | X4 > 0].

%. [This problem is similar to Q1(a) of Lab 2. Independence implies P[X3 < X7 < X5 | Xy > 0] =

P[X3 < X1 < X5], while exchangeability implies P[X3 < X; < Xo] =

1
31

(¢) Let X1, Xo,...

iy Bernoulli(%). To what does

LS I{X; < 3} converge almost surely as n — oo,
where I{X; < z} denote indicator random variables.

%. [SLLN implies £ >°" | I{X; < z} 2% F(z) as n — oo, where F denotes the c.d.f. of Bernoulli(%),
and F(1/2) = 2/3.]

(d) Let X ~ Poisson()\), where A > 0. Recall that E[X] = X and Var[X] = \. Find limy_,o P[X — X < V/)].
Write your answer as an integral; you do not need to evaluate it.

[

the CLT, together with the fact that a sum of independent Poisson random variables is also Poisson with

— e/ 2dz. |This follows from <=2 i> Normal

1
2

VA

rate given by the sum of individual rates. ]

(0,1) as n — oo, which in turn follows from

(e) Let X ~ Normal(0,1) and Y =

4 —2y?
fy(y) _ {me Y , Y 2 07

) = £ )| 252+ fx(-20)

0, y < 0.

3|X|. Find the pdf of Y.

1| — 4fx(2y)-]

(f) Consider the linear transformation (
1

in terms of fx y. (Hint: Note that 7

fov(u,v) = fXY(\[(U —v+1),

k-

(

1
1

.t () < s

NG

)-
(1

1

[\

U
v

11

2(1

)

X
Y

) T <[1)> Find the joint density fy,v (u, v)

is an orthogonal matrix.)

(u—}—v—l)). {MT: \}5(

)

0
1

)I-
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V2

(

U-V+1
U+V -1

_11 D and its inverse is Mg =

> . Also, note that | det Mp| = 1.}
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. Lazy random walk [7otal of 20 points.]

A particle takes a lazy random walk in an infinite 1-dimensional lattice Z := {..., -3, —2,—1,0,4+1,+2,+3, ...},
starting at the origin at time 0. Then, at every % second, it moves one step to the right with probability p, moves
one step to the left with probability ¢, or stays at the current position with probability 1 — p — q.

(a)

What is the conditional probability that the particle moves to the right given that it moves? No justification 3pts
required.

p
pt+q°

(b)

What is the expected waiting time (in seconds) until the particle makes its first move? No justification JIpts

required.
m. [The number of trials until the particle moves is distributed as Geometric(p + ¢), which has mean
1

1 . . l .. . . .
Pt One trial is made every ;- second, so the expected waiting time in seconds is wD) ]

(©

IMPORTANT: For the remainder of this problem, parts (c)-(f), assume p = % and ¢ = % where A\ and
 are positive constants, and consider the limit as n — oo. In this limit, let R (respectively, L) denote the
total number of right (respectively, left) steps taken in the time interval [0, ¢] measured in seconds.

What is the distribution of R + L? Write your final answer in the box below, and justify your answer in 6pts
the space provided.

Poisson(()\ + u)t). [First, note that this problem is a slight variant of the convergence result covered in
Lecture 11 (see pages 2-3 of Lecture 11 Notes). At every % second, the probability that the particle moves

isp+q = % Let Y,, denote the number of times the particle moves in 1 second, which has n trials.

Then, Y,, ~ Binomial(n, ’\ﬂ), and it was proved in lecture that Y, Ly~ Poisson(A + p) as n — oo.

Hence, in the time interval [0, ¢], the total number of moves is distributed as Poisson((\ + p)t).]

(d)

Are R and L independent? Shade the correct bubble. . Yes O No 2pts
[Recall Poissonization of the multinomial covered in Lecture 11 (pages 3-4).]

(e

What is the expected position (which is given by R — L) of the particle at time ¢? No justification required. 3pts

(A—p)t. [Again, by Poissonization of the multinomial (in fact, binomial in this case), R ~ Poisson(\t) and
L ~ Poisson(ut), and they are independent (independence is not needed to solve this problem, however).
In summary, E[R — L] = E[R] — E[L] = M\t — ut = (A — p)t.]

®

In the n — oo limit described above, let X denote the waiting time (in seconds) until the particle makes a 3pts
move to the right. What is the distribution of X ? No justification required.

X ~ Exp(A). [This follows from Application 1 (page 5) of Lecture 7.]

151 [exam continued on next page]
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. High-Dimensional Random Vectors [Total of 22 points.]
Let X = (X1,...,X,)and Y = (Y3,...,Y,) denote random vectors in {—1,+1}", where X,...,X,, and
Y1,...,Y, are i.i.d random variables with P[X; = —1] = IP’[X +1] = PlY; = —1] = P[Y; = +1] = § forall

i =1,...,n. The Buclidean norm || X|| is defined as V' X =vXi+-+ X2
(a) Find E[HX — Y||%]. No justification required. 3pts

2n. [E[(X: = Yi))?] = §(2)? = 2, so E[||X — V[?] = X0 B(X: - ¥0)?] = 2n.]

(b) Find Var[[| X — Y|?]. No justification required. 3pts
4n. [E[(Xl—Yz) ] = 4(2)* = 8. Hence, Var[(X; —Y;)%] = E[(X; - Y;)| - (E[(X;—Y;)%])? = 8—2% = 4.
By independence, Var[} "  (X; — Y;)?] = Y1, Var[(X; — Yi)?] = 4n. }

(c) Let 1 = E[|X — Y[?]. Find Hoeffding’s bound on P[ ||| X — Y||> — | > en], where ¢ > 0 is a constant. 4pts
No justification required.

2e=< /8 [(X; — Vi)? € {0,4}, so using (b; — a;)2 = (4 — 0)2 = 16 in Hoeffding’s inequality gives
IP)[ “|X . Y||2 _ ’u‘ > 671] < 267252712/(1671) — 2675271/8.]

(d) For any fixed non-zero vector 7 € R™ and any constant ¢ > 0, prove that P[|7- X| > ¢||]|] < 2¢~<"/2. 6prs
(Hint: Use Hoeffding’s inequality. Alternatively, you can also prove this result using the Chernoff’s in-
equality together with the identity (2}@, < 2k gfork=0,1,2,....)

Approach 1. Proof using Hoeffding’s inequality: Define Y; := v; X; and S,, := ¥ - X = > i, Y;, and note
that Y; are bounded random variables; more precisely, P[—v; < Y; < v;] = 1. Since E[Y;] = %(vi—vi) =0,
we have E[S,,] = 0. Hence, Hoeffding’s inequality implies that for any € > 0,
P[|S,| > €] < 226"/ Tita(200)*, )
Noting "7, (2v;)? = 4/|7]|* and setting € = c[|7]| in (2) yields the desired result.
Approach 2. Proof using Chernoff’s inequality: Chernoft’s inequality implies that for all £ > 0,
R - E[etﬁ'i}
. > < —.
P[U X > C”Um = " tell7l
Since X1, ..., X, are independent,
n n
¢ 1 (tv;)
_ tv; X1 =ty —tv1 ’L
_H]E[e ]—Hz(e +e HZ IR
i=1 =1 =1 k=0
where the last equality follows from the fact that odd terms cancel when you Taylor expand etvi + e~ tvi,
Now, the algebraic identity mentioned in the hint gives Y .-, “; v < S heo t;,; i = et™?/2 which
implies E[e!"X] < ’I71"/2 In summary, we have
P[g- X > c|7]|] < ext’ 17— tellell,
Now, define g(t) = e2?"171°=tcl¥l and note that ¢'(t) = g(¢)(t||5]|2 — ¢||7]]) = 0 att = t* := ¢/||7]| > 0
(since ¢ > 0). Furthermore, ¢"(t) = [|7|%g(t) + ¢'(t) > 0 att = t*, 1mply1ng that ¢(t) is mini-
mized at ¢ = ¢*. Finally, since g(t*) = —c2/2, we have P[7- X > ¢||7]|] < e /2. By symmetry,
Pv-X = a] = PV X = —a] foralla € R, so P[v- X < —¢[|d]|] = P[¢ - X > ¢||7]]]. Hence,
N yed 5 ] yed 5 _ 2/
P X| > c|all) = P[7- X > cl|ol]] + P[7- X < —¢[|d]]] = 2P[7- X > ¢]3]]] < 2¢7/2.
(e) Let © denote the angle between Fema W me s aeml A g] < 2e=¢"/2 where ¢ > 0 is an 6pts

arbitrary constant. [Hint: Use the XY = | X]| |Y] cos(©). Remark:

ThlS result ShOWS that the probablul._y UL LWU luuv:ll,l5u%1uuut rauuui veCtors in {—1, +1}n being Orthogonal
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quickly approaches 1 as n — o0.]

1

Approach 1. Proof using Law of total probability: Note that || X | = ||Y|| = /7, which implies X - Y =
n cos ©. Hence,

P[| cos ©| > €] :]P’[

—

|Xﬂ?\zs}:1@[| | > en

S|~

X.
= >  PIX-Y|zen|Y =P =1

ve{—1,+1}7
= > PIT-X|>ev/nl|d]] PY =)
ve{—1,+1}"
<272 N PV =4
ve{—-1,+1}"
_ 2675271/2

where the third line follows from the fact that ||7|| = \/n for any ¥ € {—1,+1}", while the fourth line
follows from the result from part (d).

Approach 2. Proof using Hoeffding’s inequality: Note that HX' | = ||)7H = /n, which implies X - Y =
ncos ©. Using Z; := X;Y; and 5, := XY = Z?:l X,;Y;, and note that Z; are bounded random variables;
more precisely, P[—1 < Z; < 1] = 1. Since E[Z;] = 0, we have E[S,,] = 0. Hence, Hoeffding’s inequality
implies that for any € > 0,

P[|S,| > en] < 22"/ Eita 2?, )
Noting >"7 | 22 = 4n yields the desired result.

153 [End of Exam!]




Stat 201A: Lab 1

Conceptual review
* What is a probability space? Give an example.
* What is a random variable X? How to characterize it?

e How are Bernoulli distributions related to binomial, geometric,
negative binomial ditributions?

Problem 1

(a) Three events A, B and C satisfy the following: A and B are inde-
pendent, C is a subset of B, C is disjoint from A, P(A) = 1/2,
IP(B) =1/4 and P(C) = 1/10. Compute P(AUBUQC).

(b) Suppose that a rapid COVID test is 99% accurate when some-
one doesn’t have COVID but only 9o% accurate if someone has
COVID. Suppose that 1% of the population has covid. If someone
tests positive, what is the probability they have covid?

154



Problem 2

Consider the experiment of drawing a point uniformly at random
from the unit interval [0,1]. Let Y be the first digit after the decimal
point of the chosen number.

(a) Explain why Y is discrete and find its probability mass function.

(b) Find the expectation of Y. Find the variance of Y.

Problem 3

We have a system that has two independent components. Both com-
ponents must function in order for the system to function. The first
component has 8 independent elements that each work with prob-
ability 0.95. If at least 6 of the elements are working then the first
component will function. The second component has 4 independent
elements that each work with probability 0.90. If at least 3 of the
elements are working then the second component will function.

a. What is the probability that the system functions?

b. Suppose the system is not functioning. Given that information,
what is the probability that the second component is not function-
ing?
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Problem 4 (Illustration of different distributions)

See lab1_code.Rmd

Problem 5 (Inverse Transform Sampling)

(a)

(©)

Prove that for any random variable X € IR, the random variable
Fi'(U) has the same distribution as X, where Fy! is the inverse
of the cumulative distribution function Fx of X, and U is uni-
form on [0, 1]. For simplicity, prove this for continuous random
variable X.

Consider an exponential distribution with rate parameter A =
0.5, where X ~ Exp(0.5). Using the inverse CDF method, sim-
ulate the exponential random variable X = Fy !(U), where U is
uniformly distributed on [0, 1].

Hint: The CDF for exponential distribution Exp(A) is

Fx(x)=1—e™ x>0

(Bonus) Simulate any distribution you like using inverse trans-
form sampling.
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Stat 201A, Fall 2024: Lab 2

Conceptual review
* When is a sequence of random varibales exchangeable?

* How are the Markov inequality, Chebyshev inequality and the
Weak LLN related?

Problem 1

(a) Let X1, Xp, X3 be independent Exp(A) distributed random vari-
ables. Find the probability that P(X; < X, < X3).

(b) We deal five cards, one by one, from a standard deck of 52.
y
(Dealing cards from a deck means sampling without replace-
g ping P
ment.)

(i) Find the probability that the second card is an ace and the
fourth card is a king.

(ii) Find the probability that the first and the fifth cards are
both spades.

(iif) Find the conditional probability that the second card is a
king given that the last two cards are both aces.
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Problem 2

Chebyshev’s inequality does not always give a better estimate than
Markov’s inequality. Let X be a random variable with E[X] = 2 and
Var(X) = 9. Find the values of t where Markov’s inequality gives a
better bound for P(X > t) than Chebyshev’s inequality.

Problem 3

A cereal company is performing a promotion, and they have put a
toy in each box of cereal they make. There are n different toys alto-
gether and each toy is equally likely to show up in any given box,
independently of the other boxes. Let T}, be the number of boxes we
need to buy in order to collect the complete set of n toys.

(a) The random variable Wj, is the number of boxes we need to open
to see a new toy after we have collected k distinct toys. What is
the distribution of W;? Prove that T, =1+ W1 +Wo + - - -+ W, _1.

E[Ty]
nln(n)

and lim,,_ Va:l[zT”] )

(b) Calculate the limits lim;, oo
(c) Use Chebyshev’s inequality to estimate P(|T,, — E[T,|| > en).

(d) Show that for any € > 0 we have

lim P(| I -1 >¢) =0,
n—oo \Inln(n)
This is a weak law of large numbers for the coupon collector’s

problem.

cnlog(n)
i

was not picked in the first cnlog(n) trials, prove that
P(T, > cnlog(n)) < n'=¢.

(e) Using the union bound for the event E that the i-th coupon
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Problem 4

Cantelli’s inequality provides a sharper one-sided bound compared
to Chebyshev’s inequality. Let X be a random variable with mean y
and variance ¢2, and let b > 0.

¢ Chebyshev’s inequality (one-sided):

N

P(X > u+b) s‘;—

¢ Cantelli’s inequality:
2
> < -
P(X>pu+b) < o

(a) Prove Cantelli’s inequality using Markov’s inequality.
Hint: Let Y = X — u. For any u > 0,
P(Y>Db)=P(Y+u>b+u) < P((Y+u)2 > (b+u)2).

Then use Markov’s inequality and find u that minimizes the
resulting bound.

(b) Cantelli’s inequality implies

202

PIX—ul2b) <

Comment of the value of this inequality compared to Cheby-
chev’s.
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Problem 5

The standard Cauchy distribution has the probability density func-
tion:

1
0= iy
(a) Does the Weak Law of Large Numbers hold for the Cauchy dis-
tribution? Explain why or why not.

(b) Simulate N samples from the standard Cauchy distribution for
N = 10%,10%,10% 10°. Calculate the sample averages as N in-
creases. How do the results relate to your explanation in (a)?
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Stat 201A, Fall 2024: Lab 3

Conceptual review

¢ How are the LLN and CLT different? How are they related?

¢ How are the exponential and gamma distributions related?

Problem 1

Noodle decide to improve her ability to calculate integrals. Each
day she flips a coin until she gets tails. If she gets tails in 3 or less
flips, she will calculate 10 integrals. If she needs strictly more than
3 flips to get tails she will calculate 60 integrals. After a full year
passes, estimate the probability that Noodle has solved more than
6000 integrals.
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Problem 2

Here is a limit theorem that one can prove without complicated tools.

Suppose that X1, Xy, ... are ii.d. random variables with distribution
Exp(1), and let M,, = max(Xy, ..., Xn). Show that for any x € R we
have

lim P(M, —In(n) < x) =exp(—e 7).

n—o0

This is called the Gumbel distribution.

Problem 3

Prove that the Exponential Distribution is the only distribution on
(0, 00) that satisfies:

P(X >a+bX>b)=P(X >a),Vab>0.
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Problem 4

In the lectures, we used the MGF to prove the following results re-

garding convergence in distribution.

Let G, ~ Geometric (%), where A > 0,andn = 1,2,3,....

Define X,, = % Asn — oo, X, converges in distribution to an
Exponential distribution with rate A:

Xy % Exp(A)

Let F,, ~ NB (r, %), where A > Oandn = 1,2,3,.... Define

X, = % Asn — oo, X, converges in distribution to a Gamma
distribution with shape r and rate A:

X, Gamma(r, A)

. Apply MGF and use similar strategies discussed in the lecture to

prove the following.
Let W, ~ Bin (n, %) represent a binomial random variable with

probability %, then W,, converges in distribution to a Poisson dis-
tribution with parameter A:

W, 2 Poi())

. Conduct simulations to show the convergence in distribution for

three results above.

Problem 5

The MGF of a random variable X is given by

1.

2.

3.

2
Find the value of c.

Find [E[X].

Find E[X?].
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Stat 201A, Fall 2024: Lab 4

Conceptual review

e If X and Y are independent continuous random variables with
probability density functions f and g. What is the probability
density function of X 4 Y?

e What is the statement of CLT for Binomail distribution?

¢ What does the Kullback-Leibler divergence describes?

Problem 1

1. Roll a fair die 720 times. Estimate the probability that we have
exactly 113 sixes.

2. You flip a fair coin 10,000 times. Approximate the probability that
the difference between the number of heads and number of tails is
at most 100.
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Problem 2

Suppose we have a biased coin and we do not know the true prob-
ability p that it lands on heads. How can we estimate p? Can we
estimate the error of our approximation?

Problem 3

Mitchell and Alex are competing together in a 2-mile relay race.
The time Mitchell takes to finish (in hours) is X ~ Unif(0,2) and
the time Alex takes to finish his mile (in hours) is continuous Y ~
Unif(0,1). Alex starts immediately after Mitchell finishes his mile,
and their performances are independent. What is the distribution of
Z = X +Y, the total time they take to finish the race?
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Problem 4

Suppose py, ..., Pk be a set of nonnegative numbers that sum to one.
Suppose fi, ..., fx are another set of nonnegative numbers that sum
to one. The Kullback-Leibler divergence between these two sets of
numbers is given by

KL(fllp) : Zﬁlogﬁ

1. Show that KL(f||p) is always nonnegative.
2. Show that KL(f||p) = 0 if and only if f; = p; foreachi=1,...,k.

3. Suppose that a coin toss can give three different results: H (heads),
T (tails) and edge (when the coin just stands on its edge). Suppose
that a person A assigns probabilities

pit =0499, pi=0499, p5 =0.002

to the three outcomes and another person B assigns probabilities

to the three outcomes. Suppose that an experiment is performed
by tossing the coin a bunch of times and this led to the observed

proportions
14 14 1
h=s5g h=35 =125

of the three outcomes. Calculate the Kullback-Leibler divergences
KL (f]|p*) and KL (£][p?). Which of KL (f||p*) and KL (f||p") is
smaller and does that seem reasonable?

Problem 5

Compare real binomial probabilities with entropy and normal ap-
proximations for n = 100 and p = 0.5 and p = 0.05, using plots to
visualize. You may play around with different n, p and k to compare.
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Stat 201A, Fall 2024: Lab 5

Conceptual review

* When to use Poisson approximation instead of normal approxima-
tion for a Binomial distribution?

e How are the binomial and multinomials distributions related?

Problem 1 (Poisson approximation)

1. A large company has a large fleet of cars. On average, there are 3
accidents each week. What is the probability that at most 2 acci-
dents happens next week?

2. Every evening Murdoc goes to the local casino. There is a 1%
chances that he wins $10000 and 99% he loses $100. Define a ran-
dom variable X representing the winning/losing outcome of
Murdoc after each day k. After a full year passes, estimate the
probability that Murdoc wins at least least $1000.
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Problem 2 (Exchangeability and multinomial distribution)

Suppose an urn contains 2 green, 3 red and 4 yellow balls. Six balls
are chosen with replacement. Find the probability that green ap-
peared 1 times, red 2 times, and yellow 3 times. Six balls are chosen
without replacement. Find the probability that the 3rd ball chosen is
green, given that the 5th ball chosen is yellow?

Problem 3 (Poisson distribution)

1. Let X ~ Geom(1/3) and Y ~ Poisson(2) be independent random
variables. Calculate P(X =Y + 2).

2. Suppose that X ~ Poisson (A). Find the probability IP (X is even).

3. Let X ~ Poisson (y). Compute E (HLX)

168

STAT 201A, FALL 2024: LAB5 2



STAT 201A, FALL 2024: LAB5 3

Problem 4

Let N ~ Poisson(A), and let X3, Xy, ... be a sequence of i.i.d. geomet-
ric random variables with parameter p, where X; ~ Geometric(p).
Define Sy = X3 + Xp + - - - + Xn. N is independent of the X; ’s.

1. Find the probability generating function (PGF) of Sy
Hint: Use the compounding theorem discussed in Lecture 11. The
PGF of a Poisson random variable N ~ Poisson(A) is given by

Gn(t) =MD
and the PGF of a geometric random variable X ~ Geometric(p) is

_ p 1
W= <1

2. Suppose p = 0.5, A = 1. Calculate the probability IP (S)y = 1).

3. (Bonus) Verify the PGF of a Poisson random variable and a geo-
metric random variable through explicit calculation.

Problem 5

Recall: When N ~ Poisson(A) and (Xj, ..., X) | N ~ Multinomial (N, p1, ..., Pm),
the joint distribution of Xj, ..., X;; follows independent Poisson dis-
tributions, i.e., X; ~ Poisson (p]-/\). We can show this result through

simulation.

1. Simulate 10,000 samples of the Poissonized Multinomial and Inde-
pendent Poisson distributions with A = 10 and p = (0.3,0.5,0.2).

2. Visualize and compare the joint distribution of X; and X, from
two data simulation procedure using either a 2D density plot or an
overlayed scatter plot.
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Stat 201A, Fall 2024: Lab 7

Conceptual review

* Given X and Y continuous random variables with joint density
fxy. How to compute E[g(X,Y)]?

* Given a univariate real function f, how to find the tangent equa-
tion to a point in the curve (x, f(x))? What is the equivalent if f is
bivariate?

¢ Explain the relations between geometric, exponential, gamma,
Poisson and beta distributions.

Problem 1

Suppose the joint density of X and Y is given by

Find the joint density of U = X +Y and V = X - Y.
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Problem 2

Let X and Y be independent Geom (p) random variables. Let V =
min(X,Y) and
0, if X<Y
W={1 if X=Y
2, if X>Y

Find the join probability mass function of V and W and show that V
and W are independent.

Problem 3

Let the random variables X, Y have joint density function

32—x)yif0<y<landy<x<2-—y,
flx,y) = .
0 otherwise.

1. Find the marginal density functions fx and fy .
2. Calculate the probability that X + Y < 1.

3. Find the joint density of (W, Z) = (XY, (1 - Y)X).
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Problem 4 (Joint density change Under a Non-invertible transfor-
mation)

In class, we looked at the Jacobian formula for calculating the joint
density of a transformed set of continuous random variables in terms
of the joint density of the original random variables. This formula
assumed that the transformation is invertible. However, the general
method based on change of variant principles works fine. This is
illustrated in the following example.

Suppose X and Y have joint density fx y. What is the joint density
of U=min(X,Y) and V = max(X,Y) ?
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Stat 201A, Fall 2024: Lab 8

Conceptual review

e Let X4, Xp,..., X, iid continuous random variables. What is the
density of X()?

* How do we get fy|x(y|x) from fx(x) and fxy(x,y)?

Problem 1

Let Uy, ..., U, be the values of n iid. U(0, 1) variables arranged in
increasing order. For 0 < x <y < 1, find a simple formula for:
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Problem 2

Let X and Y independent Exp(A) random variables. Describe the
distribution of X|xy.

Problem 3

Let X ~ Exp(A), and let Y ~ Poisson (X) (that is, given X = x, Y
follows the Poisson (x) distribution).

a. Find P(X € dx,Y =y).
b. Use (a) to find the unconditional distribution of Y.

c. Given Y =y, what is the conditional density of X?.
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Problem 4 (Beta, Gamma distribution)

1. Let B ~ Beta(a,b). Find the distribution of 1 — B.

2. Let X ~ Gamma(a,A) and Y ~ Gamma(b,A), with X and Y
independent. Is the ratio X/Y independent of the sum X +Y ?

3. The F-test is a very widely-used statistical test based on the
F(m,n) distribution, which is the distribution of ))((%l with X ~

Gamma ( %, % ,Y ~ Gamma (g, %) Find the distribution of
mV/(n+mV) for V.~ F(m,n).

4. LetUy,..., U, beiid. Unif(0,1). Find the mean and variance of
the j th order statistic Uj;).

Problem 5

Fred is waiting for a bus, but the waiting time X depends on some
environmental factor Y, which affects the bus schedule. The envi-
ronmental factor Y represents the bus delay rate and is not fixed but
follows a Gamma distribution. Specifically,

¢ Given the environmental factor Y = y, the waiting time X follows
an exponential distribution with rate y, meaning X | Y = y ~

Exp(y).
e The environmental factor Y itself is random and follows a Gamma

distribution, Y ~ Gamma(«, §), where « is the shape parameter
and f is the rate parameter.

Find the overall distribution of the waiting time X.
(Hint: [;° y*e~vdy = T4ty).
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Stat 201A, Fall 2024: Lab 9

Conceptual review

* Can you explain what E[X|Y] represents? Why do we have E [E[X|Y]] =
E[X]?

* What is the purpose of the loss function in risk minimization?

e What is Wald’s identity and the law of total variance?

Problem 1

Let X3, Xp,... beii.d. exponential random variables with param-
eter A. Let N be a Geom(p) random variable (with0 < p < 1)
independent of the X; random variables. Define the random sum
SN=X1+Xo+ -+ XN-

1. Find the mean E[Sy]

2. Find the probability distribution of Sy.
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Problem 2

1. Suppose that X is a discrete random variable. Find an estimator d
that minimizes the risk for the loss function 17x_.4.

2. Suppose that X is a continuous random variable. Prove that the
mean absolute error minimizer is given by the median.

3. What loss function should we use so that the estimator d that
minimizes the risk is given by the v quantile?

Problem 3

Jack and Jill are playing a game. Each will start with $ 5 and $ 10
respectively and play a game by making a series of $ 1 bets until one
of them loses all their money. For each bet they flip 1 fair coin. If it’s
tail, Jack wins. If it’s head, Jill wins.

1. Find the probability that Jack wins the game.

2. Find the expected length of the game.
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Problem 4 (Law of total variance)

We have a sample of 100 normally distributed payments, with mean=1000
dollars and standard deviation= 100 dollars. 10% of these payments

were made in error and should be refunded their full payment

amount. The other go% will have a refund amount of o dollars. What

is the variance of the refunded amount?

Problem 5

Let Y be the number of heads in # spins of a coin, whose probability
of heads is 6. Suppose our prior distribution for 6 is Uniform~ [0, 1],

1. Derive the posterior distributionof 6 | Y =y .

2. Show that the posterior mean of the posterior 8 | Y = y always
lies between the mean of the prior for 6 and the observed relative
frequency of heads y/n.

3. Show that the posterior variance of § | X is always less than the
prior variance.
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Stat 201A, Fall 2024: Lab 11

Conceptual review
¢ Review of Gaussian Process.

* Review of Branching Process.

Problem 1

1. Given n independently sampled values from an unknown distri-
bution. We believe this unknown distribution to have CDF F, how
do we use the Kolmogorov-Smirnov test?

2. How many points do we need to sample to get a 99% confidence
level of the empirical distribution to be at distant at most 0.01 to

the real distribution?

3. After sampling a big number of values from an unknown distribu-
tion, we guess it to be Exponential(0.1). The real distribution turns
out to be Exponential(0.05). Suppose that we sampled 100 values,
what is our confidence level for our guessed distribution? What if

we had sampled 10 000 values?

Problem 2

1. Suppose that {B;}; for t € [0,1] is a Brownian motion. What is the
distribution of the process X; = B; — tB1? what about Y; = €_tBEZt?

2. Suppose that {B;}; for t € [0,1] is a Brownian bridge. Let Z a
standard normal independent of {B;};. Show that X; = B; + tZ is
a Brownian motion.

179



STAT 201A, FALL 2024: LAB 11

Problem 3

The growth dynamics of pollen cells can be modeled by binary split-
ting as follows: After one unit of time, a cell either splits into two or
dies. The new cells develop according to the same law independently
of each other. The probabilities of dying and splitting are 0.46 and
0.54 , respectively.

1. Determine the maximal initial size of the population in order for
the probability of extinction to be at least 0.3.

2. What is the probability that the population is extinct after two
generations if the initial population is the maximal number ob-
tained in (a)?

Problem 4

The following model can be used to describe the number of women
(mothers and daughters) in a given area. The number of mothers is a
random variable X ~ Poisson(A). Independently of the others, every
mother gives birth to a Poisson(y)-distributed number of daughters.
Let Y be the total number of daughters and hence Z = X 4 Y be the
total number of women in the area.

1. Find the generating function of Z.

2. Compute E(Z) and Var(Z).
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Conceptual review

When is a Markov chain reducible, when is it irreducible? Give
examples.

Explain the difference between recurrent and transient Markov
chains.

How to find a hitting probability, a hitting time, a stationary distri-
bution?

Problem 1

Consider a two state Markov chain with all transition probabilities

equal to 1/2.

1.

2.

Is this Markov chain irreducible?

Is it recurrent? transient?

. Find the stationary distribution.

. Now suppose that for one state both transitions probabilities are

1/2 but for the other point the probability to stay is 1. Find all
hitting probabilities and the hitting times.
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Problem 2

Three cards labeled 1, 2, 3 are laid in a row in that order, forming the
three-digit number 123 when read from left to right. A swap consists
of picking two distinct cards, and then swapping them. After two
swaps, the cards form a new three-digit number n when read from
left to right.

1. Find the probability p that the digit in any given place will be the
same as it was at the start

2. Compute the expected value of n.

3. How to generalize this to x cards and y swaps?

Problem 3

Consider the Markov chain shown below

[ [0
=

1. Is this chain irreducible?

2. Find the stationary distribution for this chain.
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Problem 4

Consider the Markov chain shown below.

] [E

Assume Xy = 1, and let R be the first time that the chain returns to

state 1, i.e.,
R=min{n>1:X,=1}

Find E [R | X = 1]
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STAT201A: Introduction to Probability at an
Advanced Level

Fall 2024, UC Berkeley

Lecture 1
August 29, 2024
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Teaching Staff

Course admin stat201a-fa24@lists.berkeley.edu <+——|Please use this e-mail or
o-mail: Your e-mail must be sent from a Berkeley Ed Discussion for most
: e-mail address; otherwise, it will get rejected course-related correspondence.
automatically.
Instructor :

Prof. Yun S. Song (yss@berkeley.edu) <——— [Use this e-mail only if you need
to communicate with me about

Office Hours: TuTh 5-6pm, 304B Stanley a private matter.

GSI (20hr/week): Gabriel Ramirez Raposo (raposo@berkeley.edu)

Office Hours: M 4-5pm, Th 11:30am-12:30pm,
444 Evans

GSI (10hr/week):

U Fanding Zhou (zhoufd@berkeley.edu)
Office Hours: W 5-6pm, F 10-11am, 444 Evans
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Time and Place

Lecture:
> Time: 3:30-5:00pm
> Place: Stanley 106

Discussion Sections:

> M: 12-2pm (Evans 330) by Gabriel
> M: 2-4pm (Evans 340) by Gabriel
> M: 4-6pm (Evans 330) by Fanding

> You may attend any section, provided that there is space. Students registered
for the section will have priority.

186 8



Registration

» Available seats: 90
» Current enrollment size: 83

> More than 25 Concurrent Enrollment students have applied, but
unfortunately we can accommodate only 7 of you. Priority has been given to
graduate students.
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> We will use bCouses to share course material and post announcements.

Send us e-mail if you need

- https://bcourses.berkeley.edu/courses/1537153
to be added to this site.

> Prerequisites:
- Undergraduate probability (at the level of Berkeley’s Statistics 134)
- Multivariable calculus (at the level of Berkeley’'s Mathematics 53)

- Linear algebra (at the level of Berkeley’s Mathematics 54)

» Textbook:

- There is no required textbook for the class. You may use the following books as general

references:

® An Intermediate Course in Probability, 2nd edition by Allan Gut. (Available in bCourses)

® Stochastic Processes: Theory for Applications by Robert G. Gallager.
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Grading and Exams

> Grades will be determined as follows:
e Homework: 50% (there will be six homework assignments)
e Midterm: 20%
e Final: 30%
- NOTE: We will drop the lowest Homework score.

- No additional allowances will be made for late or missed homework: please do not
contact us about missed homework or late submissions.

> If you are on the waitlist (Concurrent Enrollment), you should submit Homework.

» Exams:

- Midterm is on Thursday, October 17, in class. No makeup exam will be offered.

- The Final is on Friday, December 20, 7-10 pm. We are unable to accommodate exam

conflicts.
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Course Policies

> It is required that you read the Course Policies detailed in bCourses.
> Please use Ed Discussion for all technical questions.
- Please read the Ed Discussion Etiquette section.
- Posting can be made anonymously to students, but will not be anonymous to instructors.

- Think first before posting a question! A few students tend to abuse Ed Discussion by
asking an excessive number of questions.

> For personal administrative questions, please either use a private post on Ed Discussion (visible
to course staff only) or send email to the course administrative account:

stat201a-fa24@lists.berkeley.edu
> Gradescope:
- All homework will be submitted through Gradescope.

> Please DO NOT post any material (lecture notes, discussion section material, exams, homework,

solutions, etc) on the internet.
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Collaboration

> You are welcome to work on homework problems in study groups of two to
four people.

> However, you must always write up the solutions on your own.

> Similarly, you may use books or online resources to help solve homework
problems, but you must always credit all such sources in your writeup and
you must never copy material verbatim.

> We believe that most students can distinguish between helping other
students and cheating.
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> Take longhand notes:

- You might think that it's old school, but taking longhand notes can facilitate your learning,
as supported by this study:

e The Pen Is Mightier Than the Keyboard: Advantages of Longhand Over Laptop Note
Taking
https://doi.org/10.1177/0956797614524581

- Please read this NPR article and listen to the accompanying 3-minute interview, if you
prefer a quick summary:

® https://www.npr.org/2016/04/17/474525392/attention-students-put-your-laptops-away

- We are confident that the pen is also mightier than screenshots! Taking longhand notes
will help you summarize and process the lectures better.
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Academic Dishonesty

> Three types of students | have encountered:

1. Students who value integrity more than their grades, and don’t cheat.
2. Students who acknowledge that cheating is wrong, but might give in to temptation.

3. Students who think that cheating is okay and that it would be to their disadvantage if
they did not cheat.

> We have a zero-tolerance policy for cheating. Consequences of cheating include: negative points for
the corresponding assignment, a failing grade in the class, and/or a referral to the Office of Student

Conduct.
> Your attention is drawn to Berkeley Honor Code:
- "As a member of the UC Berkeley community, | act with honesty, integrity, and respect for
others.”

> In particular, you should be aware that copying or sharing solutions, in whole or in part, from other

students in the class (or any other source without acknowledgment) constitutes cheating.
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Probability

> Why should you learn probability?

> Probability is ubiquitous.
» Mathematics
> Statistics (estimation and inference from data, prediction)
> Physics (statistical physics, quantum physics)
> Chemistry
» Climate Science
» Economics and Finance
> Biology (cellular dynamics, signaling, development, evolution)
> Medicine (clinical trials, drug discovery)

» Computer Science and Engineering
195 12



Probability

> Q: Why should computer scientist care about probability?

> A: Over the past decade, we have seen a tremendous increase in the use of probability theory in
computing. Examples include:

- Machine Learning and Artificial Intelligence
- Massive data analysis and data mining

- Randomized numerical linear algebra

- Graph theory

- Cryptography

- Program verification

- Packet routing in networks

- Design of ethernet cards

> These successful applications rely on algorithms that involve clever probabilistic and statistical ideas.
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Randomized Algorithms

Design (Randomized)

> Make random choices during execution.
- e.g., Monte Carlo
> Pros:

- Can be significantly more efficient than
the best deterministic solution

- Often simpler and easier to implement
> Cons:

- The answer may be incorrect with some
probability (acceptable if it's small)

- Efficiency is guaranteed only with some
probability.

Analysis (Probabilistic)

View the input as being randomly selected.

“Hard” instances may appear with relatively
small probability.

So, often “hard” problems are easy to solve in
practice.

Computational complexity concerns the
worst-case scenario. Some NP-hard problems
might admit algorithms that are extremely
efficient on almost all inputs.

197
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The Probabilistic Method

> Key Idea: Prove existence by showing that

P[a randomly chosen object has the required property] > 0

N
SN

U\
4_5%\2‘%’.2‘2\‘55\\5 Is it possible to color the
NSFX RN KT :
\4’7‘!}4"\‘&&4 edges of K|, using two K
S KK .
colors such that there exists
no monochromatic Ks?

\

A

S

—

7 WX
AN\ ' /D
ARAXEX

n k)
Theorem: If < > < 2<2> 1, then there exists a 2-coloring of K, (a complete graph with

n vertices) edges such that it contains no monochromatic K, subgraph.

15
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Card Shuffling

> Suppose you have a deck of n distinct cards. How many times do you need to shuffle the deck
for the cards to be "well mixed”?

> More precisely, you want the order of cards, (X, ..., X,), to be close to being uniformly distributed
over the space of n! permutations of the cards.

> Random-to-top: Pick any card and move it to the top of the deck. O(nlogn)

> Random transposition: Pick two cards uniformly at random and swap them.  O(nlogn)

> Riffle shuffle:
O(log n)

For n = 52, about 7 riffle shuffles are “sufficient.”
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Ising Model on a 2-dimensional Torus

Torus

>

Neighbors
A A - /—\
> (] [ ] [ (] [
[ ] [ ] [ ] [ J [ ]
If we actually fold \ ‘ Neighbors ) ) ) ) )
[ ] { ] [ ] [ ] [ ]

G

Discretized 2d Torus
http://pi.math.cornell.edu/~mec/Winter2009/Victor/part1.htm

e o o o o e o o o o e o o o o
red = a neighbor of black
e o o o o e o o o o e o o o o
e o o o o e o o o o e o o o o
e o o o o e o o o o e o o o o
e o o o o e o o o o e o o o o
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Ising Model on a 2-dimensional Torus

b oo+ - S, € {—1,+1},Vi
- - + - +
- -+ - 1 1
P(S) = exp|= D SS,
+ - + - |
- - 3+ - - Z(T) Ti,j neighbors

e Computing the normalization constant Z(T'), called the partition
function, is hard.

* How can we sample from P(S)?

e o o o o e o o o o e o o o o
red = a neighbor of black
[ ] [ J [} [ ] [} [ J [ ] [ J [ J [ ] [} [ ] [ J [ J (]
e o o o o e o o o o e o o o o
e o o o o e o o o o e o o o o
e o o o o e o o o o e o o o o
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Ising Model on a 2-dimensional Torus

Samples from the target distribution

Markov chain Monte Carlo T-10

1 1
P(S) = exp | = Z SiS;
Z(T) r i,j neighbors

9 &8 7 6 5 4 3 2 1 0

9 8 7 &6 5 4 3 2 10

01 2 3 4 5 & 7 & 9

01 2 3 4 5 & 7 &8 9

T=25

9 &8 7 6§ 5 4 3 2 10
9 &8 7 &6 5 4 3 2 1 0

01 23 4567 &9 19



Topics covered in this course

> Basic probability theory (review of undergraduate probability + some new material)
> Tail bounds: Markov, Chebyshev, Chernoff, Hoeffding
» Convergence of random variables

> Law of Large Numbers (weak and strong)

> Generating functions

> Proof of the central limit theorem

> Transformation of several random variables

> Multivariate Normal

> Gaussian processes

> Branching processes

> Poisson processes

» Markov chains
203 0



Homework #1

» Homework #1 is available on bCourses.

> Due in ~2 weeks: Friday, September 13, 2024, 10pm via Gradescope.
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Problem of the Day

y A B C

» & : 1
33 2|2 4 | 4

3|3 5|5 4 | 4

6 5 4

1. Bob chooses a die first.

2. Alice then chooses a die from the remaining two dice.

3. Each person rolls their die and the person with a higher number wins the round.
4. 11 rounds will be played with the same chosen dice.

5. Who has the advantage?
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Law of Large Numbers in action for p = 0.6

Red lines correspond to % = p £ 0.05.
Histogram for n = 50
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Law of Large Numbers in action for p = 0.6

Red lines correspond to % = p £ 0.05.
Histogram for n = 100
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Law of Large Numbers in action for p = 0.6

Red lines correspond to % = p £ 0.05.
Histogram for n = 250
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Law of Large Numbers in action for p = 0.6

Red lines correspond to % = p £ 0.05.
Histogram for n = 500
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Law of Large Numbers in action for p = 0.6

Red lines correspond to % = p £ 0.05.
Histogram for n = 1000
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Law of Large Numbers in action for p = 0.6

Red lines correspond to % = p £ 0.05.
Histogram for n = 2000
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Law of Large Numbers in action for p = 0.6

Red lines correspond to % = p £ 0.05.
Histogram for n = 5000
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STAT201A: INTRODUCTION TO PROBABILITY AT AN ADVANCED LEVEL (FALL 2024)
UC BERKELEY

Lecture 13

It is natural to consider multiple random variables and try to understand their interaction.
For instance, random vectors, random matrices, point processes, among many other interesting
objects. Here we focus on the case of bivariate jointly continuous random variables.

Definition: We say that (X,Y") are jointly continuous if there exist a joint probability
density function f on R? such that for every measurable B C R2.

P((X,Y) € B) ://Bf(a:,y)dazdy.

\ 7

A function f in R? defines a joint probability density function (also called joint density function)
if
f(z,y) >0 and // f(z,y)dzdy = 1.
R2

Example 1: (Uniform)
Let D be a subset of R? with finite non-zero area. A random point (X,Y) is uniformly dis-
tributed on D if it’s joint density is

Ip(z, Aoy, if (2,9) €D,
Froy (o,y) = LY. _ ) Ay

Area(D) 0, else.

Example 2: (Bivariate normal with correlation 0)

1 o

Take (X,Y’) with joint probability density function fxy(z,y) = 5-e™ 2
Remark: In the one dimensional case, for continuous random variable, the probability density
function represent the infinitesimal probability of a random variable to take a specific value.
More concretely,

P(X € [z,z+¢)) = fx(z)e

Similarly, in the two dimensional case, take a small neighborhood A containing a point (z,y),
we then have
]P((Xa Y) € A) ~ fX,Y(a::y)Area(A)'

Question: Given a joint density for (X,Y’), how can one recover the marginal density for X
or Y?

Proposition: Let (X,Y’) be jointly continuous with joint density fxy and let fx and
fy be the densities for X and Y respectively. Then

fX(z):/RfX,Y(x,y)dy,
fY(y):/]RfX,Y(x,y)d:E.
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Proof. We will provide a proof for fx, the other case being analogous.

P(X <t) =P(X <t,—00o<Y <00)

/ | txrtena

Differentiating both sides of the identity gives the statment of the proposition. O

d
Remark: We can have X < W and Y £ Z but (X,Y) # (W, Z). This is precisely why it is
interesting to study joint distributions.

Example 3: Let X, W,V be independent Exp(1) random variables and Z be another indepen-
dent Gamma(2,1). Let Y = X + V. It follows from previous lectures that YV i Gamma(2, 1).
We then have X £ W and V £ Z. However, we always have X <Y, while the event W>Z7 is

d
possible with positive probability, so (X,Y) # (W, Z).

Question: Given a transformation 7" and the joint density of (X,Y’), what is the joint density
of W, Z)=T(X,Y)?

Polar coordinates.
Let (R, ©) be polar coordinates for the point (X,Y’), then

fre(r,0) =rfxy(rcos(d),rsin(0)).

Proof. On one hand, P(r < R <r+6,0 <O < 0+¢)~ fre(r,0)de. On the other hand, by
describing this event using (X,Y") (Draw a picture) we have that

Pr<R<r+660<0<0+¢c)=P((X,Y)€A)
~ fx,y(z,y)Area(A)
= fx,y(rcos(#),rsin(f)) rée.
Putting together both approximations we conclude. O

Example 4: As an application of this result for (X, Y’) bivariate normal with correlation 0 (See
example 2) we get that

2
2

,
fro(r0) = 5

This joint density doesn’t depend on #: the normal distribution is radially symmetric.

Definition: We say that a function 7 : R? — R? is a linear transformation if

() ) e

Here Mr is a 2 x 2 matrix and Pr is a 2 x 1 vector.

. . AN r—y (1 -1 . (0
Example 4: Consider T (y) = <sc oyt 1). Here Mt = <1 1 > while Pr = <1> .
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Some properties: (Without proof)
1. T is invertible if and only if Mr is invertible.
2. if P is a parallelogram in R?, then T'(P) is also a parallelogram.

3. For every parallelogram P, Area(T(P)) = Area(P) |det(Mr)|.

Remark: Property 1 is giving us a criteria to determine when a linear transformation is in-
vertible (for example, we can calculate the determinant of the 2 x 2 matrix My). Property 2 is
saying that linear transformation are well behaved from a geometric point of view. Property 3
allow us to understand how areas are deformed through linear transformations.

We want understand how joint distributions change after applying linear transformations. Given
Ixy, what is frxy)?

Invertible linear transformations:
Given T a linear transformation with inverse S, let (W,Z) = T(X,Y). Let P be a small
parallelogram containing a point (w, z). On one hand,

P((W,Z2) € P) = fw,z(w, z) Area(P).
Similarly,

P((W, Z) € P) = P(T(X,Y) € P)
—B((X,Y) € S(P)
~ fxy(z,y) Area(S(P))
= fxy(S(w,2)) Area(P) | det(Mg)|

We conclude that for invertible transformations T,
fwz(w, 2) = fxy(S(w, 2)) | det(Ms)|.

Rotations:
Given (X,Y) in the plane, we may be interested in the distribution we obtain after rotation by
angle of 6, of the new coordinates (Xpy, Yy) in counterclockwise direction. This is given by the

linear transformation Tp.
AR cos(d) —sin(0)\ [z
\y) ~ \sin(0) cos(®)) \y)"

Using our previous result in this situation provides the following

Ixyv,(w, 2) = fxy(wcos(f) + zsin(f), z cos(d) — wsin(h)).

Sums and differences:
Say we would like to obtain the joint density for (X + Y, X —Y). This can be obtained using

the linear transformation
T z\ (1 1 x
y) \1 —-1)\y

Again, a direct application of our result for invertible linear transformations provides

w+z w—Z)

1
fX+Y,X—Y(waz)—§fX,Y< 5

3
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Orthogonal transformations:

Definition: An orthogonal transformation T is linear transformation that preserves the

inner product. So it satisfies
(U,u) = (T0, T).

This definition is quite abstract, so we will give a few facts to get to know them better.

1. It preserves Euclidean norm, ||7|| = ||T%]|. Orthogonal transformations preserve angles,
lengths and areas.

2. For T an orthogonal transformation, Pr = 0 and My is an orthogonal matrix, so ML =
Mzt In particular det(Mr) = +1.

3. In two dimensions, orthogonal transformations are rotations, reflections or composition of
rotation and reflections.

0 -1 1 0
Example 6: If (X,Y) has radial symmetry, so the density function fxy (z,y) is of the form

g(z? +y?), then the joint density is unchanged under orthogonal transformation. For instance,

let (X,Y") be two independent standard normal random variables. Then <X—j§Y, X—\E[) are also

Example 5: The following are reflections, <1 0 > or (O 1>.

two independent normal random variables.
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Radial Basis Function Kernel

1
k(x,z") :02exp{ — 2—62\:8—:1:’]2}

RBF with £ = 2.0
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Radial Basis Function Kernel

1
k(x,z") :02exp{ — —|r—=x ]2}

2
RBF with £ = 0.5 2¢
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Matérn Kernel

k(ﬂﬁ,x’) = 02 exp{ _ _|$ . $/|}

Matérn with v =0.5, ¢ =1, 02 =1

\ ‘M ,’ wnl‘:,
1 !*sz*j. b Jl ' ';L:‘!ﬂ"\‘ ' ~|
L0 wl; EJ ) ’qﬂ*rm;*'fw"ftw

) w v\l\ ‘
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Matérn Kernel

3
k(z,a") = 02<1 + %\az - x’|) exp{ — i\x - x’\}
Matérn with v =1.5, ¢ = /3, 0% =1
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Matérn Kernel

V5 5 V5
k(z,2") = 02<1+ 7]:c—x’] + @|x—m’|2> exp{ — 7|$—$/|}

Matérn with v =2.5, ¢ = /5, 0% =1




Brownian Motion Kernel

k(x,z") = min{z, '}

Brownian Motion
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Brownian Bridge Kernel

k(z,z') = min{z, 2’} — z2’

Brownian Bridge

1.5 1

0.0 0.2 0.4 0.6 0.8 1.0
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Ornstein-Uhlenbeck Kernel

2
k(z,x') = %gexp{ — %|x—az’|}

Ornstein-Uhlenbeck with ¢ = 1.0, 62 = 1.0

o
'N”';"i i * M“ ‘p,

Wﬁ!ﬁ
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Ornstein-Uhlenbeck Kernel

2
1
k(z,x') = a—gexp{ — —|x—x’|}

2

Ornstein-Uhlenbeck with ¢ = 4.0, 62 = 1.0

14

{ Lo f-; .‘-r "f .‘ :
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Linear Kernel

k(z,2)) =0t +oi(x —c)(z' —¢)

Linear with 02 =0.0, 03 =1.0, <=0
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Linear Kernel

k(z,2)) =0t +oi(x —c)(z' —¢)

Linear with 02 =1.0, 03 =1.0, <=0
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Observed data =

[[1,-1],
[2,0.4],
[6,0.3],
[7,0.8],
[9,-0.5]]

:) i

Prediction of Y(x) for

a new point x¢

ot
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Posterior Distribution

Observed data = N — 42 - _ ! 2
Oeser k(x,x') =0 eXp{ Ve lx — 2’| }
[2,0.4], RBF prior with / = 1.0

[6,0.3],

[710°8]l 2‘

[9,-0.5]]

Predicted mean = 1.96 SD
o
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Posterior Distribution

Observed data = N 2 - _ /2
Oeser k(x,x') =0 eXp{ Ve lx — 2’ }
[2,0.4], RBF prior with ¢ = 2.0
(6,03, 15l
[7,0.8],
[9,-0.5]  L07
Q05
2 0.0
_H
€ —0.5
LY
%—1.5
a
—2.01
25
0 P 4 6 8 10
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Posterior Distribution

oo k(z,2") = o eXP{ - 2—€2|3C - $/’2}

[2,0.4],
[6,0.3],
[7,0.8],
[9,-0.5]]

RBF prior with £ = 0.5

[\)
)

Predicted mean = 1.96 SD
o
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Posterior Distribution

Observed data = AN 2 /12
(01,11, k(z,2') =0 eXp{—2—€2|x—x] }
[2,0.4], RBF prior with £ = 1.0 and 72 = 0.1

[6,0.3], A Nugget term

[7,0.8], 21

[9,-0.5]]

Predicted mean & 1.96 SD
o
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Communication Class Property

Theorem 1 (Class property). Suppose two states i,j € S of a Markov chain inter-communicate

(i «— j), i.e., they belong to the same strongly connected component (SCC) in the graphical
representation of the Markov chain. Then,

1. i and j have the same period.
2. iis transient if and only if j is transient.
3. iis null recurrent if and only if j is null recurrent.

4. i is positive recurrent if and only if j is positive recurrent.

Theorem 2. All finite Markov chains have the following properties:
1. At least one state is recurrent.
2. All recurrent states are positive recurrent.

3. If the Markov chain is irreducible (i.e., the corresponding graph consists of a single SCC), then all
states are positive recurrent.

| e
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Existence and Uniqueness of Stationary Distribution

Theorem 3 (Finite state space 9).
1. Every finite Markov chain has a stationary distribution 7.

2. Furthermore, if the Markov chain is irreducible, then 7 is the unique stationary distribution and

r; =—,Vi € S, where r; is the mean recurrence time.

I

Theorem 4 (Countably infinite state space S).

1. A Markov chain with a countably infinite state space has a stationary distribution 7 if and only if
at least one state is positive recurrent.

2. Furthermore, if the Markov chain is irreducible, then 7 (which exists if and only if all states are

positive recurrent) is unique and z; = —, Vi € S, where r; is the mean recurrence time.

I
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For the n-step transition matrix P" to converge as n — oo, aperiodicity is crucial.

Recall that r; = oo if j is either transient or null recurrent, while r; < oo if j is positive recurrent.

Theorem 5 (Limiting distributions).

1. For any aperiodic state j € S of a Markov chain,

1 Jij <
lim [P"],; = — and lim [P"], = %,Vi # J, where f; = )" .
/ / n=1

n—oo I"] n—oo Ji

2. If a Markov chain is irreducible and aperiodic, then

1
lim [P”]l-j =—,Vi,j€S. (i.e., the limit does not depend on the starting state i.

n— oo
J

3. If a Markov chain is irreducible and ergodic (aperiodic and positive recurrent), then

1
lim [P"]; = — = 7, ¥, € 5.

n—oo ;
J
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Markov Chain 1 (periodic)

| @ | (0 1 0 0]
1 bl 5 p 1 0 0O
= 1 1
0 0 0 B
O @ ) s
" Ql i ] ]
01 0O 1 0
I e 1000 L |0
P = o L o L P==11 0
States 1 and 2 are periodic, so P" does not converge as n — 0. 2 2 2
State 3 is transient. _O 0 0 1_ _O 0

States 1, 2, and 4 are positive recurrent.

{1,2} is a terminal strongly connected component (SCC), so the transition matrix restricted to {1,2} is a valid
transition matrix for a Markov chain on {1,2}.

By Theorem 3, there exists a unique stationary distribution corresponding to this SCC. More precisely,

7 = [1/2, 1/2, 0, 0] is the unique stationary distribution for this SCC.

{4} also is a terminal SCC and the unique stationary distribution corresponding to this SCC is 7, = [0, 0, 0, 1].
372
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1 &G\/@\\l

3

Markov Chain 2 (aperiodic but not irreducible)

JO¥

| ®o

/\/X@

Q)

1
2 3
3

All states are aperiodic, so P" converges as n — 0.
State 3 is transient.
States 1, 2, and 4 are positive recurrent.

{1,2} is a terminal SCC, so the transition matrix restricted to {1,2} is a valid transition matrix for a Markov chain on {1,2}.

lim P"

n—oo

Theorem 5, part 1 applies

S O wv v~

S A= D= |-

O &= R[= 2=

o o o O

oS o O

0

(e} o —_ = O )

L

By Theorem 3, there exists a unique stationary distribution corresponding to this SCC. More precisely,

7 =[1/2, 1/2, 0, 0] is the stationary distribution for this SCC.

{4} also is a terminal SCC and the unique stationary diTLLLbLTtion corresponding to this SCCis 7, = [0, 0, 0, 1].
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Markov Chain 2 (aperiodic but not irreducible)

> Question: Let U = (P[X,, = i]),cy denote the distribution of the initial state. Then, what does vP”"

converge to asn — ©0?
» Answer: Since the chain is not irreducible, the answer depends on the choice of v. For example:

- fv=(a, 1-a,0,0)where0 <a<1,then lim vP" = (1/2, 1/2, 0, 0), which is the stationary

n—oo

distribution 7, corresponding to the terminal SCC {1,2}.

- fr=(0,0,0, 1), then lim vP" = (0, 0, 0, 1), which is the stationary distribution 7,

corresponding to the terminal SCC {4}.
- More generally, if U = (a, b, ¢, d) where a,b,c,d € [0,1] such thata+ b+ c+d =1, then
lim DP" = 7+ [d + %] %y

C
+b)+—
(a+b) )
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Markov Chain 3 (irreducible and ergodic)

(&)
| / |
O \=@

2

Q, 1
'\1/

All states are aperiodic, so P" converges as n — .

Theorem 5, part 3 applies

lim P" =

n—oo

All rows are equal to the
stationary distribution 7

S O M= O

S = O =

LR L L v

— o O O

S O v= O

This Markov chain is irreducible ({1,2,3,4} is a SCC), so all of its states are positive recurrent (by Theorem 2).

By Theorem 3, there exists a unique stationary distribution corresponding to this Markov chain. More precisely,

7 =1[1/5,2/5, 1/5, 1/5] is the unique stationary distribution.
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Markov Chain 3 (irreducible and ergodic)

> In this case, every row of the limiting transition matrix lim P" is equal to the unique stationary

n—oo

distribution 7.

> Hence, given an arbitrary initial distribution o = (v, 5, 13, 1,), we obtain

Iim Z yi[P”]l-’j = Z Vi = Jl'jz Vv =T
ieS

e i€s ies
> In other words, irrespective of how you initialize the chain at time zero (i.e., how you set X)), the
distribution of X, will converge to the unique stationary distribution as n — oo.
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Markov Chain 4 (irreducible and aperiodic, but not ergodic)

» A finite Markov chain cannot have a null recurrent state and all states of a finite irreducible
Markov chain must be positive recurrent (see Theorem 2).

» Hence, for a Markov chain to be irreducible and aperiodic but not ergodic, it must have an
infinite state space.
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	Homework 1 – Basics, Independence, Conditioning, & Exchangeability
	Problems (Solutions)
	1. (Basic probability)
	2. (Independence)
	3. (Expectation, joint distribution, uniform distribution)
	4. (Conditioning, cumulative distribution function)
	5. (Bounding even moments)
	6. (Continuous distributions, probability density function, independence)
	7. (Events, indicators and basic probability inequalities)
	8. (Hypergeometric and exchangeability)
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	Problems (Solutions)
	1. (Binomial tail bounds)
	2. (LLN)
	3. (Chebyshev & CLT)
	4. (Convolution & MGF)
	5. (Moments & MGF)
	6. (Distribution of sums using MGFs)


	Homework 3 – PDF's, CDF's, PGF's, and Transformations
	Problems (Solutions)
	1. (Approximating Binomial Distributions)
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	4. (Joint densities)
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	3. (Model selection)
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	Problems (Solutions)
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	4. (More on jointly Gaussian distributions)
	5. (Wigner's surmise)
	6. (1D Gaussian process)
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	Notation
	Problems (Solutions)
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	3. (The average number of jobs)
	4. (Rain or no rain)
	5. (The game of roulette)
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