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STAT210B Theoretical Statistics Lecture 1 - 01/16/2024

Lecture 1: The Non-Asymptotic Approach
Instructor: Nikita Zhivotovskiy Scriber: Nikita Zhivotovskiy Proofreader: Nikita Zhivotovskiy

1.1 Some Limitations of the Asymptotic Approach
This course focuses on non-asymptotic analysis in statistics. To illustrate the significance of the asymptotic
approach, consider estimating the mean of a random variable. Suppose we observe 𝑛 independent
identically distributed random variables 𝑋1, . . . , 𝑋𝑛 with mean 𝜇 and (for simplicity, known) variance 𝜎2.
We can construct a confidence interval of the form[

− 2𝜎√
𝑛
+ 1
𝑛

𝑛∑
𝑖=1

𝑋𝑖 ,
2𝜎√
𝑛
+ 1
𝑛

𝑛∑
𝑖=1

𝑋𝑖

]
,

which, according to the Central Limit Theorem (CLT), will asymptotically contain the true mean with a
probability of at least 0.95. The constant 2 in the above bound comes from the quantiles of the Gaussian
distribution, its limiting distribution. For example, if 𝑍 is a standard normal random variable and Φ its
cumulative distribution function, then from the CLT

lim
𝑛→∞

Pr
(����∑𝑛

𝑖=1(𝑋𝑖 − 𝜇)
𝜎
√
𝑛

���� ≥ 𝑡

)
= Pr(|𝑍 | ≥ 𝑡) = 2Φ(−𝑡).

And 1 − 2Φ(−2) ≈ 0.9545. However, this approach to constructing confidence intervals has a significant
flaw. It overly focuses on the scenario where the number of observations 𝑛 goes to infinity. Furthermore,
the expression is somewhat sensitive to the distribution; if 𝑋𝑖 are Gaussian, then

∑𝑛
𝑖=1(𝑋𝑖−𝜇)
𝜎
√
𝑛

is a standard
normal random variable for any sample size 𝑛. For other distributions, the CLT might only apply when
the sample size is quite large. One key piece of evidence for this comes from the Poisson limit theorem.
Let’s recall its statement.

Theorem 1.1 (Poisson Limit Theorem). Let 𝑋𝑛,𝑖 , 1 ≤ 𝑖 ≤ 𝑛, be independent random variables with 𝑋𝑛,𝑖 ∼
Ber(𝑝𝑛). Assume that for some 𝜆 > 0,

lim
𝑛→∞

𝑛𝑝𝑛 → 𝜆.

Then,
𝑛∑
𝑖=1

𝑋𝑛,𝑖
𝑑−→ Pois(𝜆) as 𝑛 → ∞.

Consider observing 𝑛 = 50 independent Bernoulli distributions with 𝑝 = 1/50. Which approximation
would be more appropriate: Poisson or the CLT? How do we choose the right limiting theorem in
each particular practical case where we only have access to a finite sample of data? The methodologies
developed in this course will enable us to derive quantitative bounds that often depend on additional
properties of the distribution, providing relevant quantitative results. Furthermore, we will also discuss
strategies to achieve a form of universality, where minimal assumptions are made about the distribution,
yet the results are akin to those obtained under some limiting distribution, such as the Gaussian
distribution.
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There are additional aspects where non-asymptotic bounds can be superior to asymptotic results.
Consider a fundamental model, the Gaussian regression model with fixed design, which we will explore
in more detail later. Take a dataset {(𝑌𝑖 , 𝑥𝑖)}𝑛𝑖=1, where

𝑌𝑖 = 𝑓 (𝑥𝑖) + 𝜉𝑖 , 𝑖 = 1, . . . , 𝑛, (1)

with 𝒳 being some fixed set, 𝑓 : 𝒳 → ℝ an unknown function, 𝑥𝑖 ∈ 𝒳 fixed nonrandom elements, and
the random errors 𝜉𝑖 independently and identically distributed (i.i.d.) Gaussian variables with mean
zero and variance 𝜎2. The primary goal is to construct an estimator 𝑓 for 𝑓 using the observations
{(𝑌𝑖 , 𝑥𝑖)}𝑛𝑖=1. To evaluate the performance of 𝑓̂ , we consider the squared error loss given by

∥ 𝑓 − 𝑓 ∥2
𝑛 =

1
𝑛

𝑛∑
𝑖=1

(
𝑓̂ (𝑥𝑖) − 𝑓 (𝑥𝑖)

)2
.

Moreover, we define the risk of the estimator 𝑓 as 𝔼∥ 𝑓 − 𝑓 ∥2
𝑛 . A straightforward, yet illustrative, case

for this model is to assume that 𝑥𝑖 ∈ ℝ𝑑 and 𝑓 (𝑋𝑖) = ⟨𝑋𝑖 , 𝜃★⟩, with 𝜃★ ∈ ℝ𝑑 being an unknown target
parameter. A common method to estimate 𝜃★ is through the least squares estimator:

𝜃 = argmin
𝜃∈ℝ𝑑

1
𝑛

𝑛∑
𝑖=1

(⟨𝑥𝑖 , 𝜃⟩ − 𝑌𝑖)2 .

In this course, we will discuss and prove results of the form:

𝔼

[
1
𝑛

𝑛∑
𝑖=1

(
⟨𝑥𝑖 , 𝜃⟩ − ⟨𝑥𝑖 , 𝜃★⟩

)2
]
≤ 𝑑𝜎2

𝑛
.

Here 𝑑, 𝑛, 𝜎2 each play a specific role. The parameters 𝑑, 𝑛, and 𝜎 can grow simultaneously in any
manner, a scenario somewhat problematic for an asymptotic approach. Typically, asymptotic results
are either of the form where both 𝑑 and 𝜎 are fixed and 𝑛 goes to infinity, or 𝜎 is fixed and both 𝑑 and
𝑛 grow such that the ratio 𝑑/𝑛 converges to a constant. However, even in this simplified example, the
asymptotic regimes described only cover a fraction of possible interactions between 𝑑, 𝜎, and 𝑛. To
elaborate further on this perspective, we refer to the quote of Pascal Massart [Mas07], one of the pioneers
of non-asymptotic analysis in statistics:
“Through our works, we have promoted a nonasymptotic approach in statistics which consists in taking the number
of observations as it is and trying to evaluate the effect of all the influential parameters. At this very starting point,
it seems to me that it is important to provide a first answer to the following question: why should we be interested by
a nonasymptotic view for model selection at all? In my opinion, the motivation should neither be a strange interest
for ’small’ sets of data nor a special taste for constants and inequalities rather than for limit theorems (although
since mathematics is also a matter of taste, it is a possible way for getting involved in it...). On the contrary, the
nonasymptotic point of view may turn to be especially relevant when the number of observations is large. It is
indeed to fit large complex sets of data that one needs to deal with possibly huge collections of models at different
scales. The nonasymptotic approach for model selection precisely allows the collection of models together with
their dimensions to vary freely, letting the dimensions be possibly of the same order of magnitude as the number of
observations.”

1.2 Basic tail bounds
We begin with some basic tail bounds.
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Proposition 1.2 (Markov’s Inequality). Let 𝑋 be a non-negative random variable. Then for any 𝑡 ≥ 0, we have

Pr(𝑋 ≥ 𝑡) ≤ 𝔼𝑋

𝑡
.

Proposition 1.3 (Chebyshev’s Inequality). Let 𝑋 be a random variable with finite variance. Then for any 𝑡 ≥ 0,
we have

Pr(|𝑋 − 𝔼𝑋 | ≥ 𝑡) ≤ Var(𝑋)
𝑡2

.

Proof. Chebyshev’s inequality follows from applying Markov’s inequality to the squared deviation
(𝑋 − 𝔼𝑋)2.

Remark 1.4. When discussing Chebyshev’s inequality, it’s important to give attention to the correct pronunciation
of Chebyshev’s name. Notably, the proper English transcription accentuates the final ’ov’ in ’Chebyshov’, a detail
that is often missed.

Is Chebyshev’s inequality tight for the standard Gaussian random variable? The answer is no! Here is
why.

Proposition 1.5 (Tails of Gaussian Random Variables). Let 𝑍 be a standard Gaussian random variable. For
any 𝑡 ≥ 0, we have (

1
𝑡
− 1
𝑡3

)
· 1√

2𝜋
𝑒−𝑡

2/2 ≤ Pr(𝑍 ≥ 𝑡) ≤ 1
𝑡
· 1√

2𝜋
𝑒−𝑡

2/2.

Proof. Consider 𝑍, a standard Gaussian variable. For any 𝑡 ≥ 0, we have

Pr(𝑍 ≥ 𝑡) = 1√
2𝜋

∫ ∞

𝑡

𝑒−𝑥
2/2 𝑑𝑥.

Setting 𝑥 = 𝑡 + 𝑦, we find

Pr(𝑍 ≥ 𝑡) = 1√
2𝜋

∫ ∞

0
𝑒−𝑡

2/2𝑒−𝑡𝑦𝑒−𝑦
2/2 𝑑𝑦 ≤ 1√

2𝜋
𝑒−𝑡

2/2
∫ ∞

0
𝑒−𝑡𝑦 𝑑𝑦,

using 𝑒−𝑦2/2 ≤ 1. The last integral equals 1
𝑡 , yielding the upper bound. The lower bound follows from∫ ∞

𝑡

(1 − 3𝑥−4)𝑒−𝑥2/2 𝑑𝑥 =

(
1
𝑡
− 1
𝑡3

)
𝑒−𝑡

2/2.

The crucial aspect is that the tail bound Pr(𝑍 ≥ 𝑡) ≤ 1
𝑡
√

2𝜋
𝑒−𝑡

2/2 is often the only necessary consideration
for Gaussian variables in many applications. Chebyshev’s inequality is not sufficient as it provides a
bound of 1

𝑡2
. However, we can refine this using Markov’s inequality, which, for any random variable 𝑋

with mean 𝜇, and any 𝑡 ≥ 0, gives

Pr(|𝑋 − 𝜇| ≥ 𝑡) = Pr(|𝑋 − 𝜇|𝑝 ≥ 𝑡𝑝) ≤
𝔼|𝑋 − 𝜇|𝑝

𝑡𝑝
.

By taking the infimum with respect to 𝑝 ≥ 1, we find

Pr(|𝑋 − 𝜇| ≥ 𝑡) ≤ inf
𝑝≥1

𝔼|𝑋 − 𝜇|𝑝
𝑡𝑝

.
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This approach, while leading to the desired bound, may require more complex computations in many
applications. An alternative and more practical method involves using the moment generating function
(MGF). For any 𝜆 > 0,

Pr(|𝑋 − 𝜇| ≥ 𝑡) = Pr
(
exp(𝜆|𝑋 − 𝜇|) ≥ exp(𝜆𝑡)

)
≤

𝔼 exp(𝜆|𝑋 − 𝜇|)
exp(𝜆𝑡) .

Thus,

Pr(|𝑋 − 𝜇| ≥ 𝑡) ≤ inf
𝜆>0

𝔼 exp(𝜆|𝑋 − 𝜇|)
exp(𝜆𝑡) .

For any random variable 𝑍, its MGF is defined as

𝑀𝑍(𝜆) = 𝔼 exp(𝜆𝑍).

A key advantage of the MGF over standard moments is that for independent random variables 𝑍1, . . . , 𝑍𝑛 ,
for any 𝜆 ∈ ℝ,

𝑀𝑍1+...+𝑍𝑛 (𝜆) =
𝑛∏
𝑖=1

𝑀𝑍𝑖 (𝜆),

a property not generally shared by moments. Under assumptions allowing the interchange of integrals
and derivatives, we can show that

𝑑

𝑑𝜆𝑘
𝑀𝑍(𝜆)

��
𝜆=0 = 𝔼

𝑑

𝑑𝜆𝑘
exp(𝜆𝑍)

��
𝜆=0 = 𝔼𝑍𝑘 exp(𝜆𝑍)

��
𝜆=0 = 𝔼𝑍𝑘 ,

justifying the name ’moment generating function’. Finally, we calculate the MGF for a standard Gaussian.
For 𝑍, a zero-mean Gaussian random variable with variance 𝜎2, it holds that

𝑀𝑍(𝜆) = 𝔼 exp(𝜆𝑍) = exp
(
𝜆2𝜎2/2

)
.

4



STAT210B Theoretical Statistics Lecture 2 - 01/18/2024

Lecture 2: Basic concentration inequalities
Instructor: Nikita Zhivotovskiy Scriber: Nikita Zhivotovskiy Proofreader: Nikita Zhivotovskiy

2.1 Sub-Gaussian random variables
We continue our discussion of the moment generating function. Recall that for 𝑍, a zero-mean Gaussian
random variable with variance 𝜎2, it holds that

𝑀𝑍(𝜆) = 𝔼 exp(𝜆𝑍) = exp
(
𝜆2𝜎2/2

)
.

Let us apply Chernoff’s method. Using the formula for the moment generating function of the Gaussian
random variable, we have

Pr(𝑍 ≥ 𝑡) ≤ inf
𝜆>0

exp
(
𝜆2𝜎2/2 − 𝜆𝑡

)
= exp

(
−𝑡2/2𝜎2

)
.

This is quite remarkable as exponential moments alone are good enough to get the main term in the
Gaussian tail. Our first definition of the sub-Gaussian random variable is the following:

Definition 2.1. A mean-zero random variable 𝑋 is sub-Gaussian with the variance parameter 𝜎2 if

𝔼 exp(𝜆𝑋) ≤ exp
(
𝜆2𝜎2/2

)
,

for all 𝜆 ∈ ℝ.

What do we have immediately from this definition? For example, if the random variable𝑋 is sub-Gaussian,
then −𝑋 is also sub-Gaussian with the same variance parameter. The following result summarizes
several equivalent definitions of sub-Gaussian random variables.

Proposition 2.2. Let 𝑋 be a random variable with 𝔼𝑋 = 0. Then the following are equivalent, and the parameters
𝑘𝑖 > 0 differ by at most multiplicative absolute constant factors:

1. For all 𝜆 ∈ ℝ,
𝔼 exp(𝜆𝑋) ≤ exp

(
𝑘2

1𝜆
2
)
.

2. For all 𝑡 ≥ 0,
Pr(|𝑋 | ≥ 𝑡) ≤ 2 exp

(
−𝑡2/𝑘2

2

)
.

3. For all 𝑝 ≥ 1,
∥𝑋∥𝐿𝑝 = (𝔼|𝑋 |𝑝)1/𝑝 ≤ 𝑘3

√
𝑝.

4. For all 𝜆 such that |𝜆| ≤ 1/𝑘4,
𝔼 exp

(
𝜆2𝑋2

)
≤ exp

(
𝑘2

4𝜆
2
)
.

5. For some 𝑘5,
𝔼 exp

(
𝑋2/𝑘2

5

)
≤ 2.
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Proof. We have already verified (1) → (2). This follows from Chernoff’s method. Let us show how (2)
implies (3). Without loss of generality, assume that 𝑘2 = 1. We have

𝔼|𝑋 |𝑝 =
∞∫

𝑡=0

Pr(|𝑋 |𝑝 ≥ 𝑡)𝑑𝑡 =
∞∫

𝑢=0

Pr(|𝑋 | ≥ 𝑢)𝑝𝑢𝑝−1𝑑𝑢 ≤
∞∫

𝑢=0

2𝑝𝑢𝑝−1 exp
(
−𝑢2

)
𝑑𝑢.

Recall that the gamma function Γ is given by Γ(𝑥) =
∞∫

0
𝑡𝑥−1 exp(−𝑡)𝑑𝑡. Using the change of variables

𝑤 = 𝑢2, we have

2
∞∫

𝑢=0

𝑝𝑢𝑝−1 exp
(
−𝑢2

)
𝑑𝑢 = 𝑝

∞∫
𝑤=0

𝑤𝑝/2−1 exp(−𝑤)𝑑𝑤 = 𝑝Γ(𝑝/2) ≤ 3𝑝(𝑝/2)𝑝/2,

where we used Γ(𝑥) ≤ 3𝑥𝑥 for 𝑥 > 1/2. The remaining proofs are left as an exercise and can be found in
[Ver18, Proposition 2.5.2].

What other distributions are sub-Gaussian?
Consider the example of the Rademacher random sign. If 𝜀 = ±1 with equal probabilities, then we call it
the Rademacher random variable. We have

𝔼 exp(𝜆𝜀) = 1
2 exp(𝜆) + 1

2 exp(−𝜆) ≤ exp
(
𝜆2/2

)
,

where the inequality follows from comparing Taylor series. Thus, the Rademacher random variable
is sub-Gaussian with 𝜎 = 1. It appears that another basic example belongs to the class of bounded
distributions.

Lemma 2.3 (Hoeffding’s lemma). Assume that 𝑋 is a zero-mean random variable whose values are almost surely
in [𝑎, 𝑏]. Then

𝔼 exp(𝜆𝑋) ≤ exp
(
𝜆2(𝑏 − 𝑎)2/8

)
.

Proof. We show a slightly weaker inequality first using the idea of symmetrization. Let 𝑋′ be an
independent copy of 𝑋. Denote the expectation with respect to 𝑋′ as 𝔼′. Using Jensen’s inequality (since
the exponent function is convex) we have

𝔼 exp(𝜆𝑋) = 𝔼 exp(𝜆(𝑋 − 𝔼′𝑋′)) ≤ 𝔼𝔼′ exp(𝜆(𝑋 − 𝑋′)).

Let 𝜀 be a Rademacher random variable independent from both 𝑋 and 𝑋′. We observe that by symmetry,
𝑋 − 𝑋′ has the same distribution as 𝜀(𝑋 − 𝑋′). Therefore, we have

𝔼𝔼′ exp(𝜆(𝑋 − 𝑋′)) = 𝔼𝔼′𝔼𝜀 exp(𝜆𝜀(𝑋 − 𝑋′)).

Conditioning on the values 𝑋 − 𝑋′ we use the upper bound for the MGF of the Rademacher random
variable to obtain

𝔼𝔼′𝔼𝜀 exp(𝜆𝜀(𝑋 − 𝑋′)) ≤ 𝔼𝔼′ exp
(
𝜆2(𝑋 − 𝑋′)2/2

)
.

The proof follows by observing that (𝑋 − 𝑋′)2 ≤ (𝑏 − 𝑎)2 with probability one. A slightly more refined
analysis leads to the constant 8 in the bound.

The next lemma is the standard concentration results for the sum of independent sub-Gaussian random
variables. Its proof is a manifestation of why MGF is preferred over the moments: it is easy to work with
MGF of independent random variables.
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Proposition 2.4. Assume that 𝑋1, . . . , 𝑋𝑛 are independent random variables with means 𝜇1, . . . , 𝜇𝑛 such that
𝑋𝑖 − 𝜇𝑖 are sub-Gaussian with parameters 𝜎𝑖 for all 𝑖 = 1, . . . , 𝑛. Then, for any 𝑡 ≥ 0,

Pr

(
𝑛∑
𝑖=1

(𝑋𝑖 − 𝜇𝑖) ≥ 𝑡

)
≤ exp

(
− 𝑡2

2
∑𝑛
𝑖=1 𝜎

2
𝑖

)
.

Furthermore,

Pr

(����� 𝑛∑
𝑖=1

(𝑋𝑖 − 𝜇𝑖)
����� ≥ 𝑡

)
≤ 2 exp

(
− 𝑡2

2
∑𝑛
𝑖=1 𝜎

2
𝑖

)
.

Proof. Due to the independence of 𝑋𝑖 − 𝜇𝑖 , we have

𝔼 exp

(
𝜆

𝑛∑
𝑖=1

(𝑋𝑖 − 𝜇𝑖)
)
=

𝑛∏
𝑖=1

𝔼 exp(𝜆(𝑋𝑖 − 𝜇𝑖)) ≤ exp

(
𝜆2

𝑛∑
𝑖=1

𝜎2
𝑖 /2

)
.

Therefore, the sub-Gaussian parameter 𝜎2 of
𝑛∑
𝑖=1

(𝑋𝑖 − 𝜇𝑖) is
∑𝑛
𝑖=1 𝜎

2
𝑖
. Thus, applying Chernoff’s method

and optimizing with respect to 𝜆, we get the first inequality. Similarly, we can prove that

Pr

(
𝑛∑
𝑖=1

(𝑋𝑖 − 𝜇𝑖) ≤ −𝑡
)
≤ exp

(
− 𝑡2

2
∑𝑛
𝑖=1 𝜎

2
𝑖

)
.

Combining both inequalities via the union bound, we obtain

Pr

(����� 𝑛∑
𝑖=1

(𝑋𝑖 − 𝜇𝑖)
����� ≥ 𝑡

)
≤ 2 exp

(
− 𝑡2

2
∑𝑛
𝑖=1 𝜎

2
𝑖

)
.

As a corollary for the bounded random variables, we have the classical Hoeffding’s inequality.

Proposition 2.5 (Hoeffding’s inequality). Assume that 𝑋1, . . . , 𝑋𝑛 are random variables taking their values in
[𝑎𝑖 , 𝑏𝑖] respectively with means 𝜇1, . . . , 𝜇𝑛 . Then, for any 𝑡 ≥ 0, we have

Pr

(
𝑛∑
𝑖=1

(𝑋𝑖 − 𝜇𝑖) ≥ 𝑡

)
≤ exp

(
− 2𝑡2∑𝑛

𝑖=1(𝑏𝑖 − 𝑎𝑖)2
)
.

Furthermore,

Pr

(����� 𝑛∑
𝑖=1

(𝑋𝑖 − 𝜇𝑖)
����� ≥ 𝑡

)
≤ 2 exp

(
− 2𝑡2∑𝑛

𝑖=1(𝑏𝑖 − 𝑎𝑖)2
)
.

Proof. We just replace 𝜎𝑖 in Proposition 2.4 with |𝑏𝑖 − 𝑎𝑖 |/2, which is due to Hoeffding’s lemma.
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STAT210B Theoretical Statistics Lecture 3 - 01/23/2024

Lecture 3: Sub-Gaussian and Sub-Exponential Distributions
Instructor: Nikita Zhivotovskiy Scriber: Annie Ulichney Proofreader: João Vitor Romano

In the previous lecture, we introduced sub-Gaussian distributions and equivalent characterizations of
sub-Gaussian distributions. We showed that Rademacher variables and bounded random variables
with mean zero are examples of sub-Gaussian variables. Finally, we introduced Hoeffding’s inequality
which provides a bound for the deviation of the sum of bounded independent random variables from its
expectation. We pick up where we left off: with Hoeffding’s inequality.

3.1 Hoeffding’s inequality
Recall from the previous lecture Hoeffding’s inequality, which is sometimes called the Hoeffding bound.
Proposition 3.1 (Hoeffding’s inequality). Let 𝑋1, . . . , 𝑋𝑛 be independent random variables such that 𝔼𝑋𝑖 = 𝜇𝑖
and 𝑋𝑖 ∈ [𝑎𝑖 , 𝑏𝑖] almost surely. Then, for all 𝑡 ≥ 0,

Pr

(
𝑛∑
𝑖=1

(𝑋𝑖 − 𝜇𝑖) ≥ 𝑡

)
≤ exp

(
−2𝑡2∑𝑛

𝑖=1(𝑎𝑖 − 𝑏𝑖)2

)
.

By symmetry and the union bound, it follows that

Pr

(����� 𝑛∑
𝑖=1

(𝑋𝑖 − 𝜇𝑖)
����� ≥ 𝑡

)
≤ 2 exp

(
−2𝑡2∑𝑛

𝑖=1(𝑎𝑖 − 𝑏𝑖)2

)
.

This result was proved in Lecture 2, Proposition 5.
Remark 3.2. Observe that these bounds are a function of the length of the interval [𝑎𝑖 , 𝑏𝑖], so they are invariant to
centering 𝑋𝑖 .

3.1.1 Example 1: Rademacher Random Variables
Let 𝜀1, . . . , 𝜀𝑛 be independent Rademacher random variables, i.e. 𝜀𝑖 = ±1 with probability 1/2. Observe
𝔼𝜀𝑖 = 0,Var(𝜀𝑖) = 1. Applying Hoeffding’s inequality, we get

Pr

(����� 1𝑛 𝑛∑
𝑖=1

𝜀𝑖

����� ≥ 𝑡

)
≤ 2 exp

(
−2(𝑛𝑡)2

4𝑛

)
= 2 exp

(
−𝑛𝑡2

2

)
︸          ︷︷          ︸

𝛿

.

We seek 𝑡 such that, with high probability,
�� 1
𝑛

∑𝑛
𝑖=1 𝜀𝑖

�� ≤ 𝑡. In other words, we want to bound 𝛿. We do so

by rearranging the relation 𝛿 = 2 exp
(
−𝑛𝑡2

2

)
to isolate 𝑡, which yields 𝑡 =

√
2 log(2/𝛿)

𝑛 . After expressing 𝑡 in
terms of 𝛿, we can interpret our bound as a high-probability bound as follows. For this value of 𝑡, with
probability at least 1 − 𝛿, ����� 1𝑛 𝑛∑

𝑖=1
𝜀𝑖

����� ≤
√

2 log(2/𝛿)
𝑛

.
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Remark 3.3. Observe that this result is true for any 𝑛; it is a non-asymptotic result.

Now, let’s compare this bound to that from Chebyshev’s inequality. Applying Chebyshev to the random
variable 1

𝑛

∑𝑛
𝑖=1 𝜀𝑖 , for all 𝑡 > 0,

Pr

(����� 1𝑛 𝑛∑
𝑖=1

𝜀𝑖

����� ≥ 𝑡

)
≤

Var
( 1
𝑛

∑𝑛
𝑖=1 𝜀𝑖

)
𝑡2

=
1/𝑛2 · 𝑛
𝑡2

=
1
𝑛𝑡2︸︷︷︸
𝛿

.

Now, we have bounded the probability that our random variable exceeds 𝑡 by 𝛿. We can equivalently
express this bound as a high-probability bound by solving for 𝑡 in terms of 𝛿 to get 𝑡 = 1√

𝛿𝑛
. As before,

we can make the interpretation that, with probability 1 − 𝛿,
�� 1
𝑛

∑𝑛
𝑖=1 𝜀𝑖

�� ≤ 1√
𝛿𝑛

.
We have now explored an application of Hoeffding’s inequality to Rademacher random variables and
compared the resulting bound to that of Chebyshev. Next, we return to the discussion of sub-Gaussian
distributions in general and introduce the notion of the sub-Gaussian norm and its properties.

3.2 Sub-Gaussian Norm
Definition 3.4 (Sub-Gaussian Norm). Let 𝑋 be a random variable (not necessarily such that 𝔼𝑋 = 0). The
Sub-Gaussian norm of 𝑋 is

∥𝑋∥𝜓2 = inf
{
𝑡 ≥ 0 : 𝔼

[
exp

(
𝑋2

𝑡2

)]
≤ 2

}
.

Remark 3.5. Essentially, this norm is the smallest constant 𝑘5 in relation 5 of our 5 equivalent definitions of
sub-Gaussian random variables listed in Lecture 2, Proposition 2.

Proposition 3.6 (Sub-Gaussian norm equivalent characterizations). As in Lecture 2, Proposition 2, for all
𝑡 ≥ 0, if 𝑐 and 𝐶 are absolute constants, for a random variable 𝑋 the following are equivalent:

1. Pr(|𝑋 | ≥ 𝑡) ≤ 2 exp
(
−𝑐𝑡2/∥𝑋∥2

𝜓2

)
;

2. 𝔼 exp
(
𝑋2/∥𝑋∥2

𝜓2

)
≤ 2;

3. ∥𝑋∥𝐿𝑝 = (𝔼|𝑋 |𝑝)1/𝑝 ≤ 𝐶∥𝑋∥𝜓2
√
𝑝 ∀𝑝 ≥ 1;

4. 𝔼𝑋 = 0 =⇒ 𝔼 exp(𝜆𝑋) ≤ exp
(
𝐶𝜆2∥𝑋∥2

𝜓2

)
∀𝜆 ∈ ℝ.

Remark 3.7. Note that definitions 1-3 do not require 𝔼𝑋 = 0.

Proof of Proposition 3.6 can be found in the proof of [Ver18, Proposition 2.5.2].
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3.2.1 Properties of the Sub-Gaussian Norm
Proposition 3.8. ∥ · ∥𝜓2 is a valid norm.

To prove this, we need to show that, for a random variable 𝑋 and 𝜆 ∈ ℝ, the following are satisfied:

1. ∥𝜆𝑋∥𝜓2 = |𝜆|∥𝑋∥𝜓2 ;

2. ∥𝑋 + 𝑌∥𝜓2 ≤ ∥𝑋∥𝜓2 + ∥𝑌∥𝜓2 ;

3. ∥𝑋∥𝜓2 = 0 ⇐⇒ 𝑋 = 0 almost surely.

We prove these properties in Homework 1.

Proposition 3.9. For the normal distribution, the following properties hold:
1. 𝑍 ∼ 𝑁(0, 1) =⇒ ∥𝑍∥𝜓2 ≤ 𝑐;

2. 𝑍 ∼ 𝑁(0, 𝜎2) =⇒ ∥𝑍∥𝜓2 ≤ 𝑐𝜎.

Proof. Suppose 𝑍 ∼ 𝑁(0, 𝜎2). The MGF of the normal distribution is

𝔼 exp(𝜆𝑍) = exp
(
𝜆2𝜎2

2

)
.

We can see that 𝑍 is sub-Gaussian with variance parameter 𝜎2. The desired result follows from relation 4
of Proposition 3.6.

Proposition 3.10.

If 𝑋 ∈ [𝑎, 𝑏], exp
(
𝑋2/𝑡2

)
≤ exp

(
max(𝑎2, 𝑏2)/𝑡2

)
which implies that 𝑡 = 1√

log(2)

√
max(𝑎2, 𝑏2).

Proposition 3.11. If 𝑋1, . . . , 𝑋𝑛 are independent random variables and 𝑐 is an absolute constant,




 𝑛∑
𝑖=1

𝑋𝑖






2

𝜓2

≤ 𝑐

𝑛∑
𝑖=1

∥𝑋𝑖 ∥2
𝜓2

Proof. Without loss of generality, assume 𝔼𝑋𝑖 = 0. Then, by our independence assumption and Properties
1, 4 of Proposition 3.6,

𝔼 exp

(
𝜆

𝑛∑
𝑖=1

𝑋𝑖

)
=

𝑛∏
𝑖=1

𝔼 exp (𝜆𝑋𝑖)

≤
𝑛∏
𝑖=1

exp
(
𝑐𝜆2∥𝑋𝑖 ∥2

𝜓2

)
= exp

(
𝜆2𝑐

𝑛∑
𝑖=1

∥𝑋𝑖 ∥2
𝜓2

)
.

Remark 3.12. Note that this is an analog of the property Var
(∑𝑛

𝑖=1 𝑋𝑖
)
=

∑𝑛
𝑖=1 Var(𝑋𝑖) for independent 𝑋𝑖 .

Remark 3.13. Observe that Claim 3.11 is not a result of the triangle inequality. Our claim assumes independence
and is a stronger result.
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3.2.2 Example 2: Khintchine’s inequality
Khintchine’s inequality can be derived with Hoeffding’s inequality to bound the 𝐿𝑝 norms of the sum of
independent random variables.

Proposition 3.14. Let𝑋1, . . . , 𝑋𝑛 be independent sub-Gaussian random variables where𝔼𝑋𝑖 = 0 and Var(𝑋𝑖) = 1.
Let 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ ℝ𝑛 . Then, for 𝑝 ≥ 2,(

𝑛∑
𝑖=1

𝑎2
𝑖

)1/2

≤





 𝑛∑
𝑖=1

𝑎𝑖𝑋𝑖







𝑝

≤ 𝑐𝐾
√
𝑝

(
𝑛∑
𝑖=1

𝑎2
𝑖

)1/2

,

where 𝐾 = max𝑖 ∥𝑋∥𝜓2 .

Proof. Let 𝜀1, . . . , 𝜀𝑛 be independent Rademacher random variables and let 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ ℝ𝑛 . How
does our vector 𝑎 correlate with random coin flips? By our assumption of independence and Claim 3.11,




 𝑛∑

𝑖=1
𝑎𝑖𝜀𝑖






2

𝜓2

≤ 𝐶

𝑛∑
𝑖=1

∥𝑎𝑖𝜀𝑖 ∥2
𝜓2

= 𝐶

𝑛∑
𝑖=1

𝑎2
𝑖 ∥𝜀𝑖 ∥

2
𝜓2

= 𝐶

𝑛∑
𝑖=1

𝑎2
𝑖

1
log(2) .

Taking the square root of both sides, for all 𝑝 ≥ 2 where 𝐶 is an absolute constant,




 𝑛∑
𝑖=1

𝑎𝑖𝜀𝑖







𝜓2

≤ 𝐶

√√
𝑛∑
𝑖=1

𝑎2
𝑖

≤ 𝐶
√
𝑝

√√
𝑛∑
𝑖=1

𝑎2
𝑖
.

Now, we evaluate the expectation of
(∑𝑛

𝑖=1 𝑎𝑖𝜀𝑖
)2 by expanding the squared summation as follows:

𝔼


(
𝑛∑
𝑖=1

𝑎𝑖𝜀𝑖

)2 =

𝑛∑
𝑖=1

𝑎2
𝑖 + 𝔼

∑
𝑖 , 𝑗:𝑖≠𝑗

𝑎𝑖𝑎 𝑗𝜀𝑖𝜀𝑗 .

The second term on the right hand side is 0 by our assumption of independence of 𝜀𝑖 . Therefore, we are
left with: √√√√√

𝔼


(
𝑛∑
𝑖=1

𝑎𝑖𝜀𝑖

)2 =

(
𝑛∑
𝑖=1

𝑎2
𝑖

)1/2

.

Next, we classify distributions with tail behavior that does not meet the definition of sub-Gaussian
behavior but can be characterized analogously.
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3.3 Non-Sub-Gaussian Distributions
Let 𝑋 ∼ 𝑁(0, 1), 𝑋 = 𝑍2 − 1 where 𝔼𝑋 = 0. Is 𝑋 sub-Gaussian? We evaluate 𝔼 (𝜆𝑋) by

𝔼 exp
(
𝜆(𝑍2 − 1)

)
=

1√
2𝜋

∫ ∞

−∞
exp

(
𝜆(𝑧2 − 1)

)
exp

(
−𝑧2

2

)
𝑑𝑧.

• If 𝜆 ≥ 1/2, the exponential moment is not defined. Therefore, 𝑋 is not sub-Gaussian because there
is no reasonable upper bound.

• If 𝜆 < 1/2,

𝔼 exp
(
𝜆(𝑍2 − 1)

)
= exp(−𝜆) 1√

1 − 2𝜆
≤ exp

(
𝜆2

1 − 2𝜆

)
,

so 𝑋 is sub-Gaussian up to some moment.

3.4 Sub-Exponential Norm
Definition 3.15 (Sub-Exponential Norm). Let 𝑋 be a random variable (not necessarily such that 𝔼𝑋 = 0). The
sub-exponential norm of 𝑋 is

∥𝑋∥𝜓1 = inf
{
𝑡 ≥ 0 : 𝔼

[
exp

(
|𝑋 |
𝑡

)]
≤ 2

}
.

3.4.1 Properties of the Sub-Exponential Norm
Proposition 3.16. ∥ · ∥𝜓1 is a valid norm.

As with the sub-Gaussian norm, to prove this, we need to show that, for a random variable 𝑋 and 𝜆 ∈ ℝ,
the following are satisfied:

1. ∥𝜆𝑋∥𝜓1 = |𝜆|∥𝑋∥𝜓1 ;

2. ∥𝑋 + 𝑌∥𝜓1 ≤ ∥𝑋∥𝜓1 + ∥𝑌∥𝜓1 ;

3. ∥𝑋∥𝜓1 = 0 ⇐⇒ 𝑋 = 0 almost survely.

Proposition 3.17 (Sub-Exponential Equivalent Characterizations). For a random variable 𝑋 the following are
equivalent for 𝑡 ≥ 0 and absolute constant 𝑐:

1. Pr(|𝑋 | ≥ 𝑡) ≤ 2 exp
(
−𝑐𝑡/∥𝑋∥𝜓1

)
;

2. 𝔼 exp
(
|𝑋 |/∥𝑋∥𝜓1

)
≤ 2;

3. ∥𝑋∥𝐿𝑝 ≤ 𝑐𝑝∥𝑋∥𝜓1 ∀𝑝 ≥ 1;

4. 𝔼𝑋 = 0 =⇒ 𝔼 exp(𝜆𝑋) ≤ exp
(
𝐶𝜆2∥𝑋∥2

𝜓1

)
, |𝜆| ≤ 𝑐/∥𝑋∥𝜓1 .

Proposition 3.18. Any sub-Gaussian random variable is also sub-exponential, but the reverse is not necessarily
true.

Proposition 3.19. ∥𝑋2∥𝜓1 = ∥𝑋∥2
𝜓2
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Proof that a sub-exponential random variable is a sub-Gaussian squared follows from the definitions of
sub-Gaussian and sub-exponential random variables. See [Ver18, Definition 2.7.3].

Proposition 3.20. If 𝑋 and 𝑌 are random variables (not necessarily independent), then ∥𝑋𝑌∥𝜓1 ≤ ∥𝑋∥𝜓2 ∥𝑌∥𝜓2 .

Proof. Without loss of generality, assume ∥𝑋∥𝜓2 = ∥𝑌∥𝜓2 = 1. Recall Young’s inequality, |𝑎𝑏 | ≤ 𝑎2

2 + 𝑏2

2 ,
which gives:

𝔼 exp(|𝑋𝑌 |) ≤ 𝔼

(
𝑋2

2 + 𝑌2

2

)
≤ 𝔼

(
1
2 exp

(
𝑋2

)
+ 1

2 exp
(
𝑌2

))
= 2 by assumption ∥𝑋∥𝜓2 = ∥𝑌∥𝜓2 = 1.

The result follows from Property 2 in Proposition 3.17.

3.5 Bernstein’s inequality
Next, we derive bounds for sums of sub-exponential random variables analogous to our bounds for
sums of sub-Gaussian random variables.

Proposition 3.21. Let 𝑋1, . . . 𝑋𝑛 be independent sub-exponential random variables where 𝔼𝑋𝑖 = 0. For all 𝑡 ≥ 0,

Pr

(����� 𝑛∑
𝑖=1

𝑋𝑖

����� ≥ 𝑡

)
≤ 2 exp

(
−𝑐min

(
𝑡2∑𝑛

𝑖=1 ∥𝑋𝑖 ∥
2
𝜓1

,
𝑡

max𝑖∈[𝑛] ∥𝑋𝑖 ∥𝜓1

))
where 𝑐 is a small absolute constant. Bernstein’s inequality is covered in more detail at the start of next
lecture.
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STAT210B Theoretical Statistics Lecture 4 - 01/25/2024

Lecture 4: Tail and High-Probability Bounds
Instructor: Nikita Zhivotovskiy Scriber: João Vitor Romano Proofreader: Annie Ulichney

4.1 Bernstein’s inequality
In the previous lecture, we covered the sub-Gaussian norm ∥ · ∥𝜓2 , the sub-exponential norm ∥ · ∥𝜓1 , and
some applications of Hoeffding’s inequality. We will continue with our study of tail bounds bounds and
their equivalent representation as high-probability bounds. A particular form of Bernstein’s inequality
(Theorem 4.9) will be compared to Hoeffding’s inequality to give intuition of the trade-offs between
them.

Theorem 4.1 (Bernstein’s inequality (𝜓1 form)). Let 𝑋1, . . . , 𝑋𝑛 be independent, zero-mean, sub-exponential
random variables. Then, for all 𝑡 ≥ 0,

Pr

(
𝑛∑
𝑖=1

𝑋𝑖 ≥ 𝑡

)
≤ exp

(
−𝑐min

(
𝑡2∑𝑛

𝑖=1∥𝑋𝑖 ∥2
𝜓1

,
𝑡

max𝑖∈[𝑛]∥𝑋𝑖 ∥𝜓1

))
,

and, by symmetry and the union bound,

Pr

(����� 𝑛∑
𝑖=1

𝑋𝑖

����� ≥ 𝑡

)
≤ 2 exp

(
−𝑐min

(
𝑡2∑𝑛

𝑖=1∥𝑋𝑖 ∥2
𝜓1

,
𝑡

max𝑖∈[𝑛]∥𝑋𝑖 ∥𝜓1

))
,

where 𝑐 > 0 is an absolute constant.

Proof. The proof follows by applying Markov’s inequality to exp
(
𝜆
∑𝑛
𝑖=1 𝑋𝑖

)
, bounding the moment-

generating function using the fact that the random variables are sub-exponential and optimizing the
result. For a detailed derivation, we refer the reader to [Ver18, Theorem 2.8.1].

We now state an inequality that is useful in bounding the moment-generating function of random
variables that assume only two values, for example, those with Bernoulli or Rademacher laws. The
curious reader can consult [BK15, Appendix A] for bibliographical remarks and a proof of the following
inequality.

Lemma 4.2 (Kearns-Saul inequality). For all 𝑝 ∈ [0, 1] and all 𝜆 ∈ ℝ,

𝑝 exp(𝜆(1 − 𝑝)) + (1 − 𝑝) exp(−𝜆𝑝) ≤ exp ©­«𝜆2 1 − 2𝑝

4 log 1−𝑝
𝑝

ª®¬ .
It is now possible to discuss a simple example of a bound that encodes information about the variance of
the random variable.

Example 4.3 (Centered Bernoulli). Let 𝑋 ∼ Ber(𝑝) − 𝑝 and note that the variance Var [𝑋] = 𝑝(𝑛 − 𝑝) is the
same as that of a non-centered Bernoulli random variable because the variance is invariant to translation. When 𝑝
is close to zero or one, the variance is small, and when 𝑝 is close to 0.5, the variance is high. Using Kearns-Saul
inequality (Lemma 4.2), we are able to find an upper bound that takes the variance into account:

𝔼 exp(𝜆𝑋) = 𝑝 exp(𝜆(1 − 𝑝)) + (1 − 𝑝) exp(−𝜆𝑝) ≤ exp
(
𝜆2 1 − 2𝑝

4 log 1−𝑝
𝑝

)
.
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In Lecture 3, Proposition 15, we saw four equivalent characterizations of a sub-exponential random
variable. The treatment there was in terms of the sub-exponential norm ∥ · ∥𝜓1 , in particular for the
fourth characterization. More generally, a zero-mean random variable 𝑋 is said to be sub-exponential
with non-negative parameters 𝜈2 and 𝛼 if, for all |𝜆| < 1

𝛼 ,

𝔼 exp(𝜆𝑋) ≤ exp
(
𝜆2𝜈2

2

)
.

Taking 𝜈 ≡ 𝜎
√

2 and 𝛼 ≡ 2𝑏 gives the equivalent characterization, for all |𝜆| < 1
2𝑏 :

𝔼 exp(𝜆𝑋) ≤ exp
(
𝜆2𝜎2

)
.

Since 1 − 𝑏 |𝜆| ≥ 1/2, we can give the following alternative definition of a sub-exponential random
variable.

Definition 4.4 (Sub-exponential). A zero-mean random variable 𝑋 is sub-exponential with parameters 𝜎2 and 𝑏
if

𝔼 exp(𝜆𝑋) ≤ exp
(
𝜆2𝜎2/2
1 − 𝑏 |𝜆|

)
.

Note that this is a generalization of the previous definitions by splitting 𝑏 and 𝜎.

Definition 4.5 (Bernstein’s moment condition). A random variable 𝑋 with mean 𝜇 = 𝔼𝑋 and variance
𝜎2 = Var [𝑋] satisfies Bernstein’s moment condition with parameter 𝑏 if, for all 𝑘 ∈ ℕ≥2,��𝔼 [

(𝑋 − 𝜇)𝑘
] �� ≤ 1

2 𝑘!𝜎2𝑏𝑘−2.

Proposition 4.6. A random variable that is almost surely bounded by 𝐵 when centered satisfies Bernstein’s moment
condition with parameter 𝑏 = 𝐵/3.

Proof. Let 𝑋 be an almost surely bounded random variable with mean 𝜇 = 𝔼𝑋 and variance 𝜎2 = Var [𝑋].
From boundedness, we have that its mean is finite and therefore 𝑋 − 𝜇 is also bounded, that is,
|𝑋 − 𝜇| ≤ 𝐵 < ∞. For 𝑘 ∈ ℕ≥2,��𝔼 [

(𝑋 − 𝜇)𝑘
] �� ≤ ��𝔼 [

(𝑋 − 𝜇)2
] �� · |𝑋 − 𝜇|𝑘−2 ≤ 𝜎2𝐵𝑘−2 =

1
2 𝑘!𝜎2𝑏𝑘−2,

where 𝑏 = 𝐵
( 2
𝑘!
) 1
𝑘−2 for 𝑘 ≥ 3. For 𝑘 = 2, 𝑏 can assume any value since 𝑏𝑘−2 = 𝑏0 = 1 for all 𝑏 ∈ ℝ. Note

that
( 2
𝑘!
) 1
𝑘−2 is decreasing in 𝑘, so choosing 𝑏 = 𝐵

( 2
3!
) 1

3−2 = 𝐵/3 gives us the tightest bound that does not
depend on 𝑘.

Remark 4.7. Although boundedness is sufficient for a random variable to satisfy Bernstein’s moment condition, it
is in no way necessary: some unbounded random variables, such as those with Gaussian or 𝜒2 law, also do so.

Lemma 4.8. Let 𝑋 be a random variable with 𝔼𝑋 = 0 and Var [𝑋] = 𝜎2. If 𝑋 satisfies Bernstein’s moment
condition with parameter 𝑏 and |𝑋 | ≤ 𝐵 almost surely, then 𝑋 is (𝜎2, 𝐵/3)-sub-exponential.

Proof. We follow by representing the moment-generating function in Taylor series form, making use of
Bernstein’s moment, noting that the geometric series is summable for any |𝜆| < 1/𝑏, and using the fact
that 1 + 𝑡 ≤ exp(𝑡) in the last step:

𝔼 exp(𝜆𝑋) = 1 + 0 + 𝜆2𝜎2

2 +
∞∑
𝑘=3

𝜆𝑘𝔼𝑋 𝑘

𝑘!
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≤ 1 + 𝜆2𝜎2

2 +
∞∑
𝑘=3

𝜆𝑘𝑘!𝜎2𝑏𝑘−2

2𝑘!

= 1 + 𝜆2𝜎2

2 + 𝜆2𝜎2

2

∞∑
𝑘=3

𝜆𝑘−2𝑏𝑘−2

= 1 + 𝜆2𝜎2

2

(
1 + |𝜆|𝑏

1 − 𝑏 |𝜆|

)
= 1 + 𝜆2𝜎2

2

(
1

1 − 𝑏 |𝜆|

)
≤ exp

(
𝜆2𝜎2/2
1 − 𝑏 |𝜆|

)
.

The proof is complete by applying Proposition 4.6 to get 𝑏 = 𝐵/3.

We can now prove another version of Bernstein’s inequality for random variables that satisfy Bernstein’s
moment condition.

Theorem 4.9 (Bernstein’s inequality). Let 𝑋1, . . . , 𝑋𝑛 be independent random variables with means 𝔼𝑋𝑖 = 𝜇𝑖
and variances Var [𝑋𝑖] = 𝜎2

𝑖
for 𝑖 = 1, . . . , 𝑛. If the random variables also satisfy Bernstein’s moment condition

with parameter 𝑏, then

Pr

(
𝑛∑
𝑖=1

𝑋𝑖 − 𝜇𝑖 ≥ 𝑡

)
≤ exp

(
− 𝑡2/2∑𝑛

𝑖=1 𝜎
2
𝑖
+ 𝑏𝑡

)
,

and, by symmetry and the union bound,

Pr

(����� 𝑛∑
𝑖=1

𝑋𝑖 − 𝜇𝑖

����� ≥ 𝑡

)
≤ 2 exp

(
− 𝑡2/2∑𝑛

𝑖=1 𝜎
2
𝑖
+ 𝑏𝑡

)
.

Proof. The result follows from a direct application of Chernoff’s method and Lemma 4.8; see [Wai19,
Proposition 2.14] for details.

Let us finish this section by briefly recalling a useful technique for bridging tail bounds and high-probability
bounds. Consider Hoeffding’s inequality (Lecture 3, Proposition 1) and assume for simplicity that the
random variables are bounded in the unit interval. For notational convenience, let 𝑆𝑛 B

∑𝑛
𝑖=1 𝑋𝑖 so that

the tail bound is
Pr(𝑆𝑛 − 𝔼𝑆𝑛 ≥ 𝑡) ≤ exp

(
−2𝑡2/𝑛

)
,

which can be rewritten as

Pr(𝑆𝑛 − 𝔼𝑆𝑛 < 𝑡) > 1 − exp
(
−2𝑡2/𝑛

)
C 1 − 𝛿.

Expressing 𝑡 in terms of 𝛿 yields the equivalent high-probability bound

Pr

(
𝑆𝑛 − 𝔼𝑆𝑛 <

√
𝑛 log(1/𝛿)

2

)
> 1 − 𝛿.
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Figure 1: Comparison of Hoeffding’s high-probability bound (Eq. 3) and Bernstein’s high-probability
bound (Eq. 5) for𝑋1, . . . , 𝑋𝑛

iid∼ Ber(𝑝)−𝑝with varying 𝑝 ∈ [0, 1], 𝑛 = 50 and 𝛿 = 0.01. If Var [𝑋1] = 𝑝(1−𝑝)
is large (𝑝 close to 0.5), Hoeffding’s outperforms Bernstein’s. For small variance (𝑝 close to 0 or 1),
Bernstein’s is preferred.

4.2 Comparing bounds

Let 𝑋1, . . . , 𝑋𝑛
iid∼ Ber(𝑝) − 𝑝 be distributed as a centered Bernoulli with parameter 𝑝 ∈ [0, 1]. Note that

−𝑝 ≤ 𝑋1 ≤ 1 − 𝑝 and 𝔼𝑋1 = 0, so Hoeffding’s inequality gives

Pr

(����� 1𝑛 𝑛∑
𝑖=1

𝑋𝑖

����� ≥ 𝑡

)
≤ 2 exp

(
−2𝑛𝑡2

)
. (2)

Restating this result as a high-probability bound as outlined above yields that, with probability at least
1 − 𝛿 ∈ (0, 1), ����� 1𝑛 𝑛∑

𝑖=1
𝑋𝑖

����� ≤
√

log(2/𝛿)
2𝑛 . (3)

Note that this upper bound depends on 𝑛 and 𝛿, but not on 𝑝. Given that we know Var [𝑋1] = 𝑝(1 − 𝑝),
one might expect to do better under certain situations by using information about the variance. Since
|𝑋1 | ≤ max(𝑝, 1 − 𝑝) ≤ 1, we can apply Bernstein’s inequality to get

Pr

(����� 1𝑛 𝑛∑
𝑖=1

𝑋𝑖

����� ≥ 𝑡

)
≤ 2 exp

(
− 𝑛𝑡2

2𝑝(1 − 𝑝) + 2𝑡/3

)
. (4)

By solving 𝛿 B 2 exp
(
− 𝑛𝑡2

2𝑝(1−𝑝)+2𝑡/3

)
for 𝑡, we can restate the result as a high-probability bound. Indeed,

with probability at least 1 − 𝛿 ∈ (0, 1),

| 1
𝑛

𝑛∑
𝑖=1

𝑋𝑖 | ≤

√(
log(2/𝛿)

3𝑛

)2
+

2𝑝(1 − 𝑝) log(2/𝛿)
𝑛

+
log(2/𝛿)

3𝑛 . (5)

For a cleaner but less tight bound, recall that
√
𝑎 + 𝑏 ≤

√
𝑎 +

√
𝑏 for all 𝑎, 𝑏 ∈ ℝ≥0, so

| 1
𝑛

𝑛∑
𝑖=1

𝑋𝑖 | ≤
√

2𝑝(1 − 𝑝) log(2/𝛿)
𝑛

+
2 log(2/𝛿)

3𝑛 .
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Figure 2: Comparison of Hoeffding’s tail bound (Eq. 2) and Bernstein’s tail bound (Eq. 4) for
𝑋1, . . . , 𝑋𝑛

iid∼ Ber(𝑝) − 𝑝 with 𝑝 = 0.9 (left panel; low variance) and 𝑝 = 0.5 (right panel; high variance),
𝑡 = 0.2 and varying sample size 𝑛. Hoeffding’s inequality outperforms Bernstein’s when the variance
Var [𝑋1] = 𝑝(1 − 𝑝) is large; Bernstein’s is preferred on the low-variance regime. The gap between the
bounds is especially prominent for small 𝑛 and decreases as 𝑛 grows.

In Figure 1, we analyze Hoeffding’s high-probability bound (Equation 3) and Bernstein’s high-probability
bound (Equation 5) for the centered Bernoulli example with 𝑋1, . . . , 𝑋𝑛

iid∼ Ber(𝑝) − 𝑝 with 𝑝 varying in
the unit interval while 𝑛 = 50 and 𝛿 = 0.01 are kept fixed. On the one hand, when 𝑝 is close to 0.5, the
variance Var [𝑋1] = 𝑝(1 − 𝑝) is large and Hoeffding’s gives a better bound. On the other hand, when 𝑝
close to 0 or 1 and the variance therefore small, Bernstein’s is preferred.
Figure 2 shows a complementary analysis of the tail bounds (Equations 2 and 4) for the same centered
Bernoulli example. Now, the parameter of the distribution is fixed at 𝑝 = 0.9 (left panel; low variance) or
𝑝 = 0.5 (right panel; high variance), 𝑡 = 0.2 and the sample size 𝑛 varies from 10 to 100. Once again, we
observe Hoeffding’s advantage when the variance is large and Bernstein’s when it is low. Importantly,
we see that the difference between the bounds is especially prominent for small sample sizes and less
relevant for large 𝑛.
For a complementary comparison, first recall from Lecture 1, Definition 1, that a zero-mean random
variable 𝑋 is sub-Gaussian with parameter 𝜎2 if, for all 𝜆 ∈ ℝ,

𝔼 exp(𝜆𝑋) ≤ exp
(
𝜆2𝜎2/2

)
. (6)

In the literature, the parameter 𝜎2 is oftentimes referred to as proxy variance to emphasize it is not
necessarily the true variance of the random variable. One may also encounter the term optimal proxy
variance, 𝜎2

opt, to denote the smallest proxy variance such that Equation 6 holds. Then, from [Riv12,
Proposition 2.1], we have that every proxy variance at most equal to the true variance:

Var [𝑋] ≤ 𝜎2
opt ≤ 𝜎2.

A natural question that arises is how different proxy variances compare to one another and to the true
variance. Recall that the variance for the centered Bernoulli is given by

Var [𝑋] = 𝑝(1 − 𝑝), (7)
Hoeffding’s lemma asserts that

𝔼 exp(𝜆𝑋) ≤ exp
(
𝜆2

2 · 1 − 𝑝 − (−𝑝)
8

)
= exp

(
𝜆2

2
1
4

)
, (8)
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Figure 3: Comparison of the true variance (solid) of a centered Bernoulli random variable with varying
parameter 𝑝, the proxy variance from Hoeffding’s lemma (dashed) and the optimal proxy variance that
comes from Kearns-Saul inequality (dashdotted).

and Kearns-Saul inequality yields

𝔼 exp(𝜆𝑋) ≤ exp ©­«𝜆
2

2 · 1 − 2𝑝

2 log 1−𝑝
𝑝

ª®¬ . (9)

In fact, the optimal proxy variance 𝜎2
opt for the centered Bernoulli can be shown to be that from Kearns-Saul

inequality, i.e., 1−2𝑝
2 log 1−𝑝

𝑝

[AMN20, Proposition 4.1].

Figure 3 compares the proxy variances coming from Equations 8 and 9 above to the true variance of the
centered Bernoulli defined in Equation var-true. Note that, as expected, the true variance is a uniform
lower bound and that the proxy variance from Kearns-Saul is smaller than the one from Hoeffding’s.

4.3 Another application of Bernstein’s inequality
Instead of bounding the probability of a random variable deviating from its mean by a given constant, one
might be interested in deviations relative to the mean, that is, Pr[|𝑋 − 𝔼𝑋 | ≥ 𝛾𝔼𝑋] for some 𝛾 ∈ [0, 1].
Let us consider the case 𝑋 ∼ Bin(𝑛, 𝑝); equivalently, 𝑋 =

∑𝑛
𝑖=1 𝑋𝑖 where 𝑋1, . . . , 𝑋𝑛

iid∼ Ber(𝑝). From
Bernstein’s inequality and the triangle inequality (see Section Comparing bounds),

|𝑋 − 𝔼𝑋 | ≤
√

2𝑛𝑝(1 − 𝑝) log(2/𝛿) + 2
3 log(2/𝛿).

Recall that for any 𝑎, 𝑏 ≥ 0 and 𝛾 > 0, we have
√
𝑎𝑏 ≤ 1

2(𝛾𝑎 + 𝑏/𝛾). Let 𝑎 ≡ 2𝑛𝑝 = 2𝔼𝑋 and
𝑏 ≡ (1 − 𝑝) log(2/𝛿), such that

|𝑋 − 𝔼𝑋 | ≤ 1
2

(
2𝛾𝔼𝑋 +

(1 − 𝑝) log(2/𝛿)
𝛾

)
+ 2

3 log(2/𝛿)

= 𝛾𝔼𝑋 + log(2/𝛿)
(

1 − 𝑝
2𝛾 + 2

3

)
.
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By noting that 1− 𝑝 ≤ 1 and introducing the assumption that 𝛾𝔼𝑋 ≥ log(2/𝛿)( 1
2𝛾 + 2

3), we have that, with
probability at least 1 − 𝛿,

𝔼𝑋 − 2𝛾𝔼𝑋 ≤ 𝑋 ≤ 𝔼𝑋 + 2𝛾𝔼𝑋.

We can see from this that in certain circumstances a sum of Bernoulli random variables could be replaced
by a proportion of its expectation. This is known as a multiplicative Chernoff bound. For 𝛾 = 0.1 for
example, we have 0.8 · 𝔼𝑋 ≤ 𝑋 ≤ 1.2 · 𝔼𝑋. We emphasize that this result depends on the assumption
that 𝛾𝔼𝑋 ≥ log(2/𝛿)( 1

2𝛾 + 2
3), but note that this is reasonable, especially for large 𝑛.

In the next lecture, we will start with an application of Bernstein’s inequality to statistical learning theory
with roots in the works of Vladimir Vapnik and Alexey Chervonenkis in the 1960s and Leslie Valiant in
the 1980s.
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STAT210B Theoretical Statistics Lecture 5 - 01/30/2024

Lecture 5: Learning Theory and Maximal Inequalities
Instructor: Nikita Zhivotovskiy Scriber: Sohom Paul Proofreader: Dylan Webb

5.1 Statistical Learning Theory
Consider the following simple model for learning a binary classifier:

• Our instances are drawn from a set 𝒳.

• The true classifier 𝑓 ∗ is an element of some finite family ℱ of functions from 𝒳 to {0, 1}. Let 𝑀
denote |ℱ |.

• We observe the labeled training set (𝑋1, 𝑓
∗(𝑋1)), . . . , (𝑋𝑛 , 𝑓 ∗(𝑋𝑛)) for training points 𝑋1, . . . , 𝑋𝑛

drawn i.i.d. from the (unknown) probability distribution 𝒫 over the instance space 𝒳.

• Our goal is to output some decision rule 𝑓 such that our decision rule agrees with 𝑓 ∗ with high
probability on new samples from 𝒫. Namely, we seek to minimize Pr𝑋∼𝒫( 𝑓 (𝑋) ≠ 𝑓 ∗(𝑋)).

This basic model has been studied by Vapnik and Chervonenkis in [VC71] and Valiant in [Val84].

Definition 5.1. Let the risk of classifier 𝑓 , denoted 𝑅( 𝑓 ), be the probability of misclassification when using
classifier 𝑓 for new data drawn from our distribution 𝒫. Namely,

𝑅( 𝑓 ) := Pr
𝑋∼𝑃

( 𝑓 (𝑋) ≠ 𝑓 ∗(𝑋)).

Definition 5.2. Let the empirical risk of classifer 𝑓 , denoted 𝑅𝑛( 𝑓 ), be the proportion of errors that classifier 𝑓
makes on the observed training data. Namely,

𝑅𝑛( 𝑓 ) := 1
𝑛

𝑛∑
𝑖=1

𝟙{ 𝑓 (𝑋𝑖) ≠ 𝑓 ∗(𝑋𝑖)}.

Consider some fixed 𝑓 . Note that the indicators 𝟙{ 𝑓 (𝑋𝑖) ≠ 𝑓 ∗(𝑋𝑖)} are i.i.d. Bernoulli trials, each with
probability 𝑅( 𝑓 ) of occurring, so we conclude that 𝑅𝑛( 𝑓 ) is a scaled binomial random variable. Applying
Bernstein’s inequality shows, with probability at least 1 − 𝛿,

𝑅( 𝑓 ) − 𝑅𝑛( 𝑓 ) ≤
√

2𝑅( 𝑓 )(1 − 𝑅( 𝑓 )) log(1/𝛿)
𝑛

+
2 log(1/𝛿)

3𝑛

≤
√

2𝑅( 𝑓 ) log(1/𝛿)
𝑛

+
2 log(1/𝛿)

3𝑛 . (*)

In order to get the tightest bound on the risk, our strategy will be to choose 𝑓 ∈ ℱ such that 𝑓 (𝑋𝑖) = 𝑓 ∗(𝑋𝑖)
for all 𝑖 ∈ {1, . . . , 𝑛} (so 𝑅𝑛( 𝑓 ) = 0). Such a 𝑓 certainly exists because 𝑓 ∗ itself is contained in ℱ . However,
we cannot naively use our analysis using Bernstein’s inequality above to bound the risk, as the choice of 𝑓
depends on the entire observed dataset (𝑋1, . . . , 𝑋𝑛), and thus we do not necessarily have independence
of the indicators 𝟙{ 𝑓 (𝑋𝑖) ≠ 𝑓 ∗(𝑋𝑖)}.

21



Instead, observe that we have for any fixed 𝑓 , (*) shows, with probability 1 − 𝛿/𝑀,

𝑅( 𝑓 ) − 𝑅𝑛( 𝑓 ) ≤
√

2𝑅( 𝑓 ) log(𝑀/𝛿)
𝑛

+
2 log(𝑀/𝛿)

3𝑛 .

Thus, applying union bound to the different 𝑓 ∈ ℱ shows, with probability at least 1 − 𝛿,

∀ 𝑓 ∈ ℱ . 𝑅( 𝑓 ) − 𝑅𝑛( 𝑓 ) ≤
√

2𝑅( 𝑓 ) log(𝑀/𝛿)
𝑛

+
2 log(𝑀/𝛿)

3𝑛 .

Because we chose 𝑓 from ℱ to have 𝑅𝑛( 𝑓 ) = 0, we conclude

𝑅( 𝑓 ) ≤

√
2𝑅( 𝑓 ) log(𝑀/𝛿)

𝑛
+

2 log(𝑀/𝛿)
3𝑛 .

One can check that for 𝑅( 𝑓 ) > 10 log(𝑀/𝛿)/𝑛 the inequality above is violated, so we conclude that

𝑅( 𝑓 ) ≤
10 log(𝑀/𝛿)

𝑛
=

10(log(𝑀) + log(1/𝛿))
𝑛

.

For an alternative proof, fix 𝜀 ∈ (0, 1) and notice, by union bound,

Pr(∃ 𝑓 ∈ ℱ : 𝑅( 𝑓 ) ≥ 𝜀, 𝑅𝑛( 𝑓 ) = 0) ≤
∑
𝑓 ∈ℱ

Pr(𝑅( 𝑓 ) ≥ 𝜀, 𝑅𝑛( 𝑓 ) = 0)

≤ 𝑀(1 − 𝜀)𝑛 ,

The final inequality holds because, given that the risk of classifier 𝑓 is at least 𝜀, each 𝑋𝑖 has an
independent probability of at most 1 − 𝜀 of being correctly classified. Recalling 1 − 𝑥 ≤ exp(−𝑥) holds for
all 𝑥, we obtain

Pr(∃ 𝑓 ∈ ℱ : 𝑅( 𝑓 ) ≥ 𝜀, 𝑅𝑛( 𝑓 ) = 0) ≤ 𝑀 exp(−𝜀𝑛),

so for 𝑛 ≥ (log𝑀 + log(1/𝛿))/𝜀 the probability of there existing some 𝑓 with empirical risk 0 but true
risk at least 𝜀 can be bounded by 𝛿. We conclude that with probability at least 1 − 𝛿 that 𝑅( 𝑓 ) is bounded
by (log𝑀 + log(1/𝛿))/𝑛. This gives the same result as before, up to constants.

5.2 Maximal Inequalities
Previously, we have derived bounds on sums of random variables. It will be useful to similarly derive
bounds on maxima of sets of random variables.

Theorem 5.3. Let 𝑋1, . . . , 𝑋𝑛 be zero-mean, not necessarily independent, subgaussian random variables. Namely,
suppose 𝔼

[
exp(𝜆𝑋𝑖)

]
≤ exp

(
𝜆2𝜎2/2

)
holds for all 𝜆 and for each 𝑖 ∈ [𝑛]. Then,

𝔼 [max(𝑋1, . . . , 𝑋𝑛)] ≤
√

2𝜎2 log 𝑛.

Proof. Using Jensen’s inequality, we can compute for 𝜆 > 0

𝔼 [max(𝑋1, . . . , 𝑋𝑛)] =
1
𝜆
𝔼

[
log exp (𝜆max(𝑋1, . . . , 𝑋𝑛))

]
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≤ 1
𝜆

log𝔼
[
exp(𝜆max(𝑋1, . . . , 𝑋𝑛))

]
=

1
𝜆

log𝔼

[
max
𝑖

exp(𝜆𝑋𝑖)
]

≤ 1
𝜆

log𝔼

[∑
𝑖

exp(𝜆𝑋𝑖)
]

≤ 1
𝜆

log
(
𝑛 exp

(
𝜆2𝜎2

2

))
=

1
𝜆

log 𝑛 + 𝜆𝜎2

2 .

Taking the infimum of the right-hand side over 𝜆 shows the claim.

Theorem 5.4. Let 𝑋1, . . . , 𝑋𝑛 be zero-mean, not necessarily independent, subexponential random variables.
Namely, suppose that for all |𝜆| ≤ 1/𝑏 and 𝑖 ∈ [𝑛], we have

𝔼
[
exp(𝜆𝑋𝑖)

]
≤ exp

(
𝜆2𝜎2/2
1 − 𝑏 |𝜆|

)
.

Then,
𝔼 [max(𝑋1, . . . , 𝑋𝑛)] ≤

√
2𝜎2 log 𝑛 + 𝑏 log 𝑛.

In particular, there is an absolute constant 𝐶 such that

𝔼 [max(𝑋1, . . . , 𝑋𝑛)] ≤ 𝐶max
𝑖

∥𝑋𝑖 ∥𝜓1 log 𝑛.

Proof. Following the same steps as for the previous theorem, we deduce that for any 0 < 𝜆 < 1/𝑏,

𝔼 [max(𝑋1, . . . , 𝑋𝑛)] ≤
1
𝜆

log𝔼

[∑
𝑖

exp(𝜆𝑋𝑖)
]

≤ 1
𝜆

log
(
𝑛 exp

(
𝜆2𝜎2/2
1 − 𝑏𝜆

))
=

1
𝜆

log 𝑛 + 𝜆𝜎2

2(1 − 𝑏𝜆) .

Solving for the infimum over 𝜆 yields the first claim. The latter holds by noting that 𝑋𝑖 is
(𝐶1∥𝑋𝑖 ∥𝜓1 , 𝐶2∥𝑋𝑖 ∥𝜓1)-subexponential for some choice of absolute constants 𝐶1, 𝐶2, so we can collect the
terms together.

Theorem 5.5. For any, not necessarily independent, set of random variables 𝑋1, . . . , 𝑋𝑛 and 𝑝 ≥ 1, we have

𝔼 [max(𝑋1, . . . , 𝑋𝑛)] ≤ 𝑛1/𝑝 max
𝑖

∥𝑋𝑖 ∥𝐿𝑝 .

Proof. By Jensen’s inequality,

𝔼 [max(𝑋1, . . . , 𝑋𝑛)] ≤ 𝔼
[
(max(|𝑋1 |𝑝 , . . . , |𝑋𝑛 |𝑝))1/𝑝

]
≤ (𝔼 [max(|𝑋1 |𝑝 , . . . , |𝑋𝑛 |𝑝)])1/𝑝

≤ 𝑛1/𝑝 max
𝑖

∥𝑋𝑖 ∥𝐿𝑝 ,

as desired.
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Definition 5.6. We say 𝑔 : 𝒳𝑛 → ℝ satisfies the bounded differences property with constants 𝐶1, . . . , 𝐶𝑛 if,
for all 𝑖 ∈ [𝑛], we have

sup
𝑥1 ,...,𝑥𝑛∈𝒳
𝑥′
𝑖
∈𝒳

|𝑔(𝑥1, . . . , 𝑥𝑛) − 𝑔(𝑥1, . . . , 𝑥𝑖−1, 𝑥
′
𝑖 , 𝑥𝑖+1, . . . , 𝑥𝑛)| ≤ 𝐶𝑖 .

Theorem 5.7 (McDiarmid’s Inequality). Let 𝑔 : 𝒳 → ℝ satisfy the bounded differences property with constants
𝐶1 . . . , 𝐶𝑛 , and let 𝑋1, . . . , 𝑋𝑛 be independent random variables over 𝒳. Then,

Pr(𝑔(𝑋1, . . . , 𝑋𝑛) − 𝔼𝑔(𝑋1, . . . , 𝑋𝑛) ≥ 𝑡) ≤ exp

(
−2𝑡2∑
𝑖 𝐶

2
𝑖

)
.

Proof. Note 𝑔 := 𝑔(𝑋1, . . . , 𝑋𝑛) is a random variable, and define for 𝑖 ∈ {1, . . . , 𝑛}

𝑌𝑖 := 𝔼 [𝑔 | 𝑋1, . . . , 𝑋𝑖] − 𝔼 [𝑔 | 𝑋1, . . . , 𝑋𝑖−1] .

(In particular, 𝑌1 = 𝔼 [𝑔 | 𝑋1] − 𝔼 [𝑔].) Then, we have 𝑔 − 𝔼𝑔 =
∑
𝑖 𝑌𝑖 . Now, for each 𝑖 ∈ [𝑛] define

ℎ𝑖(𝑥1, . . . , 𝑥𝑖) := 𝔼 [𝑔 | 𝑋1 = 𝑥1, . . . , 𝑋𝑖 = 𝑥𝑖]. Observe

𝑌𝑖 ≤ sup
𝑥∈𝒳

ℎ𝑖(𝑋1, . . . , 𝑋𝑖−1, 𝑥) − ℎ𝑖−1(𝑋1, . . . , 𝑋𝑖−1),

𝑌𝑖 ≥ inf
𝑥∈𝒳

ℎ𝑖(𝑋1, . . . , 𝑋𝑖−1, 𝑥) − ℎ𝑖−1(𝑋1, . . . , 𝑋𝑖−1),

and thus 𝑌𝑖 | 𝑋1, . . . , 𝑋𝑖−1 belongs to an interval of size at most 𝐶𝑖 , by the bounded differences property,
and
𝔼 [𝑌𝑖 | 𝑋1, . . . , 𝑋𝑖−1] = 0 by iterated expectation. Thus, by Hoeffding’s Lemma,

𝔼
[
exp(𝜆𝑌𝑖) | 𝑋1, . . . , 𝑋𝑖−1

]
≤ exp

(
𝜆2𝐶2

𝑖

8

)
.

We obtain

𝔼
[
exp(𝜆(𝑔 − 𝔼𝑔))

]
= 𝔼

[
exp

(
𝜆

𝑛∑
𝑖=1

𝑌𝑖

)]
= 𝔼

[
exp

(
𝜆
𝑛−1∑
𝑖=1

𝑌𝑖

)
exp(𝜆𝑌𝑛)

]
= 𝔼𝑋1 ,...,𝑋𝑛−1

[
exp

(
𝜆
𝑛−1∑
𝑖=1

𝑌𝑖

)
𝔼𝑋𝑛 [exp(𝜆𝑌𝑛)]

]
≤ 𝔼𝑋1 ,...,𝑋𝑛−1

[
exp

(
𝜆
𝑛−1∑
𝑖=1

𝑌𝑖

)
exp

(
𝜆2𝐶2

𝑖

8

)]
.

Iterating this argument yields

𝔼
[
exp(𝜆(𝑔 − 𝔼𝑔))

]
≤ exp

(
𝜆2 ∑

𝑖 𝐶
2
𝑖

8

)
.

Finally, we use the Chernoff bound to finish the proof.

Remark 5.8. 𝑔(𝑋1, . . . , 𝑋𝑛) =
∑
𝑖 𝑋𝑖 for𝑋𝑖 ∈ [0, 1] satisfies the bounded differences property. Thus, McDiarmid’s

inequality generalizes Hoeffding’s lemma.

24



5.3 Kernel Density Estimation
Consider observing 𝑋1, . . . , 𝑋𝑛 i.i.d. samples from some (unknown) probability density 𝑓 over ℝ. We
seek to estimate the unknown density from our data using a kernel estimator

𝑓𝑛(𝑥;𝑋1, . . . , 𝑋𝑛) =
1
𝑛ℎ

𝑛∑
𝑖=1

𝐾

(
𝑥 − 𝑋𝑖
ℎ

)
,

where 𝐾 : ℝ → ℝ is some kernel function satisfying 𝐾(𝑥) ≥ 0 for all 𝑥 ∈ ℝ and
∫
𝐾(𝑥) 𝑑𝑥 = 1, and ℎ is an

appropriate hyperparameter representing our desired window length. We measure the quality of our
estimator using expected 𝐿1 distance:

𝔼𝑋1 ,...,𝑋𝑛

∫
ℝ

| 𝑓𝑛(𝑥;𝑋1, . . . , 𝑋𝑛) − 𝑓 (𝑥)| 𝑑𝑥.

Next lecture, we will discuss how we can use McDiarmid’s inequality to bound this objective.
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STAT210B Theoretical Statistics Lecture 6 - 02/01/2024

Lecture 6: Kernel Density Estimation and Norm Concentration
Instructor: Nikita Zhivotovskiy Scriber: Julian Morimoto Proofreader: Daniel Etaat

6.1 Kernel Density Estimation (continued)
We begin this lecture by continuing our discussion of density estimation. Let 𝑥1, . . . , 𝑥𝑛 be IID samples
drawn from some distribution with an unknown density function 𝑓 . To estimate 𝑓 , we may employ
kernel density estimation, a non-parametric method to estimate the density of a random variable. We
estimate 𝑓 by

𝑓𝑛 := 1
𝑛ℎ

∑
𝑗∈[𝑛]

𝐾
( 𝑥 − 𝑥 𝑗

ℎ

)
where 𝐾 is some kernel function and ℎ > 0 is parameter sometimes called the bandwidth. Recall that a
kernel function is a non-negative function that satisfies

∫
ℝ
𝐾(𝑥)𝑑𝑥 = 1.

To determine whether 𝑓𝑛 is a good estimator, we may want to consider its 𝐿1 distance from 𝑓 defined as
∥ 𝑓𝑛 − 𝑓 ∥1 =

∫
ℝ
| 𝑓𝑛(𝑥) − 𝑓 (𝑥)|𝑑𝑥. This is infeasible to compute since 𝑓 is unknown. Instead, we will study

its expectation:

𝔼𝑥1 ,...,𝑥𝑛 [∥ 𝑓𝑛 − 𝑓 ∥1].

We will attempt to bound Pr
(
|∥ 𝑓𝑛 − 𝑓 ∥1 − 𝔼𝑥1 ,...,𝑥𝑛 [∥ 𝑓𝑛 − 𝑓 ∥1]| ≥ 𝑡

)
via McDiarmid’s inequality (see

lecture 5 notes). To do this we must first show that 𝑔(𝑥1, . . . , 𝑥𝑛) := ∥ 𝑓𝑛 − 𝑓 ∥1 satisfies the bounded
differences property (note that 𝑥1, . . . , 𝑥𝑛 are used to construct 𝑓𝑛). Fix some 𝑖 ∈ [𝑛] and let 𝑥′

𝑖
≠ 𝑥𝑖 . Then

we have that
��𝑔(𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖 , 𝑥𝑖+1, . . . , 𝑥𝑛) − 𝑔(𝑥1, . . . , 𝑥𝑖−1, 𝑥

′
𝑖
, 𝑥𝑖+1, . . . , 𝑥𝑛)

�� is equal to:������
∫
ℝ

������ 1
𝑛ℎ

∑
𝑗

𝐾
( 𝑥 − 𝑥 𝑗

ℎ

)
− 𝑓 (𝑥)

������ 𝑑𝑥 −
∫
ℝ

������ 1
𝑛ℎ

∑
𝑗≠𝑖

𝐾
( 𝑥 − 𝑥 𝑗

ℎ

)
+ 1
𝑛ℎ

𝐾

(
𝑥 − 𝑥′

𝑖

ℎ

)
− 𝑓 (𝑥)

������ 𝑑𝑥
������ .

By the triangle inequality this is less than or equal to:∫
ℝ

1
𝑛ℎ

����𝐾 ( 𝑥 − 𝑥𝑖
ℎ

)
− 𝐾

(
𝑥 − 𝑥′

𝑖

ℎ

)���� 𝑑𝑥,
which is less than or equal to 2/𝑛 by the properties of 𝐾. Then by McDiarmid’s inequality we have that,

Pr
(
|∥ 𝑓𝑛 − 𝑓 ∥1 − 𝔼𝑥1 ,...,𝑥𝑛 [∥ 𝑓𝑛 − 𝑓 ∥1]| ≥ 𝑡

)
≤ 2 exp

(
− 𝑡

2𝑛

2

)
.

This would be tough result to prove without McDiarmid’s inequality and the bounded differences
property.
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6.2 Concentration of Norms of Random Vectors
Suppose 𝑋 ∼ 𝒩(0, 𝐼𝑑) or equivalently 𝑋𝑖

iid∼ 𝒩(0, 1) for 𝑖 = 1, . . . , 𝑑. We would like to study the
concentration of ∥𝑋∥2

2 =
∑𝑑
𝑖=1 𝑋

2
𝑖
. Since each 𝑋𝑖 is trivially sub-Gaussian, we know that their sub-

Gaussian norms ∥𝑋𝑖 ∥𝜓2 are finite. Then ∥𝑋2
𝑖
∥𝜓1 ≤ 𝐶 for some finite 𝐶 since ∥𝑋2

𝑖
∥𝜓1 = ∥𝑋𝑖 ∥2

𝜓2
. Noting

that 𝔼
[
∥𝑋∥2] = 𝑑, we can apply Bernstein’s inequality to show that:

Pr
(
|∥𝑋∥2

2 − 𝑑 | ≥ 𝑡
)
≤ 2 exp

(
−𝑐′ min

{
𝑡2

𝑑𝐶2 ,
𝑡

𝐶

})
.

Normalizing by 𝑑 and restricting 𝑡 ∈ (0, 1) yields

Pr

(����� ∥𝑋∥2
2

𝑑
− 1

����� ≥ 𝑡

)
≤ 2 exp

(
−𝑐𝑡2𝑑

)
. (1)

This is an interesting result that shows that the norm of some nice random vector concentrates around 𝑑
as its dimension, 𝑑 increases. In the next section, we use this machinery to prove another useful result.

Remark 6.1. Given the law of large numbers, this is a reasonable thing to expect. As 𝑑 increases, ∥𝑋∥2
2 looks

more and more like a sum of a large number of independent random variables whose expectation is 1 (since the
coordinates of 𝑋 are all centered at 0 and have variance 1). What this result helps us see is the rate at which this
concentration happens as we increase the dimension.

6.2.1 The Johnson–Lindenstrauss Lemma
Let 𝑢1, . . . , 𝑢𝑛 ∈ ℝ𝑑 and 𝑚 ≪ 𝑑. We would like to find a projection map 𝜋 : ℝ𝑑 → ℝ𝑚 that preserves
distances between these vectors. Informally, we would like 𝜋 to satisfy

∥𝜋(𝑢𝑖) − 𝜋(𝑢𝑗)∥2 ≈ ∥𝑢𝑖 − 𝑢𝑗 ∥2

for 𝑖 , 𝑗 ∈ [𝑛].
We can construct such a projection as follows. Let Γ be an 𝑚× 𝑑 random matrix with normally distributed
entries Γ𝑖 𝑗

iid∼ 𝒩(0, 1). Let 𝑣 ∈ 𝑆𝑑−1 = {𝑥 ∈ ℝ𝑑 : ∥𝑥∥2
2 = 1}. Then Γ𝑣 ∼ 𝒩(0, 𝐼𝑚). Then by (1) we have that

for 𝑡 ∈ (0, 1):

Pr

(����� ∥Γ𝑣∥2
2

𝑚
− 1

����� ≥ 𝑡

)
≤ 2 exp

(
−𝑐𝑡2𝑚

)
.

We can generalize this bound to an arbitary 𝑣 ∈ ℝ𝑑 as:

Pr ©­«
������ ∥

1√
𝑚
Γ𝑣∥2

2

∥𝑣∥2
2

− 1

������ ≥ 𝑡
ª®¬ ≤ 2 exp

(
−𝑐𝑡2𝑚

)
.

Finally, applying the union bound over all pairs (𝑢𝑖 , 𝑢𝑗) leads to the following bound:

Pr

( ∥ 1√
𝑚
Γ(𝑢𝑖 − 𝑢𝑗)∥2

2

∥𝑢𝑖 − 𝑢𝑗 ∥2
2

∉ [1 − 𝑡 , 1 + 𝑡]}
)
≤ 2

(
𝑛

2

)
exp

(
−𝑐2𝑡2𝑚

)
:= 𝛿.
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Alternatively, we could say that with probability 1 − 𝛿,

1 − 𝑡 ≤
∥ 1√

𝑚
Γ(𝑢𝑖 − 𝑢𝑗)∥2

2

∥𝑢𝑖 − 𝑢𝑗 ∥2
2

≤ 1 + 𝑡

for 𝑚 ≥ 1
𝑐𝑡2

ln
(
𝑛2/𝛿

)
. Our desired projection is then 𝜋(𝑣) = 1√

𝑚
Γ𝑣. What is rather remarkable about this

bound is that it does not depend on the dimension 𝑑. However, 𝑚 increases with 𝑛, so this projection
becomes less efficient as we increase the amount of data we are projecting. If 𝑛 is infinite, we will need a
smarter projection scheme than the one presented here.

Remark 6.2 (Alternative view of the result). We could also formulate the bound in terms of 𝑡. One might be
interested in doing this when there’s a cap on the dimension of the space to which we wish to project our data, and
we want to know what might be the "worst" discrepancy between the distance between the projected vectors as
a multiple of the distance of the unprojected vectors. Formally, this would be the infimum of all 𝑡 such that the
inequality is satisfied for fixed 𝑚, 𝑛, and 𝛿.

Remark 6.3 (A technique for achieving dimension free bounds). One way of thinking about why this does
not depend on the dimension 𝑑 is that we are ensuring that whatever goes into the projection has norm 1, and this is
achieved by dividing by the norm of the vector that is being projected. In other words, we are able to achieve this nice
behavior because we frame our question about acceptable distances between projected and unprojected vectors as one
of relative distance by way of ratios, rather than absolute differences (i.e., the distance between ∥𝑚− 1

2Γ(𝑢𝑖 − 𝑢𝑗)∥2
2

and ∥𝑢𝑖 − 𝑢𝑗 ∥2
2 is measured relative to the size of ∥𝑢𝑖 − 𝑢𝑗 ∥2

2).
By doing this, we ensure that whatever the projection produces is going to be some vector whose entries are sums of
centered normal random variables with variances that are essentially uniformly controlled (because the projection
works by taking linear combinations of entries of Γ with the constants being determined by the vector being projected,
which we are essentially bounding in size through normalization of that vector). We would expect these sums to
concentrate predictably even for very large 𝑑 since more and more of these random variables are added together and
we would be able to apply results like the Lindeberg–Feller or Lyapunov Central Limit Theorems. Without dividing
by the size of the vector that we are projecting, there is no guarantee that the variances of the normal r.v.’s that we
are adding up will be controlled in this way.
For example, if we applied Γ to some unnormalized vector, 𝑣 = (2𝑑 , ..., 2𝑑), of dimension 𝑑, then the entries of Γ(𝑣)
would be linear combinations of many normal random variables with very large variances for large 𝑑. That kind
of object is not something that we would easily expect to concentrate predictably for very large 𝑑. It is through
normalizing the vectors that we are projecting that we are able to ensure that whatever the projection produces is
going to be something that behaves reasonably well. Thus, perhaps another lesson to take from this result is that
one way to control dependence on dimensionality in some kind of problem is to normalize in some way the high
dimensional objects that we are working with.

6.2.2 Concentration of ∥𝑋∥ instead of ∥𝑋∥2 squared
Proposition 6.4. Let 𝑋 be a random vector with independent coordinates 𝑋𝑖 for 𝑖 = 1, . . . , 𝑛 such that 𝔼[𝑋𝑖] = 0
and 𝔼[𝑋2

𝑖
] = 1. Let 𝐾 = max𝑖∈[𝑛] ∥𝑋𝑖 ∥𝜓2 . Then,


∥𝑋∥2 −

√
𝑑




𝜓2

≤ 𝑐𝐾2.

Proof. We still begin by looking at ∥𝑋∥2
2. Note that ∥𝑋𝑖 ∥𝜓2 ≤ 𝐾 and ∥𝑋2

𝑖
∥𝜓1 = ∥𝑋𝑖 ∥2

𝜓2
≤ 𝐾2. Then by

Bernstein’s inequality we have that:

Pr
(����1𝑑 (

∥𝑋∥2
2 − 𝑑

)���� ≥ 𝑡

)
≤ 2 exp

(
−𝑐min

{
𝑡2𝑑

𝐾4 ,
𝑡𝑑

𝐾2

})
.
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We can assume WLOG that 𝐾 ≥ 1. This is established by the following argument. We know that the
sub-Gaussian norm ∥𝑋𝑖 ∥2

𝜓2
is proportional to its sub-Gaussian parameter 𝜎 up to some universal constant

where𝔼 exp(𝜆𝑋𝑖) ≤ exp
(
𝜆2𝜎2/2

)
for all𝜆. Comparing the Taylor series we have that 1+𝔼𝑋2

𝑖
𝜆2/2+𝑂(𝜆3) ≤

1 + 𝜎2𝜆2/2 + 𝑂(𝜆3) ⇒ 𝔼𝑋2
𝑖
+ 𝑂(𝜆) ≤ 𝜎2. Taking 𝜆 → 0 and using the assumption that 𝔼𝑋2

𝑖
= 1 we

have that 𝜎2 ≥ 1. Then, ∥𝑋𝑖 ∥2
𝜓2

> 𝑐 for some universal constant which we can fold into the remaining
calculations. With this assumption we have that:

Pr
(����1𝑑 (∥𝑋∥2

2 − 𝑑)
���� ≥ 𝑡

)
≤ 2 exp

(
−𝑐𝐾−4 min{𝑡2𝑑, 𝑡𝑑}

)
.

Note the following fact: for all 𝑧, 𝑢 ∈ ℝ, that |𝑧 − 1| ≥ 𝑢 implies that |𝑧2 − 1| ≥ max{𝑢, 𝑢2}. Combining
this with the bound above gives:

Pr
(���� ∥𝑋∥2√

𝑑
− 1

���� ≥ 𝑡

)
≤ 2 exp

(
−𝑐𝑑𝐾−4 min{max{𝑡 , 𝑡2},max{𝑡2, 𝑡4}}

)
≤ 2 exp

(
−𝑐𝑑𝑡2/𝐾4

)
.

By the equivalent definitions of sub-Gaussianity this implies the desired result.

6.2.3 Concentration Without Independent Coordinates
Many random vectors do not have independent coordinates. So how can we handle situations like this?
We begin with some definitions.

Definition 6.5. Let 𝑋 be a 𝑑-dimensional random vector. 𝑋 is isotropic if 𝔼[𝑋𝑋𝑇] = 𝐼𝑑.

Note the following nice result. If 𝑌 is a random vector with mean 𝔼𝑋 = 𝜇 and invertible covariance
matrix Σ then, 𝑋 = Σ−1/2(𝑌 − 𝜇) is isotropic.
If 𝑋 is isotropic, this does not necessarily mean that the coordinates of 𝑋 are independent. Consider
sampling the uniform distribution on a unit sphere 𝑋 ∼

√
𝑑 Unif(𝑆𝑑−1). 𝑋 is isotropic since 𝔼𝑋 = 0 and

Σ = 𝐼𝑑. However, the coordinates of 𝑋 are not independent since knowing any 𝑑 − 1 coordinates of 𝑋
fully determines the remaining coordinate (up to a ±1 sign).
To further handle the situation without independence, we’ll introduce some different but closely related
definitions of sub-Gaussianity in multiple dimensions. In the definitions below, let 𝑋 be a 𝑑-dimensional
random vector with 𝔼𝑋 = 0.

Definition 6.6. 𝑋 is sub-Guassian if ∥𝑋∥𝜓2 := sup𝑣∈𝑆𝑑−1 ∥⟨𝑥, 𝑣⟩∥𝜓2 < ∞.

Definition 6.7. 𝑋 is sub-Gaussian if for all 𝑣 ∈ 𝑆𝑑−1, ∥⟨𝑣, 𝑥⟩∥𝜓2 ≤ 𝐶
√
𝑣𝑇Σ𝑣.

Definition 6.8. 𝑋 is sub-Gaussian if for all 𝜆 ∈ ℝ, 𝑣 ∈ 𝑆𝑑−1, 𝔼[exp(𝜆⟨𝑣, 𝑥⟩)] ≤ exp
(
𝜆2𝑣𝑇Σ𝑣

2

)
.

Note that Definition 6.6 does not necessarily imply definitions 6.7 and 6.8 (one can construct simple
examples using Bernoulli random variables illustrating why this is the case). Definitions 6.7 and 6.8 are
equivalent up to multiplicative constants, and they both imply definition 6.6.
Further, note that in definition 6.8, Σ need not be a covariance matrix (the best case). It can also be
any other "larger" positive semi-definite matrix, which works as a covariance proxy. For two positive
semi-definite matrices, 𝐴 and 𝐵, we say that 𝐴 is larger than 𝐵 if and only if 𝐴 − 𝐵 is also a positive
semi-definite matrix, and denote this as 𝐵 ⪯ 𝐴. Notice also that definitions 6.7 and 6.8 are more
"variance-sensitive" than definition 6.6. We conclude this lecture with the following proposition.
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Proposition 6.9. Let 𝑋 be a 𝑑-dimensional random vector that is sub-Gaussian in the sense of definition 6.8.
Then, for all 𝛿 ∈ (0, 1) we have

Pr
(
∥𝑋∥ ≥

√
𝑇𝑟(Σ) +

√
2𝜆max(Σ) log(1/𝛿)

)
≤ 𝛿.

We will prove this proposition in the next lecture.
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STAT210B Theoretical Statistics Lecture 7 - 02/06/2024

Lecture 7: Norm of a Sub-Gaussian Random Vector
Instructor: Nikita Zhivotovskiy Scribe: Erez Buchweitz Proofreader: Zhiwei Xiao

Notation
All random vectors are assumed to be column vectors. For 𝑥, 𝑦 ∈ ℝ𝑑, the Euclidean inner product
is denoted by ⟨𝑥, 𝑦 |𝑥, 𝑦⟩ = 𝑥1𝑦1 + ... + 𝑥𝑑𝑦𝑑 = 𝑥⊤𝑦, and the Euclidean norm is denoted by ∥𝑥∥2 =√
⟨𝑥, 𝑥 |𝑥, 𝑥⟩ =

√
𝑥⊤𝑥 =

√
𝑥2

1 + ... + 𝑥
2
𝑑
. The unit sphere 𝑆𝑑−1 ⊆ ℝ𝑑 is the set of all points which have

Euclidean norm one, i.e. 𝑆𝑑−1 = {𝑥 ∈ ℝ𝑑 : ∥𝑥∥2 = 1}. For a random variable 𝑋 ∈ ℝ with finite variance,
the 𝐿2 norm is defined by ∥𝑋∥𝐿2 =

√
𝔼 [𝑋2]. In denoting the normal distribution 𝒩𝑑(𝜇,Σ) the subscript 𝑑

indicates the dimension, e.g. implying the mean vector 𝜇 ∈ ℝ𝑑 and the covariance matrix Σ ∈ ℝ𝑑×𝑑. The
identity matrix in dimension 𝑑 is denoted 𝐼𝑑.

7.1 Norm of a Sub-Gaussian Random Vector
Let 𝑋 ∈ ℝ𝑑 be a mean-zero random vector, and denote Σ = 𝔼 [𝑋𝑋⊤] ∈ ℝ𝑑×𝑑. We recall that 𝑋 is said to
be sub-Gaussian if, additionally, for all 𝑣 ∈ 𝑆𝑑−1 and all 𝜆 ∈ ℝ,

𝔼 exp(𝜆 ⟨𝑋, 𝑣 |𝑋, 𝑣⟩) ≤ exp
(𝜆2𝑣⊤Σ𝑣

2

)
. (10)

Importantly, the coordinates 𝑋1, .., 𝑋𝑛 need not be independent. Recall that since Σ is a symmetric and
positive semidefinite matrix (it is a covariance matrix), it has 𝑑 real eigenvalues. We denote by 𝜆max(Σ)
its largest eigenvalue.

Theorem 7.1. If 𝑋 is a sub-Gaussian random vector, in particular, 𝔼𝑋 = 0, then with probability at least 1 − 𝛿,

∥𝑋∥2 ≤
√

TrΣ +
√

2𝜆max(Σ) log(1/𝛿). (11)

Example 7.2. If Σ = 𝐼𝑑 (the identity 𝑑 × 𝑑 matrix), then TrΣ = 𝑑 and 𝜆max(Σ) = 1. We see that one of the
summands in Inequality (11) is of order

√
𝑑 and the other is dimension-free (does not depend on 𝑑). In general, it

holds that
𝔼∥𝑋∥2 ≤

√
𝔼∥𝑋∥2

2 =
√

TrΣ. (12)

The first transition in Inequality (12) is due to the Cauchy-Schwartz inequality, and the second is due the following
important trick, where we treat 𝑋⊤𝑋 as a 1 × 1 matrix and use the cyclical property of the trace;

𝔼∥𝑋∥2
2 = 𝔼

[
𝑋⊤𝑋

]
= 𝔼

[
Tr

(
𝑋⊤𝑋

) ]
= 𝔼

[
Tr

(
𝑋𝑋⊤) ]

= Tr𝔼
[
𝑋𝑋⊤]

= TrΣ. (13)

The second transition in Equation (13) is due to the fact that the trace of a 1 × 1 matrix equals the matrix itself, the
third due the cyclical property of the trace; Tr(𝐴𝐵) = Tr(𝐵𝐴) as long as the products 𝐴𝐵, 𝐵𝐴 are both well-defined
square matrices. The fourth transition is due to the fact that Tr is linear in the entries of the matrix on which it
operates. Note that Inequality (12) holds for any random vector 𝑋 ∈ ℝ𝑑, and does not require sub-Gaussianity.

We will now state and prove a few lemmas toward proving Theorem 7.1.
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7.2 Kullback-Leibler Divergence
Let 𝜌,𝜋 be probability densities supported on Θ ⊆ ℝ𝑑. We first introduce the Kullback-Leibler divergence
(abbreviated KL divergence, also known as relative entropy), which is defined by

𝐾𝐿(𝜌∥𝜋) =
∫
Θ

log
𝜌(𝜃)
𝜋(𝜃)𝜌(𝜃)𝑑𝜃 = 𝔼𝜃∼𝜌

[
log

𝜌(𝜃)
𝜋(𝜃)

]
. (14)

The expectation appearing in Equation (14) treats 𝜃 as a random variable with density 𝜌. Note that we
require 𝜌(𝜃) = 0 whenever 𝜋(𝜃) = 0, in which case we define log(𝜌(𝜃)/𝜋(𝜃)) = 0.

Fact 7.3. 1.𝐾𝐿(𝜌∥𝜋) ≥ 0 2.𝐾𝐿(𝜌∥𝜋) = 0 if and only if 𝜌(𝜃) = 𝜋(𝜃) almost everywhere.

Proof. Since log is a concave function, by Jensen’s inequality,

−𝐾𝐿(𝜌∥𝜋) = 𝔼𝜃∼𝜌
[

log 𝜋(𝜃)
𝜌(𝜃)

]
≤ log𝔼𝜃∼𝜌

[𝜋(𝜃)
𝜌(𝜃)

]
= log

∫
Θ

𝜋(𝜃)
𝜌(𝜃)𝜌(𝜃)𝑑𝜃 = log

∫
Θ

𝜋(𝜃)𝑑𝜃 = 0.

The integral
∫
Θ
𝜋(𝜃)𝑑𝜃 equals one because𝜋 is a probability density. From this it follows that𝐾𝐿(𝜌∥𝜋) ≥ 0.

Since log is a strictly concave function, Jensen’s inequality is strict unless 𝜋(𝜃)/𝜌(𝜃) is almost-everywhere
constant, which proves that 𝐾𝐿(𝜌∥𝜋) = 0 if and only if 𝜌(𝜃) = 𝜋(𝜃) almost everywhere.

Due to Fact 7.3, we may think of KL divergence, informally, as a 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒∗ between densities. It is not
formally a distance, because it does not satisfy the triangle inequality.

7.3 Donsker-Varadhan Variational Formula
We state and prove the following Change of Measure lemma.

Lemma 7.4 (Donsker-Varadhan variational formula). Let 𝜋 be a probability density supported on Θ ⊆ ℝ𝑑,
and fix ℎ : Θ → ℝ be a bounded function. Then

log𝔼𝜃∼𝜋𝑒
ℎ(𝜃) = sup

𝜌

{
𝔼𝜃∼𝜌ℎ(𝜃) − 𝐾𝐿(𝜌∥𝜋)

}
.

where the supremum is taken over all probability densities 𝜌 such that 𝐾𝐿(𝜌∥𝜋) < ∞.

Proof. Define the probability density (check that it indeed integrates to one)

𝜋′(𝜃) = 𝜋(𝜃)𝑒 ℎ(𝜃)
𝔼𝜃∼𝜋𝑒 ℎ(𝜃)

.

where 𝔼𝜃∼𝜋𝑒 ℎ(𝜃) acts as the normalizing constant. For any probability density 𝜌 with 𝐾𝐿(𝜌∥𝜋) < ∞,
compute

𝐾𝐿(𝜌∥𝜋′) = 𝔼𝜃∼𝜌 log
𝜌(𝜃)
𝜋′(𝜃)

= 𝔼𝜃∼𝜌 log
(𝜌(𝜃)
𝜋(𝜃) ·

𝔼𝜃∼𝜋𝑒 ℎ(𝜃)

𝑒 ℎ(𝜃)

)
= 𝐾𝐿(𝜌∥𝜋) + log𝔼𝜃∼𝜋𝑒

ℎ(𝜃) − 𝔼𝜃∼𝜌ℎ(𝜃) ≥ 0
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Note that if we take 𝜌 = 𝜋′ we obtain an equality, due to Fact 7.3. Rearranging, we obtain

log𝔼𝜃∼𝜋𝑒
ℎ(𝜃) ≥ 𝔼𝜃∼𝜌ℎ(𝜃) − 𝐾𝐿(𝜌∥𝜋)

with equality obtained for 𝜌 = 𝜋′. Since this holds for any such 𝜌, it must also hold for the supremum
over all such 𝜌,

log𝔼𝜃∼𝜋𝑒
ℎ(𝜃) ≥ sup

𝜌

{
𝔼𝜃∼𝜌ℎ(𝜃) − 𝐾𝐿(𝜌∥𝜋)

}
and, again, equality is obtained for 𝜌 = 𝜋′.

7.4 Second Lemma
Lemma 7.5. Fix some probability density 𝜋 on Θ, and let 𝑓 (𝑋, 𝜃) be a function with 𝑋 being a random variable
and 𝜃 ∈ Θ ⊆ ℝ𝑑. Then, with probability at least 1 − 𝛿, it holds that for any probability density 𝜌 on Θ for which
𝐾𝐿(𝜌∥𝜋) < ∞,

𝔼𝜃∼𝜌 𝑓 (𝑋, 𝜃) ≤ 𝔼𝜃∼𝜌 log𝔼𝑋 𝑒
𝑓 (𝑋,𝜃) + 𝐾𝐿(𝜌∥𝜋) + log(1/𝛿). (15)

The symbol 𝔼𝑋 above means taking expectation with respect to 𝑋. The KL divergence term in (15) is the
price we pay for wanting a bound that holds uniformly over all 𝜌.

Proof. Define a function ℎ(𝜃) and a random variable 𝑌𝑋 , by

ℎ(𝜃) = 𝑓 (𝑋, 𝜃) − log𝔼𝑋 𝑒
𝑓 (𝑋,𝜃) ; 𝑌𝑋 = sup𝜌{𝔼𝜃∼𝜌ℎ(𝜃) − 𝐾𝐿(𝜌∥𝜋)} = log𝔼𝜃∼𝜋𝑒

ℎ(𝜃)

where we have used Lemma 7.4. Notice that 𝔼𝑋 𝑒𝑌𝑥 = 1, and this in fact directly implies the Lemma.
Indeed,

𝔼𝑋 𝑒
𝑌𝑋 = 𝔼𝑋𝔼𝜃∼𝜋𝑒

ℎ(𝜃)

= 𝔼𝑋𝔼𝜃∼𝜋[𝑒 𝑓 (𝑋,𝜃)−log𝔼𝑥 exp( 𝑓 (𝑋,𝜃))]

= 𝔼𝑋𝔼𝜃∼𝜋
[ 𝑒 𝑓 (𝑋,𝜃)

𝔼𝑋 𝑒 𝑓 (𝑋,𝜃)

]
= 𝔼𝜃∼𝜋𝔼𝑋

[ 𝑒 𝑓 (𝑋,𝜃)

𝔼𝑋 𝑒 𝑓 (𝑋,𝜃)

]
= 𝔼𝜃∼𝜋

[𝔼𝑋 𝑒 𝑓 (𝑋,𝜃)
𝔼𝑋 𝑒 𝑓 (𝑋,𝜃)

]
= 1.

Using Markov’s inequality, we obtain the tail bound

Pr(𝑌𝑋 ≥ 𝑡) = Pr
(
𝑒𝑌𝑋 ≥ 𝑒 𝑡

)
≤ 𝔼𝑋 𝑒

𝑌𝑋

𝑒 𝑡
= 𝑒−𝑡 .

Plugging in 𝑡 = log(1/𝛿), for any 𝛿 ∈ (0, 1), we get Pr
(
𝑌𝑥 ≥ log(1/𝛿)

)
≤ 𝛿. In other words, with probability

at least 1 − 𝛿,
sup𝜌{𝔼𝜃∼𝜌ℎ(𝜃) − 𝐾𝐿(𝜌∥𝜋)} = 𝑌𝑋 ≤ log(1/𝛿).

In other words, with probability at least 1 − 𝛿, it holds for all such probability densities 𝜌 that

log(1/𝛿) ≥ 𝔼𝜃∼𝜌ℎ(𝜃) − 𝐾𝐿(𝜌∥𝜋) = 𝔼𝜃∼𝜌 𝑓 (𝑋, 𝜃) − 𝔼𝜃∼𝜌 log𝔼𝑋 𝑒
𝑓 (𝑋,𝜃) − 𝐾𝐿(𝜌∥𝜋).

Rearranging, we obtain Inequality 15.
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7.5 Useful Facts
Fact 7.6. If 𝑌 ∼ 𝒩𝑑(𝜇, 𝜎2𝐼𝑑) and 𝐴 ∈ ℝ𝑑×𝑑 then 𝔼 [𝑌⊤𝐴𝑌] = 𝜎2 Tr𝐴 + 𝜇⊤𝐴𝜇.

Proof. We may write 𝑌 = 𝜇 + 𝜎𝑍 where 𝑍 ∼ 𝒩𝑑(0, 𝐼𝑑), so

𝔼
[
𝑌⊤𝐴𝑌

]
= 𝔼

[
(𝜇 + 𝜎𝑍)⊤𝐴(𝜇 + 𝜎𝑍)

]
= 𝜇⊤𝐴𝜇 + 2𝜎𝔼 [𝑍]⊤ 𝐴𝜇︸         ︷︷         ︸

=0

+ 𝜎2𝔼
[
𝑍⊤𝐴𝑍

]
= 𝜇⊤𝐴𝜇 + 𝜎2𝔼

[
𝑍⊤𝐴𝑍

]
.

It is left to use the cyclical trace trick to compute

𝔼
[
𝑍⊤𝐴𝑍

]
= 𝔼Tr

(
𝑍⊤𝐴𝑍

)
= 𝔼Tr

(
𝐴𝑍𝑍𝑇

)
= Tr

©­­­«𝐴𝔼
[
𝑍𝑍𝑇

]︸    ︷︷    ︸
=𝐼𝑑

ª®®®¬ = Tr𝐴.

Fact 7.7. If 𝜌,𝜋 are the densities of 𝒩𝑑(𝑣, 𝐼𝑑/𝛽),𝒩𝑑(0, 𝐼𝑑/𝛽), respectively, and ∥𝑣∥2 = 1, then 𝐾𝐿(𝜌∥𝜋) = 𝛽/2.

Proof. Observe that 𝜌(𝑥) = 𝑐(𝛽)𝑒−𝛽∥𝑥−𝑣∥2
2/2 and 𝜋(𝑥) = 𝑐(𝛽)𝑒−𝛽∥𝑥∥2

2/2 where 𝑐(𝛽) is some constant that
depends only on 𝛽. It follows that

2
𝛽

log
𝜌(𝑥)
𝜋(𝑥) = ∥𝑥∥2

2 − ∥𝑥 − 𝑣∥2
2 = ∥𝑥∥2

2 − (∥𝑥∥2
2 − 2 ⟨𝑥, 𝑣 |𝑥, 𝑣⟩ + ∥𝑣∥2

2) = 2 ⟨𝑥, 𝑣 |𝑥, 𝑣⟩ − ∥𝑣∥2
2.

Let 𝑋 ∈ ℝ𝑑 be a random vector with density 𝜌(𝑥). By Equation (14) and 𝔼𝑋 = 𝑣 we get

𝐾𝐿(𝜌∥𝜋) = 𝔼 log
𝜌(𝑋)
𝜋(𝑋) =

𝛽

2 (2 ⟨𝔼𝑋, 𝑣 |𝔼𝑋, 𝑣⟩ − ∥𝑣∥2
2) =

𝛽

2 (2∥𝑣∥
2
2 − ∥𝑣∥2

2) =
𝛽

2 ∥𝑣∥2
2︸︷︷︸

=1

=
𝛽

2 .

Fact 7.8. If 𝑥 ∈ ℝ𝑑 and Σ ∈ ℝ𝑑×𝑑 is symmetric and positive semidefinite then sup𝑣∈𝑆𝑑−1 ⟨𝑥, 𝑣 |𝑥, 𝑣⟩ = ∥𝑥∥2 and
sup𝑣∈𝑆𝑑−1 𝑣⊤Σ𝑣 = 𝜆max(Σ).

Proof. By the Cauchy-Schwartz inequality, for 𝑣 ∈ 𝑆𝑑−1, ⟨𝑥, 𝑣 |𝑥, 𝑣⟩ ≤ ∥𝑥∥2, and see that equality is
obtained for 𝑣 = 𝑥/∥𝑥∥2. Being a symmetric and positive semidefinite matrix, Σ has an orthogonal
diagonalization Σ = 𝑈𝐷2𝑈⊤ where 𝑈𝑈⊤ = 𝑈⊤𝑈 = 𝐼𝑑 and 𝐷2 is a diagonal matrix with non-negative
diagonal elements which are its eigenvalues. Define 𝑢 = 𝑈⊤𝑣, and note that ∥𝑢∥2 = 1. Since 𝜆max(Σ) is
the maximal diagonal element of 𝐷2, we have

𝑣⊤Σ𝑣 = 𝑢⊤𝐷2𝑢 = ∥𝐷𝑢∥2
2 =

𝑛∑
𝑖=1

(𝐷𝑢)2𝑖 =
𝑛∑
𝑖=1

(𝐷𝑖𝑖)2𝑢2
𝑖 =

𝑛∑
𝑖=1

(𝐷2)𝑖𝑖𝑢2
𝑖 ≤ 𝜆max(Σ)

𝑛∑
𝑖=1

𝑢2
𝑖︸︷︷︸

=∥𝑢∥2
2=1

= 𝜆max(Σ).

Equality is obtained whenever 𝑣 is an eigenvector with eigenvalue 𝜆max(Σ) (and still with norm one).

Fact 7.9. The function 𝑓 (𝑥) = 𝑎𝑥 + 𝑏
𝑥 for 𝑎, 𝑏, 𝑥 > 0 is minimized at 𝑥∗ =

√
𝑏/𝑎 and has 𝑓 (𝑥∗) = 2

√
𝑎𝑏.

Proof. The derivative 𝑓 ′(𝑥) = 𝑎 − 𝑏/𝑥2 equals zero for 𝑥 =
√
𝑏/𝑎 and this is a minimum.

34



7.6 Proof of Theorem 7.1
Proof of Theorem 7.1. Suppose that 𝑋 is a 𝑑-dimensional sub-Gaussian random vector. Fix 𝛼, 𝛽 > 0 and
𝑣 ∈ 𝑆𝑑−1 which will be determined later. Define the function 𝑓 (𝑋, 𝜃) = 𝛼 ⟨𝑋, 𝜃 |𝑋, 𝜃⟩ for 𝜃 ∈ ℝ𝑑. We will
apply Lemma 7.5 to 𝑓 along with 𝜋, 𝜌 the densities of 𝒩𝑑(0, 𝐼𝑑/𝛽) and 𝒩𝑑(𝑣, 𝐼𝑑/𝛽) respectively. Lemma
7.5 yields that with probability at least 1 − 𝛿,

𝔼𝜃∼𝜌 𝑓 (𝑋, 𝜃) ≤ 𝔼𝜃∼𝜌 log𝔼𝑋 𝑒
𝑓 (𝑋,𝜃) + 𝐾𝐿(𝜌∥𝜋) + log(1/𝛿). (16)

We compute each expression in Inequality (16) in turn. First,

𝔼𝜃∼𝜌 𝑓 (𝑋, 𝜃) = 𝛼𝔼𝜃∼𝜌 ⟨𝑋, 𝜃 |𝑋, 𝜃⟩ = 𝛼
〈
𝑋,𝔼𝜃∼𝜌𝜃

��𝑋,𝔼𝜃∼𝜌𝜃
〉
= 𝛼 ⟨𝑋, 𝑣 |𝑋, 𝑣⟩ . (17)

Second, using Inequality (10) and Facts 7.6 and 7.8

𝔼𝜃∼𝜌 log𝔼𝑋 𝑒
𝑓 (𝑋,𝜃) = 𝔼𝜃∼𝜌 log𝔼𝑋 𝑒

𝛼⟨𝑋,𝜃 |𝑋,𝜃⟩

≤ 𝔼𝜃∼𝜌 log exp
(𝛼2𝜃⊤Σ𝜃

2

)
=

𝛼2

2 𝔼𝜃∼𝜌[𝜃⊤Σ𝜃]

=
𝛼2

2 𝔼𝜃∼𝜌[(𝜃 − 𝑣 + 𝑣)⊤Σ(𝜃 − 𝑣 + 𝑣)]

=
𝛼2

2 𝔼𝜃∼𝜌[(𝜃 − 𝑣)⊤Σ(𝜃 − 𝑣) + 𝑣⊤Σ𝑣 + 𝑐𝑟𝑜𝑠𝑠 − 𝑡𝑒𝑟𝑚𝑠]

=
𝛼2

2

(TrΣ
𝛽

+ 𝑣⊤Σ𝑣
)

≤ 𝛼2

2

(TrΣ
𝛽

+ 𝜆max(Σ)
)

(18)

Third, by Fact 7.7,
𝐾𝐿(𝜌∥𝜋) = 𝛽/2. (19)

Plugging Equations (17), (18) and (19) into Inequality (16), we get that with probability at least 1 − 𝛿,

𝛼 ⟨𝑋, 𝑣 |𝑋, 𝑣⟩ ≤ 𝛼2

2

(TrΣ
𝛽

+ 𝜆max(Σ)
)
+ 𝛽

2 + log(1/𝛿). (20)

Since this holds for all 𝑣 ∈ 𝑆𝑑−1, it holds also for the supremum, i.e. with probability at least 1 − 𝛿,

∥𝑋∥2 = sup
𝑣∈𝑆𝑑−1

⟨𝑋, 𝑣 |𝑋, 𝑣⟩ ≤ 𝛼
2

(TrΣ
𝛽

+ 𝜆max(Σ)
)
+

𝛽

2𝛼 +
log(1/𝛿)

𝛼

=
𝛾

2 TrΣ + 𝛼
2𝜆max(Σ) +

1
2𝛾 +

log(1/𝛿)
𝛼

.

where we have used Fact 7.8 after dividing both sides of Inequality (20) by 𝛼, then set 𝛾 = 𝛼/𝛽. Having
set 𝛾 = 𝛼/𝛽, it is clear that we may optimize 𝛼, 𝛾 > 0 independently from each other, because they always
appear separately in the formula above. Using Fact 7.9 we may plug in optimal 𝛼, 𝛾 to obtain that with
probability at least 1 − 𝛿,

∥𝑋∥2 ≤
√

TrΣ +
√

2𝜆max(Σ) log(1/𝛿).
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7.7 Sub-Exponential Vectors
We say that a mean-zero random vector 𝑋 is sub-exponential if, for any 𝑣 ∈ 𝑆𝑑−1,

∥ ⟨𝑋, 𝑣 |𝑋, 𝑣⟩ ∥𝜓1 ≤ 𝐶 ∥⟨𝑋, 𝑣 |𝑋, 𝑣⟩∥𝐿2

where 𝐶 > 0 is a universal constant that does not depend on 𝑣. Compare this definition of a sub-Gaussian
random vector, from earlier in this lecture, noting the following fact;

Fact 7.10. If 𝑋 is a random vector with 𝔼 [𝑋𝑋⊤] = Σ then, for any 𝑣 ∈ ℝ𝑛 , ∥⟨𝑋, 𝑣 |𝑋, 𝑣⟩∥2
𝐿2

= 𝑣⊤Σ𝑣.

Proof. ∥⟨𝑋, 𝑣 |𝑋, 𝑣⟩∥2
𝐿2

= 𝔼
[
(𝑋⊤𝑣)2

]
= 𝔼 [𝑣⊤𝑋𝑋⊤𝑣] = 𝑣⊤𝔼 [𝑋𝑋⊤] 𝑣 = 𝑣⊤Σ𝑣.

The following theorem is a counterpart to Theorem 7.1, and the proof will appear in the homework.

Theorem 7.11. If 𝑋 is a sub-exponential random vector then with probability at least 1 − 𝛿,

∥𝑋∥2 ≤ 𝐶(
√

Tr(Σ) log(1/𝛿) + log(1/𝛿)
√
𝜆max(Σ))

where 𝐶 > 0 is a universal constant.

7.8 Log-Concave Densities

A density function 𝑓 (𝑥) is said to be log-concave if 𝑓 (𝑥) = 𝑒−𝜑(𝑥) where 𝜑 is a convex function.

Example 7.12.

• The density of a multivariate Gaussian 𝒩𝑑(𝑣,Σ) is log-concave, as up to additive and multiplicative constants
𝜑(𝑥) ∼ (𝑥 − 𝑣)⊤Σ−1(𝑥 − 𝑣).

• The product of densities of independent exponential distributions is log-concave. Note that it is not
sub-Gaussian.

• The uniform measure on a bounded convex open set 𝐾 ⊆ ℝ𝑑 is log-concave, as

𝜑(𝑥) ∼
{

log(Volume(𝐾)) 𝑥 ∈ 𝐾
∞ 𝑥 ∉ 𝐾.

Theorem 7.13 (Borell). If 𝑋 ∈ ℝ𝑑 is a mean-zero random vector with log-concave density then, for any 𝑣 ∈ 𝑆𝑑−1,
∥ ⟨𝑋, 𝑣 |𝑋, 𝑣⟩ ∥𝜓1 ≤ 𝐶 ∥⟨𝑋, 𝑣 |𝑋, 𝑣⟩∥𝐿2 where 𝐶 is a universal constant.

Thus, a mean-zero random variable with log-concave density is sub-exponential. We do not prove this
theorem.

7.9 Gaussian Concentration Inequality
A function 𝑓 : ℝ𝑑 → ℝ is said to be 𝐿-Lipschitz if for all 𝑥, 𝑦 ∈ ℝ𝑑, | 𝑓 (𝑥) − 𝑓 (𝑦)| ≤ 𝐿∥𝑥 − 𝑦∥2.

Theorem 7.14. If 𝑋 ∼ 𝒩𝑑(0, 𝐼𝑑) and 𝑓 : ℝ𝑑 → ℝ is 𝐿-Lipschitz then,

Pr( 𝑓 (𝑋) − 𝔼 𝑓 (𝑋) ≥ 𝑡) ≤ exp
(
− 𝑡2

2𝐿2

)
.
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As usual, we may derive from this a tail bound on the absolute value :

Pr(| 𝑓 (𝑋) − 𝔼 𝑓 (𝑋)| ≥ 𝑡) ≤ 2 exp
(
− 𝑡2

2𝐿2

)
.

Some facts will be useful.

Fact 7.15. Let Σ ∈ ℝ𝑑×𝑑 be a symmetric and positive semidefinite matrix. Then there exists a unique symmetric
and positive semidefinite matrix Σ

1
2 such that (Σ 1

2 )2 = Σ.

Proof. Being a symmetric and positive semidefinite matrix, Σ has an orthogonal diagonalization Σ =

𝑈𝐷𝑈⊤ where 𝑈𝑈⊤ = 𝑈⊤𝑈 = 𝐼𝑑 and 𝐷 is a diagonal matrix with non-negative diagonal elements.
Define Σ

1
2 = 𝑈𝐷

1
2𝑈𝑇 , where 𝐷 1

2 is a diagonal matrix with (𝐷 1
2 )𝑖𝑖 =

√
𝐷𝑖𝑖 , and check that it satisfies the

requirements.

Fact 7.16. For any 𝑥, 𝑦 ∈ ℝ𝑑, |∥𝑥∥2 − ∥𝑦∥2 | ≤ ∥𝑥 − 𝑦∥2.

Proof. Using the triangle inequality, ∥𝑥∥2 = ∥(𝑥 − 𝑦) + 𝑦∥2 ≤ ∥𝑥 − 𝑦∥2 + ∥𝑦∥2. Rearranging, we get
∥𝑥∥2−∥𝑦∥2 ≤ ∥𝑥−𝑦∥2. Repeating this argument with the roles of 𝑥, 𝑦 reversed, the proof is concluded.

Corollary 7.17. If 𝑋 ∼ 𝒩𝑑(0,Σ) then with probability at least 1 − 𝛿,

|∥𝑋∥2 − 𝔼∥𝑋∥2 | ≤
√

2𝜆max(Σ) log(2/𝛿).

Proof. Using Fact 7.15, let 𝑍 ∼ 𝒩𝑑(0, 𝐼𝑑) be such that 𝑋 = Σ
1
2𝑍 (can take 𝑍 = (Σ 1

2 )−1𝑋 if Σ is full
rank). Set 𝑓 (𝑍) = ∥Σ 1

2𝑍∥2, and see that it is
√
𝜆max(Σ)-Lipschitz. Indeed, for 𝑥, 𝑦 ∈ ℝ𝑑 we denote

𝑣 = (𝑥 − 𝑦)/∥𝑥 − 𝑦∥2 ∈ 𝑆𝑑−1 and compute

| 𝑓 (𝑥)− 𝑓 (𝑦)| = |∥Σ 1
2 𝑥∥2−∥Σ 1

2 𝑦∥2 | ≤ ∥Σ 1
2 (𝑥−𝑦)∥2 = ∥𝑥−𝑦∥2∥Σ

1
2 𝑣∥2 = ∥𝑥−𝑦∥2

√
𝑣⊤Σ𝑣 ≤ ∥𝑥−𝑦∥2

√
𝜆max(Σ)

with the first inequality due to Fact 7.16 and the second due to Fact 7.8. As usual, set 2 exp
(
− 𝑡2

2(
√
𝜆maxΣ)2

)
= 𝛿.

Plugging in 𝑡 =
√

2𝜆max(Σ) log(2/𝛿) into Theorem 7.14, for any 𝛿 ∈ (0, 1), we get that with probability at
least 1 − 𝛿,

|∥𝑋∥2 − 𝔼∥𝑋∥2 | ≤
√

2𝜆max(Σ) log(2/𝛿).

37



STAT210B Theoretical Statistics Lecture 8 - 02/08/2024

Lecture 8: Gaussian Concentration & Fixed Design Linear Regression
Instructor: Nikita Zhivotovskiy Scribe: Rita Lyu Proofreader: Erez Buchweitz

8.1 Notation
All random vectors are assumed to be column vectors. For 𝑥, 𝑦 ∈ ℝ𝑑, the Euclidean inner product
is denoted by ⟨𝑥, 𝑦 |𝑥, 𝑦⟩ = 𝑥1𝑦1 + ... + 𝑥𝑑𝑦𝑑 = 𝑥⊤𝑦, and the Euclidean norm is denoted by ∥𝑥∥2 =√
⟨𝑥, 𝑥 |𝑥, 𝑥⟩ =

√
𝑥⊤𝑥 =

√
𝑥2

1 + ... + 𝑥
2
𝑑
. The unit sphere 𝑆𝑑−1 ⊆ ℝ𝑑 is the set of all points which have

Euclidean norm one, i.e. 𝑆𝑑−1 = {𝑥 ∈ ℝ𝑑 : ∥𝑥∥2 = 1}. For a random variable 𝑋 ∈ ℝ with finite variance,
the 𝐿2 norm is defined by ∥𝑋∥𝐿2 =

√
𝔼 [𝑋2]. In denoting the normal distribution 𝒩𝑑(𝜇,Σ) the subscript 𝑑

indicates the dimension, e.g. implying the mean vector 𝜇 ∈ ℝ𝑑 and the covariance matrix Σ ∈ ℝ𝑑×𝑑. The
identity matrix in dimension 𝑑 is denoted 𝐼𝑑.

8.2 Gaussian Concentration
Theorem 8.1. If 𝑋 ∼ 𝒩𝑑(0, 𝐼𝑑) and 𝑓 : ℝ𝑑 → ℝ is 𝐿-Lipschitz then,

Pr( 𝑓 (𝑋) − 𝔼 𝑓 (𝑋) ≥ 𝑡) ≤ exp
(
− 𝑡2

2𝐿2

)
. (21)

Remark 8.2. We can see the right-hand side term does not contain dimension term 𝑑, which means that this
inequality always holds for 𝐿-Lipschitz function regardless of the dimension. This theorem also indicates that
𝑓 (𝑋) − 𝔼 𝑓 (𝑋) is subgaussian.

As usual, we may derive from this a tail bound on the absolute value :

Pr(| 𝑓 (𝑋) − 𝔼 𝑓 (𝑋)| ≥ 𝑡) ≤ 2 exp
(
− 𝑡2

2𝐿2

)
. (22)

To prove this Theorem, we need Fact 8.11 and Lemma 8.3.

Lemma 8.3. For any convex function 𝜑 : ℝ → ℝ and differentiable function 𝑓 : ℝ𝑛 → ℝ :

𝔼[𝜑( 𝑓 (𝑋) − 𝔼[ 𝑓 (𝑋)])] ≤ 𝔼
[
𝜑

(𝜋
2 ⟨∇ 𝑓 (𝑋), 𝑌⟩

)]
, 𝑋, 𝑌

𝑖𝑖𝑑∼ 𝑁 (0, 𝐼𝑛) .

Remark 8.4. The trick used in the proof of this lemma is quite helpful. We upper bound the expectation using a
mixture of Gaussians.

Gaussian concentration can be extended to some log-concave measures. For example, strongly log-concave
measures. Let us introduce the following definition.

Definition 8.5 (𝐾-strongly convexity and 𝐾-strongly log-concavity ). A differentiable function is K-strongly
convex, for 𝐾 > 0, if [

𝜕2(𝜑(𝑋))
𝜕𝑋𝑖𝜕𝑋𝑗

]
𝑑×𝑑

⪰ 𝐾𝐼𝑑 .

A measure is 𝐾-strongly log-concave if 𝑓 (𝑋) = exp(−𝜑(𝑋)), where 𝜑(𝑋) is 𝐾-strongly convex.
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With Definition 8.5, we can see exp
(−∥𝑋∥2

2
2

)
is 1-strongly log-concave, while exp

(
−||𝑋 | |1

2

)
is concave but

cannot find 𝐾 to make it 𝐾-strongly log-concave. Because when 𝑑 = 1, it can be regarded as the product
of independent exponential distributions, the second derivative is 0. We have another theorem without
proof that

Theorem 8.6. For 𝐾-strongly log concave distributions (𝑋 is distributed according to 𝑓 (𝑋) = exp(−𝜑(𝑋))),
Eq (21) and Eq (22) hold by replacing 𝐿 to ∼ 𝐿√

𝐾
, where ∼ means “in a proportion to". When 𝐾 gets larger, the

bound becomes tighter.

In Lecture 7, we proved Theorem 8.7:

Theorem 8.7. If 𝑋 is a sub-Gaussian random vector, in particular, 𝔼𝑋 = 0, then with probability at least 1 − 𝛿,

∥𝑋∥2 ≤
√

TrΣ +
√

2𝜆max(Σ) log(1/𝛿). (23)

Example 8.8 (Multivariate Mean Estimation). 𝑋1, · · ·𝑋𝑛 𝑖.𝑖.𝑑.∼ 𝒩(𝜇,Σ), we now use 𝜇̂ = 1
𝑛

∑𝑛
𝑖=1 𝑋𝑖 to estimate

the mean vector 𝜇. Here we now

ℂov( 1
𝑛

𝑛∑
𝑖=1

𝑋𝑖) =
Σ

𝑛
.

With Theorem 8.1, we know 𝜇̂ − 𝜇 is subgaussian. Then, combining Theorem 8.7, we have with probability at least
1 − 𝛿.

∥ 1
𝑛

𝑛∑
𝑖=1

𝑋𝑖 − 𝜇∥2 ≤
√

TrΣ
𝑛

+
√

2𝜆max(Σ) log(1/𝛿)
𝑛

.

8.3 Fixed Design Linear Regression Model
Let 𝑥𝑖 ∈ ℝ, 𝑖 = 1, · · · , 𝑛 be fixed ( we can regard it as 𝑑 features for the 𝑖-th individual), 𝛽∗ ∈ ℝ𝑑,
𝜉𝑖 , 𝑖 = 1, · · · 𝑛 be independent zero mean 𝜎-subgaussain variables. That is

𝔼 exp(𝜆𝜉𝑖) ≤ exp
(
𝜆2𝜎2

2

)
.

The underlying data generating process is that

𝑦𝑖 = ⟨𝑥𝑖 , 𝛽∗⟩ + 𝜉𝑖 , 𝑖 = 1, · · · , 𝑛.

We do not know the true 𝛽∗. Instead, we can observe pairs of {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1. We use 𝛽̂ to estimate 𝛽∗

based on the observed data. To measure the estimation error, we have (i)Euclidean norm: ∥𝛽̂ − 𝛽∗∥2, (ii)
denoising error: (empirical sample)

1
𝑛

𝑛∑
𝑖=1

(⟨𝑥𝑖 , 𝛽̂⟩ − ⟨𝑥𝑖 , 𝛽∗⟩)2 =
1
𝑛

𝑛∑
𝑖=1

(𝛽̂ − 𝛽∗)⊤𝑥𝑖𝑥⊤𝑖 (𝛽̂ − 𝛽∗).

These two measures return the same results only when 1
𝑛

𝑛∑
𝑖=1
𝑥𝑖𝑥

⊤
𝑖
= 𝐼𝑑 .We now define𝑌 = [𝑦1, · · · , 𝑦𝑛]⊤ ∈

ℝ𝑛 , 𝑋 = [𝑥1, · · · , 𝑥𝑛]⊤ ∈ ℝ𝑛×𝑑, 𝜉 = [𝜉1, · · · , 𝜉𝑛]⊤ ∈ ℝ𝑛 . The linear model can be rewritten as:

𝑌 = 𝑋𝛽∗ + 𝜉.
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8.3.1 Ordinary Least Squares Estimator
The Ordinary Least Squares estimator (OLS) solves the optimization problem that

𝛽̂OLS = argmin
𝛽∈ℝ𝑑

1
𝑛

𝑛∑
𝑖=1

(⟨𝑥𝑖 , 𝛽⟩ − 𝑦𝑖)2 = argmin
𝛽∈ℝ𝑑

1
𝑛
∥𝑋𝛽 − 𝑌∥2

2,

assuming rank(𝑋⊤𝑋) = 𝑑 such that 𝑋⊤𝑋 is invertable, then

𝛽̂OLS = (𝑋⊤𝑋)−1𝑋⊤𝑌 ∈ ℝ𝑑

𝑋 𝛽̂OLS = 𝑋(𝑋⊤𝑋)−1𝑋⊤︸           ︷︷           ︸
projector

𝑌.

The property of the orthogonal projection matrix contains

• symmetric and positive semidefinite positive (𝑋(𝑋⊤𝑋)−1𝑋⊤)⊤ = (𝑋(𝑋⊤𝑋)−1𝑋⊤) ∈ ℝ𝑛×𝑛 ,

• idempotent (𝑋(𝑋⊤𝑋)−1𝑋⊤)⊤𝑋(𝑋⊤𝑋)−1𝑋⊤ = 𝑋(𝑋⊤𝑋)−1𝑋⊤,

• rank(𝑋(𝑋⊤𝑋)−1𝑋⊤) = 𝑑,

• Tr
(
𝑋(𝑋⊤𝑋)−1𝑋⊤)

= 𝑑,

• The eigenvalues of 𝑋(𝑋⊤𝑋)−1𝑋⊤ consist of 𝑑 ones and 𝑛 − 𝑑 zeros.

We now look at the population denoising error

𝔼𝜉
1
𝑛

𝑛∑
𝑖=1

(⟨𝑥𝑖 , 𝛽̂⟩ − ⟨𝑥𝑖 , 𝛽∗⟩)2 (24)

=
1
𝑛
𝔼∥𝑋 𝛽̂ − 𝑋𝛽∗∥2

2 =
1
𝑛
𝔼∥𝑋(𝑋⊤𝑋)−1𝑋⊤𝑌 − 𝑋𝛽∗∥2

2 (25)

=
1
𝑛
𝔼∥𝑋(𝑋⊤𝑋)−1𝑋⊤︸           ︷︷           ︸

:=𝐴

𝜉∥2
2 (26)

=
1
𝑛
𝔼Tr

(
𝜉⊤𝐴𝜉

)
(27)

=
1
𝑛
𝔼Tr

(
𝐴𝜉𝜉⊤

)
Tr(𝐴𝐵) = Tr(𝐵𝐴), the dimensions are such that both 𝐴𝐵 and 𝐵𝐴 are well defined

(28)

=
1
𝑛

Tr
(
𝐴𝔼[𝜉𝜉⊤]

)
, 𝐴 is a fixed matrix. (29)

≤ 𝜎2

𝑛
𝑑, use Fact 8.12 and the subgaussian property ℂov(𝜉) ⪯ 𝜎2𝐼𝑛 . (30)

8.3.2 Oracle Inequalities
Now we transfer from the unconstrained linear regression to the constrained case. We use 𝒦 to denote a
convex closed set in ℝ𝑑. The data-generating process is still

𝑌 = 𝑋𝛽∗ + 𝜉,
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we do not assume 𝛽∗ belongs to 𝒦 . Now the estimated 𝛽̂ within 𝒦 is obtained by

𝛽̂ = argmin
𝛽∈𝒦

1
𝑛
∥𝑋𝛽 − 𝑌∥2

2.

We want to bound the denoising error as in Eq (24).

Theorem 8.9. For the denoising error, we have

𝔼
1
𝑛
∥𝑋 𝛽̂ − 𝑋𝛽∗∥2

2 ≤ min
𝛽∈𝒦

1
𝑛
∥𝑋𝛽 − 𝑋𝛽∗∥2

2 +
4𝜎2𝑑

𝑛
.

Remark 8.10. The term min
𝛽∈𝒦

1
𝑛 ∥𝑋𝛽 − 𝑋𝛽∗∥2

2 means “the best possible solution with in 𝒦" and can be regarded as

theoretically best action.

8.4 Useful Facts
Fact 8.11. Assume additionally that 𝐿-Lipschitz function 𝑓 is diffferentiable, then ∀𝑋 ∈ ℝ𝑑, ∥∇ 𝑓 (𝑋)∥2 ≤ 𝐿.

Fact 8.12. If both 𝐴, 𝐵, and 𝐶 are positive semi-definite (PSD) matrix, 𝐵 ⪯ 𝐶, then

Tr(𝐴𝐵) ≤ Tr(𝐴𝐶).

Proof. Because 𝐴 is PSD, then 𝐴 = 𝐴
1
2𝐴

1
2 , we have

Tr(𝐴𝐵) = Tr
(
𝐴

1
2𝐵𝐴

1
2

)
, Tr(𝐴𝐶) = Tr

(
𝐴

1
2𝐶𝐴

1
2

)
.

For arbitrary vector 𝑥, because 𝐵 ⪯ 𝐶,

𝑥⊤𝐴
1
2𝐵𝐴

1
2 𝑥 ≤ 𝑥⊤𝐴

1
2𝐶𝐴

1
2 𝑥.

Now we choose 𝑒𝑖 = (0, · · · , 1︸︷︷︸
𝑖-th coordinate

, · · · , 0), 𝑖 = 1, · · · , 𝑛, then

Tr(𝐴𝐵) = Tr
(
𝐴

1
2𝐵𝐴

1
2

)
=

𝑛∑
𝑖=1

𝑒⊤𝑖
1
2𝐴

1
2𝐵𝐴

1
2 𝑒𝑖 ≤

𝑛∑
𝑖=1

𝑒⊤𝑖 𝐴
1
2𝐶𝐴

1
2 𝑒𝑖 = Tr

(
𝐴

1
2𝐶𝐴

1
2

)
= Tr(𝐴𝐶).

8.5 Proof of Theorem 8.1
Proof of Theorem 8.1. Assuming additionally that 𝑓 is differentiable, combining with Lemma 8.3, we now
prove the Gaussian concentration inequality. Let us use the lemma with 𝜑(·) = exp(𝜆·).

𝔼𝑋,𝑌
[
exp(𝜆( 𝑓 (𝑋) − 𝔼[ 𝑓 (𝑋)]))

]
≤ 𝔼𝑋,𝑌

[
exp

(
𝜆𝜋
2 ⟨𝑌,∇ 𝑓 (𝑋)⟩

)]
(Lemma 8.3)

= 𝔼𝑋

[
𝑛∏
𝑖=1

𝔼𝑌𝑖

[
exp

(
𝜆𝜋
2 (∇ 𝑓 (𝑋))𝑖𝑌𝑖)

)] ]
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= 𝔼𝑋

[
exp

(
𝜆2𝜋

2

4 | |∇ 𝑓 (𝑥)| |2/2
)]

Here, we use that ∇ 𝑓 (𝑋))𝑖 is a constant and 𝑌𝑖 is standard normal.

𝔼𝑋,𝑌
[
exp(𝜆( 𝑓 (𝑋) − 𝔼[ 𝑓 (𝑋)]))

]
≤ exp

(
𝜆2𝜋2

8 𝐿2
)
, (Fact 8.11)

which shows that 𝑓 (𝑋) − 𝔼[ 𝑓 (𝑋)] is sub-Gaussian with the parameter at most 𝜋𝐿
2 ,

The tail bound then can be

ℙ(| 𝑓 (𝑋) − 𝔼[ 𝑓 (𝑋)]| ≥ 𝑡) ≤ 2 exp
(
− 2𝑡2

𝜋2𝐿2

)
for all 𝑡 ≥ 0.

Remark 8.13. This is the cleanest and easiest way of proving such an inequality and results in a weaker bound
(difference only occurs in constant).

8.6 Proof of Lemma 8.3
Proof of Lemma 8.3. Because 𝑋 and 𝑌 have the same distribution and 𝔼𝑋[ 𝑓 (𝑋)] is a constant, replacing it
with 𝔼𝑌[ 𝑓 (𝑌)] and apply the Jensen’s inequality because 𝜑(·) is a convex function, then

𝔼𝑋 [𝜑 ( 𝑓 (𝑋) − 𝔼𝑋[ 𝑓 (𝑋)])] = 𝔼𝑋 [𝜑 ( 𝑓 (𝑋) − 𝔼𝑌[ 𝑓 (𝑌)])] ≤ 𝔼𝑋,𝑌[𝜑( 𝑓 (𝑋) − 𝑓 (𝑌))]. (31)

Define the following random variable 𝑍 ∈ ℝ𝑛 ,

𝑍(𝜃) = 𝑋 sin𝜃 + 𝑌 cos𝜃.

For each coordinate,
𝑍𝑘(𝜃) = 𝑋𝑘 sin𝜃 + 𝑌𝑘 cos𝜃.

The variable 𝑍(𝜃) can be thought of as a path between 𝑋 and 𝑌. In fact, when 𝜃 = 0 we get 𝑍(𝜃) = 𝑌,
while if 𝜃 = 𝜋

2 we get 𝑍(𝜃) = 𝑋. Therefore, as 𝜃 varies in the interval [0, 𝜋2 ] we are moving from 𝑋 to 𝑌.
Use 𝑍′ to denote the derivative of 𝑍 w.r.t. 𝜃, that is 𝑍′ = cos𝜃𝑋 − 𝑌 sin𝜃. The random variable 𝑍 has
some nice properties

∀𝜃 ∈ [0, 𝜋2 ] 𝑍(𝜃) 𝑑
= 𝑋

𝑑
= 𝑌, 𝑍′(𝜃) 𝑑

= 𝑋
𝑑
= 𝑌, 𝑍(𝜃) and 𝑍′(𝜃)are independent.

First, for a fixed 𝜃, 𝑍(𝜃) is a linear combination of two standard normals, then 𝔼[𝑍(𝜃)] = 0 and 𝕍 (𝑍(𝜃)) =
𝕍 (𝑋) sin𝜃2+𝕍 (𝑌) cos𝜃2 =

(
sin𝜃2 + cos𝜃2) 𝐼𝑛 = 𝐼𝑛 showing that 𝑍(𝜃) ∼ 𝑁 (0, 𝐼𝑛). Consider now 𝑍′(𝜃) =

𝑋 cos𝜃 − 𝑌 sin𝜃. Using a similar reasoning we can show that 𝑍′(𝜃) ∼ 𝑁 (0, 𝐼𝑛). Because both 𝑍(𝜃) and
𝑍(𝜃)′ are normally distributed, we can show they are independent by just checking their covariance is 0.
Independence comes from the fact that

𝔼 [𝑍(𝜃)𝑍′(𝜃)] = 𝔼
[
𝑋2] cos𝜃 sin𝜃 + 𝔼[𝑋𝑌]

(
cos2 𝜃 − sin2 𝜃

)
− 𝔼

[
𝑌2] sin𝜃 cos𝜃 = 0.

Now since 𝑍𝑘(0) = 𝑌𝑘 and 𝑍𝑘(𝜋/2) = 𝑋𝑘 for all 𝑘 = 1, . . . , 𝑛, we have

𝑓 (𝑋) − 𝑓 (𝑌) =
∫ 𝜋/2

0

𝑑

𝑑𝜃
𝑓 (𝑍(𝜃))𝑑𝜃 =

∫ 𝜋/2

0
⟨∇ 𝑓 (𝑍(𝜃)), 𝑍′(𝜃)⟩𝑑𝜃,
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where 𝑍′(𝜃) in ℝ𝑛 denotes the elementwise derivative, a vector with the components 𝑍′
𝑘
(𝜃) = 𝑋𝑘 cos(𝜃)−

𝑌𝑘 sin(𝜃). Note that this integral may be reinterpreted as an expectation over 𝜃 ∼ 𝑈[0,𝜋/2],

𝑓 (𝑋) − 𝑓 (𝑌) =
∫ 𝜋/2

0
⟨∇ 𝑓 (𝑍(𝜃)), 𝑍′(𝜃)⟩𝑑𝜃 =

2
𝜋

∫ 𝜋/2

0

𝜋
2 ⟨∇ 𝑓 (𝑍(𝜃)), 𝑍′(𝜃)⟩𝑑𝜃 = 𝔼𝜃

[𝜋
2 ⟨∇ 𝑓 (𝑍(𝜃)), 𝑍′(𝜃)⟩

]
.

Substituting the integral representation into our earlier bound Eq (31) which implies

𝔼𝑋,𝑌[𝜑( 𝑓 (𝑋) − 𝑓 (𝑌))] = 𝔼𝑋,𝑌

[
𝜑

(
𝔼𝜃

[𝜋
2 ⟨∇ 𝑓 (𝑍(𝜃)), 𝑍′(𝜃)⟩

] )]
≤ 𝔼𝑋,𝑌𝔼𝜃

[
𝜑

(𝜋
2 ⟨∇ 𝑓 (𝑍(𝜃)), 𝑍′(𝜃)⟩

)]
(Jensen)

= 𝔼𝜃𝔼𝑋,𝑌

[
𝜑

(𝜋
2 ⟨∇ 𝑓 (𝑍(𝜃)), 𝑍′(𝜃)⟩

)]
(Fubini)

= 𝔼𝜃𝔼𝑋,𝑌

[
𝜑

(𝜋
2 ⟨∇ 𝑓 (𝑋), 𝑌⟩

)]
because (𝑍(𝜃), 𝑍′(𝜃)) 𝑑

= (𝑋,𝑌)

= 𝔼𝑋,𝑌

[
𝜑

(𝜋
2 ⟨∇ 𝑓 (𝑋), 𝑌⟩

)]
,

where the equality before the last exploits the fact that 𝜃 is fixed inside the inner expectation.

8.7 Proof of Theorem 8.9
Proof of Theorem 8.9. We have

∥𝑋 𝛽̂ − 𝑌∥2
2 ≤ ∥𝑋 𝛽̃ − 𝑌∥2

2, 𝛽̃ is the best theoretical solution we might get within 𝒦 .

Opening the bracket, we have

∥𝑋 𝛽̂ − 𝑌∥2
2 = ∥𝑋 𝛽̂ − 𝑋𝛽∗ − 𝜉∥2

2 = ∥𝑋 𝛽̂ − 𝑋𝛽∗∥2
2 + ∥𝜉∥2

2 − 2⟨𝑋 𝛽̂ − 𝑋𝛽∗, 𝜉⟩
∥𝑋 𝛽̃ − 𝑌∥2

2 = ∥𝑋 𝛽̃ − 𝑋𝛽∗ − 𝜉∥2
2 = ∥𝑋 𝛽̃ − 𝑋𝛽∗∥2

2 + ∥𝜉∥2
2 − 2⟨𝑋 𝛽̃ − 𝑋𝛽∗, 𝜉⟩

= ∥𝑋 𝛽̃ − 𝑋𝛽∗∥2
2 + ∥𝜉∥2

2 − 2⟨𝑋 𝛽̂ − 𝑋𝛽∗, 𝜉⟩ + 2⟨𝑋 𝛽̂ − 𝑋 𝛽̃, 𝜉⟩
⇒ ∥𝑋 𝛽̂ − 𝑋𝛽∗∥2

2 ≤ ∥𝑋 𝛽̃ − 𝑋𝛽∗∥2
2 + 2⟨𝑋 𝛽̂ − 𝑋 𝛽̃, 𝜉⟩.

Then what we need to analyze is the second term 2⟨𝑋 𝛽̂ − 𝑋 𝛽̃, 𝜉⟩. By Cauchy-Schwarz inequality,

2⟨𝑋 𝛽̂ − 𝑋 𝛽̃, 𝜉⟩ = 2∥𝑋 𝛽̂ − 𝑋 𝛽̃∥2⟨
𝑋 𝛽̂ − 𝑋 𝛽̃

∥𝑋 𝛽̂ − 𝑋 𝛽̃∥2
, 𝜉⟩ ≤ 2∥𝑋 𝛽̂ − 𝑋 𝛽̃∥2∥𝜉∥2.

Then we apply the equality we have used many times

𝑎𝑏 ≤ 1
2(
𝑎2

𝛾
+ 𝑏2𝛾), 𝑎 ≥ 0, 𝑏 ≥ 0.

And here we set 𝛾 = 2, then

2∥𝑋 𝛽̂ − 𝑋 𝛽̃∥2∥𝜉∥2 ≤
∥𝑋 𝛽̂ − 𝑋 𝛽̃∥2

2
2 + 2∥𝜉∥2

2.
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Finally, we analyze ∥𝑋 𝛽̂ − 𝑋 𝛽̃∥2
2, by the convexity of the set 𝒦 , we know that

∥𝑋 𝛽̂ − 𝑋𝛽∗∥2
2 ≥ ∥𝑋 𝛽̂ − 𝑋 𝛽̃∥2

2 + ∥𝑋𝛽∗ − 𝑋 𝛽̃∥2
2

⇒ ∥𝑋 𝛽̂ − 𝑋 𝛽̃∥2
2 ≤ ∥𝑋 𝛽̂ − 𝑋𝛽∗∥2

2 − ∥𝑋𝛽∗ − 𝑋 𝛽̃∥2
2.

Plugging this into the previous inequality, we have

∥𝑋 𝛽̂ − 𝑋𝛽∗∥2
2 ≤ 2∥𝜉∥2

2 +
∥𝑋 𝛽̂ − 𝑋𝛽∗∥2

2
2 −

∥𝑋𝛽∗ − 𝑋 𝛽̃∥2
2

2 + ∥𝑋𝛽∗ − 𝑋 𝛽̃∥2
2

⇒ ∥𝑋 𝛽̂ − 𝑋𝛽∗∥2
2 ≤ 4∥𝜉∥2

2 + ∥𝑋𝛽∗ − 𝑋 𝛽̃∥2
2

⇒ 1
𝑛
𝔼∥𝑋 𝛽̂ − 𝑋𝛽∗∥2

2 ≤ 1
𝑛
𝔼4∥𝜉∥2

2 +
1
𝑛
𝔼∥𝑋𝛽∗ − 𝑋 𝛽̃∥2

2

⇒ 1
𝑛
𝔼∥𝑋 𝛽̂ − 𝑋𝛽∗∥2

2 ≤ 4𝜎2𝑑

𝑛
+ 1
𝑛
∥𝑋𝛽∗ − 𝑋 𝛽̃∥2

2.
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STAT210B Theoretical Statistics Lecture 9 - 02/13/2024

Lecture 9: Fixed Design and Sparse Linear Regression
Instructor: Nikita Zhivotovskiy Scriber: Toby Kreiman Proofreader: Rita Lyu

9.1 Fixed Design Linear Regression
Recall that fixed design linear regression consists of predicting targets 𝑦𝑖 from fixed vectors 𝑥𝑖 ∈ ℝ𝑑 for
𝑖 ∈ [1, 𝑛], where 𝑦𝑖 = ⟨𝑥𝑖 , 𝛽∗⟩ + 𝜉𝑖 . 𝜉𝑖 is zero mean and 𝜎−subgaussian random noise. We can stack the
features as rows into a matrix 𝑋 ∈ ℝ𝑛×𝑑 and write the above in matrix form:

𝑌 = 𝑋𝛽∗ + 𝜉.

Let 𝐾 ⊆ Δ𝑑 where Δ𝑑 = {𝑥 ∈ ℝ𝑑
+ :

∑𝑑
𝑖=1 |𝑥𝑖 | ≤ 1} is the d dimensional simplex. Further, let

𝛽̂ = argmin
𝛽∈𝐾

| |𝑋𝛽 − 𝑌 | |22.

This is a constrained least squares problem. We wish to analyze:

𝔼
1
𝑛
| |𝑋 𝛽̂ − 𝑋𝛽∗ | |22.

In order to do so, recall that last time we showed that:

| |𝑋 𝛽̂ − 𝑋𝛽∗ | |22 ≤ ||𝑋𝛽 − 𝑋𝛽∗ | |22 + 2⟨𝑋 𝛽̂ − 𝑋𝛽, 𝜉⟩ (32)

for all 𝛽 ∈ 𝐾0 where 𝐾0 was some arbitrary subspace. In this case, since 𝐾 is the simplex, we can see that
𝛽̂ − 𝛽 ∈ 𝐵𝑑1 , where 𝐵𝑑1 is the unit ball with respect to the 𝑙1 distance. Thus we can bound the second term
in the above inequality:

2⟨𝑋 𝛽̂ − 𝑋𝛽, 𝜉⟩ ≤ 2 sup
𝑣∈𝐵𝑑1

⟨𝑣, 𝑋⊺𝜉⟩,

where we also used the fact that ⟨𝑋𝑎, 𝑏⟩ = 𝑎⊺𝑋⊺𝑏 = ⟨𝑎, 𝑋⊺𝑏⟩. We can recognize the right hand side as
the definition for the ∞−norm using its dual 𝑙1 norm. Thus we get:

2⟨𝑋 𝛽̂ − 𝑋𝛽, 𝜉⟩ ≤ 2| |𝑋⊺𝜉| |∞.

We now analyze 𝔼| |𝑋⊺𝜉| |∞. We introduce 𝑎 = 𝑋⊺𝜉 ∈ ℝ𝕕 for notational convenience. We note that
𝑎𝑖 = ⟨𝑋(𝑖), 𝜉⟩, where 𝑋(𝑖) represents the 𝑖𝑡ℎ column of 𝑋 (since we have an inner product between the
transpose of 𝑋 and 𝜉). Therefore, 𝑎𝑖 is also subgaussian with parameter 𝜎 | |𝑋(𝑖) | |2. By definition:

| |𝑋⊺𝜉| |∞ = max{𝑎1, . . . , 𝑎𝑛 ,−𝑎1, . . . ,−𝑎𝑛}.

Using the fact that 𝑎𝑖 is subgaussian with parameter 𝜎 | |𝑋(𝑖) | |2 and the max inequality derived in lecture
5, we can say that:

𝔼| |𝑋⊺𝜉| |∞ ≤
√

2 log(2𝑑)𝜎 max | |𝑋(𝑖) | |2.
Finally, putting it all together, we can say that:

𝔼
1
𝑛
| |𝑋 𝛽̂ − 𝑋𝛽∗ | |22 ≤ inf

𝛽∈𝐾

1
𝑛
| |𝑋𝛽 − 𝑋𝛽∗ | |22 +

2
√

2 log(2𝑑)𝜎 max | |𝑋(𝑖) | |2
𝑛

.

For reference, we note that typically we assume that | |𝑋(𝑖) | |2 ≤
√
𝑛.
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9.2 Sparse Linear Regression
We are interested in cases where the solution depends only on a sparse subset of the features. This time,
let:

𝐾 = {𝑥 : | |𝑥 | |0 ≤ 𝑠},
where | |𝑥 | |0 is the number of non-zero coordinates of 𝑥. We assume that 𝑠 ≪ 𝑑 and that 𝛽∗ ∈ 𝐾. In
general this a difficult non-convex problem to compute. By equation 32,

| |𝑋 𝛽̂ − 𝑋𝛽∗ | |22 ≤ 2⟨𝑋 𝛽̂ − 𝑋𝛽∗, 𝜉⟩,

where we drop the infimum since 𝛽∗ ∈ 𝐾. We can divide by | |𝑋 𝛽̂ − 𝑋𝛽∗ | |2 on both sides to obtain:

| |𝑋 𝛽̂ − 𝑋𝛽∗ | |2 ≤ 2⟨
𝑋 𝛽̂ − 𝑋𝛽∗

| |𝑋 𝛽̂ − 𝑋𝛽∗ | |2
, 𝜉⟩.

Note that since 𝛽∗, 𝛽̂ are both sparse, | |𝛽̂−𝛽∗ | |0 ≤ 2𝑠. Therefore, we can consider 𝑋(𝛽̂−𝛽∗)
| |𝑋(𝛽̂−𝛽∗)| |2

as an orthogonal
projector onto some subset 𝑆 of magnitude |𝑆 | ≤ 2𝑠 of the columns of the matrix 𝑋 (alternatively we
could use Cauchy-Schwartz to analyze this but it does not give a good upper bound since we don’t take
advantage of the sparseness). We call that matrix 𝐴𝑆. Therefore, if we take a maximum over all such sets
𝑆, we can say:

| |𝑋 𝛽̂ − 𝑋𝛽∗ | |2 ≤ 2 max
𝑆⊆[𝑑],|𝑆 |≤2𝑠

| |𝐴𝑆𝜉| |2,

implying that (by squaring both sides)

| |𝑋 𝛽̂ − 𝑋𝛽∗ | |22 ≤ 4 max
𝑆⊆[𝑑],|𝑆 |≤2𝑠

| |𝐴𝑆𝜉| |22.

We now fix 𝑆 ⊆ [𝑑] with |𝑆 | ≤ 2𝑠 and check the subgaussianity of 𝐴𝑆𝜉. Fix 𝑣 ∈ 𝑆𝑑−1 and 𝜆 > 0. Then:

𝔼 exp(𝜆⟨𝐴𝑆𝜉, 𝑣⟩) = 𝔼 exp(𝜆⟨𝜉, 𝐴𝑆𝑣⟩),

since 𝐴𝑆 = 𝐴
⊺
𝑆

since it is an orthogonal projection matrix. We know that 𝜉 is subgaussian, therefore:

𝔼 exp(𝜆⟨𝜉, 𝐴𝑆𝑣⟩) ≤ exp
(
𝜆2𝜎2

2 | |𝐴𝑆𝑣 | |22
)
.

Again using the fact that 𝐴𝑆 is a projector and 𝐴2
𝑆
= 𝐴𝑆,

exp
(
𝜆2𝜎2

2 | |𝐴𝑆𝑣 | |22
)
= exp

(
𝜆2𝜎2

2 𝑣⊺𝐴𝑆𝑣

)
,

showing that 𝐴𝑆𝜉 is a subgaussian vector. Therefore, we can use the inequality for the norm of a
subgaussian vector from Lecture 7 Theorem 1 to say that with probability 1 − 𝛿:

| |𝐴𝑆𝜉| |2 ≤ 𝜎(
√

Tr (𝐴)𝑆 +

√
2𝜆𝑚𝑎𝑥(𝐴𝑆) log

(
1
𝛿

)
) ≤ 𝜎(

√
2𝑠 +

√
2 log

(
1
𝛿

)
),

since we know that for a projection matrix of size 2𝑠, Tr (𝐴)𝑆 ≤ 2𝑠 and 𝜆𝑚𝑎𝑥(𝐴𝑆) = 1.
In order to bound max𝑆⊆[𝑑],|𝑆 |≤2𝑠 | |𝐴𝑆𝜉| |22, we apply a union bound over all sets 𝑆 ∈ [𝑑] where |𝑆 | ≤ 2𝑠.
We call 𝑀 the number of sets 𝑆 ∈ [𝑑] where |𝑆 | ≤ 2𝑠:

𝑀 =

2𝑠∑
𝑗=0

(
𝑑

𝑗

)
≤

2𝑠∑
𝑗=0

(
𝑑

𝑗

) (
𝑑

2𝑠

)2𝑠−𝑗
,
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where the last inequality holds because we are multiplying by a number greater than 1 since 2𝑠 ≪ 𝑑. We
can sum over more positive terms and write:

2𝑠∑
𝑗=0

(
𝑑

𝑗

) (
𝑑

2𝑠

)2𝑠−𝑗
≤

(
𝑑

2𝑠

)2𝑠 𝑑∑
𝑗=0

(
𝑑

𝑗

) (
2𝑠
𝑑

) 𝑗
,

where we also factor out ( 𝑑2𝑠 )2𝑠 . We can recognize this term and use the binomial theorem to get:

𝑀 ≤
(
𝑑

2𝑠

)2𝑠 𝑑∑
𝑗=0

(
𝑑

𝑗

) (
2𝑠
𝑑

) 𝑗
≤

(
𝑑

2𝑠

)2𝑠 (
1 + 2𝑠

𝑑

)𝑑
≤

(
𝑒𝑑

2𝑠

)2𝑠
,

where we use that 1 + 𝑥 ≤ 𝑒𝑥 in the last step. Applying the union bound over all sets 𝑆, we get that with
probability 1 − 𝛿,

max
𝑆⊆[𝑑],|𝑆 |≤2𝑠

| |𝐴𝑆𝜉| |2 ≤ 𝜎(
√

2𝑠 +

√
2(2𝑠 log

(
𝑒𝑑

2𝑠

)
+ log

(
1
𝛿

)
)).

Putting it all together, with probability 1 − 𝛿

1
𝑛
| |𝑋 𝛽̂ − 𝑋𝛽∗ | |22 ≤

𝐶𝜎2(𝑠 log
(
𝑒𝑑
2𝑠

)
+ log 1

𝛿 )
𝑛

,

for some constant C. Importantly, note the better dependence of 𝑛 ≥ 𝑠 log 𝑑
𝑠 instead of the more traditional

bound of 𝑛 ≥ 𝑑.

9.3 Matrices and their Concentrations
We begin by reviewing a few useful definitions. Let 𝐴 ∈ ℝ𝑚×𝑛 be a (non-random) matrix.

Definition 9.1 (SVD). Singular Value Decomposition (SVD) for a matrix A is defined as:

𝐴 =

𝑟𝑎𝑛𝑘(𝐴)∑
𝑖=1

𝜎𝑖𝑢𝑖𝑣
⊺
𝑖
,

where 𝜎1 ≥ · · · ≥ 𝜎𝑛 ≥ 0 are the ordered singular values of the matrix A. The 𝑢𝑖 , 𝑣𝑖 form an orthonormal basis for
𝐴𝐴⊺ , 𝐴⊺𝐴 respectively and the singular values are the square root of the eigenvalues of 𝐴𝐴⊺ and 𝐴⊺𝐴.

Remark 9.2. For a square matrix 𝑀 ∈ ℝ𝑚×𝑚 , the inverse can be written as:

𝑀−1 =

𝑚∑
𝑖=1

𝜎−1
𝑖 𝑣𝑖𝑢

⊺
𝑖
.

Definition 9.3 (Operator Norm). The operator norm of a matrix 𝐴 is defined as:

| |𝐴| |𝑜𝑝 = sup
𝑣∈𝑆𝑛−1

| |𝐴𝑣 | |2 = sup
𝑢∈𝑆𝑚−1 ,𝑣∈𝑆𝑛−1

𝑢⊺𝐴𝑣.

Definition 9.4 (Frobenius Norm). The Frobenius (or sometimes called Hilbert–Schmidt operator) norm of a
matrix 𝐴 is defined as:

| |𝐴| |𝐹 =

√∑
𝑖 , 𝑗

𝐴2
𝑖 𝑗

.
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Figure 4: Each point in the grey oval is covered by one of the 𝜀 balls.

Remark 9.5. The operator norm is the maximum singular value:

| |𝐴| |𝑜𝑝 = 𝜎1.

The Frobenius norm is square root of the sum of the squared singular values (norm of singular values vector):

| |𝐴| |𝐹 =

√∑
𝑖

𝜎2
𝑖
.

With these equalities in hand, we can use singular values to turn a matrix bound into a vector bound of singular
values.

9.4 Covering and Packing Numbers
We review some more useful definitions.
Definition 9.6 (𝜀−Cover). Let 𝐾 be a subset of ℝ𝑑. An 𝜀−cover with respect to the distance 𝜌 is the set 𝑁𝜀 ⊆ 𝐾

such that ∀𝑥 ∈ 𝐾, ∃𝑥0 ∈ 𝑁𝜀 such that 𝜌(𝑥, 𝑥𝑜) ≤ 𝜀. See figure 4.

Definition 9.7 (Covering Number). The cover number 𝒩(𝐾, 𝜌, 𝜀) is the smallest size of an 𝜀−cover 𝑁𝜀 of 𝐾
with respect to 𝜌.
Definition 9.8 (𝜀-separated set). Let 𝜌 be a distance metric. A set 𝑆 is 𝜀-separated if ∀𝑥, 𝑦 ∈ 𝑆, 𝑥 ≠ 𝑦,
𝜌(𝑥, 𝑦) > 𝜀.
Definition 9.9 (Packing Number). The packing number 𝒫(𝐾, 𝜌, 𝜀) is the size of the largest 𝜀−separated subset
of 𝐾 with respect to 𝜌.
Lemma 9.10.

𝒫(𝐾, 𝜌, 2𝜀) ≤ 𝒩(𝐾, 𝜌, 𝜀) ≤ 𝒫(𝐾, 𝜌, 𝜀)
Proof lemma 9.10. We prove the right most inequality first. It suffices to prove that any max packing is
a covering. Assume for contradiction that we have a max packing 𝑃 for 𝐾 and that some 𝑥 ∈ 𝐾 is not
covered. But then this is not a max packing since 𝑥 is at least 𝜀 away from any point in 𝑃 so it could have
been added to 𝑃 creating a larger packing set. This gives us a contradiction and thus every max packing
is a cover. Therefore, 𝒩(𝐾, 𝜌, 𝜀) ≤ 𝒫(𝐾, 𝜌, 𝜀).
Now for the first inequality. Consider an 𝜀−covering of 𝐾. Take two points 𝑥, 𝑦 that are 2𝜀 separated.
They must be in 2 different covering balls. Therefore, there is at most one element of the 2𝜀 packing set
for each element in the 𝜀 covering set. Therefore 𝒫(𝐾, 𝜌, 2𝜀) ≤ 𝒩(𝐾, 𝜌, 𝜀)
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STAT210B Theoretical Statistics Lecture 10 - 02/15/2024

Lecture 10: Upper bounds on the norms of Random Matrices
Instructor: Nikita Zhivotovskiy Scriber: Kaihao Jing Proofreader: Xuelin Yang

10.1 Preliminaries
Recall that we mentioned the concentration of random matrices, we need some preparation: For any
set 𝐾 ⊂ ℝ𝑑, recall a 𝜖-net is a subset 𝒩 ⊂ 𝐾 such that 𝐾 ⊂ ∪𝑥∈𝒩𝐵 (𝑥, 𝜖), where 𝐵 (𝑥, 𝑟) is a Ball
centered at 𝑥 with radius 𝑟 (with respect to some metric 𝑑), and the covering number 𝒩 (𝐾, 𝑑, 𝜖) =
min {|𝒩 | : 𝒩 is an 𝜖-net}. A subset 𝒫 ⊂ 𝐾 is called 𝜖 − 𝑠𝑒𝑝𝑒𝑟𝑎𝑡𝑒𝑑 if 𝑑 (𝑥, 𝑦) > 𝜖 for all distinct points
𝑥, 𝑦 ∈ 𝒫. The packing number 𝒫 (𝐾, 𝑑, 𝜖) = max {|𝒫| : 𝒫 is 𝜖 − 𝑠𝑒𝑝𝑒𝑟𝑎𝑡𝑒𝑑}. In the Lecture 9, we proved
the equivalence of the covering and packing numbers:

Lemma 10.1. For any set 𝐾 ⊂ ℝ𝑑 and any 𝜖 > 0, we have

𝒫 (𝐾, 𝑑, 2𝜖) ≤ 𝒩 (𝐾, 𝑑, 𝜖) ≤ 𝒫 (𝐾, 𝑑, 𝜖) .

For our purpose, we need an estimate of the covering number of the unit ball, which is stated as the
following lemma:

Lemma 10.2. Let 𝐵𝑑2 be the unit ball (with respect to ∥·∥2 metric) in ℝ𝑑, then for any 𝜖 > 0 we have(
1
𝜖

)𝑑
≤ 𝒩

(
𝐵𝑑2 , ∥·∥2 , 𝜖

)
≤

(
1 + 2

𝜖

)𝑑
.

Proof. Lower bound: for any 𝜖-net 𝒩 (WLOG, we assume 𝒩 is a countable set),

Vol
(
𝐵𝑑2

)
≤ Vol (∪𝑥∈𝒩𝐵 (𝑥, 𝜖)) ≤

∑
𝑥∈𝒩

Vol (𝜖𝐵 (𝑥, 1))

= |𝒩 | Vol
(
𝜖𝐵𝑑2

)
= |𝒩 | 𝜖𝑑Vol

(
𝐵𝑑2

)
,

where Vol (·) is the volume of sets in ℝ𝑑 and we use the fact that Vol (𝜖𝐵 (𝑥, 1)) = Vol
(
𝜖𝐵𝑑2

)
= 𝜖𝑑Vol

(
𝐵𝑑2

)
.

Thus, we have |𝒩 | ≥
( 1
𝜖

)𝑑 for any 𝜖−net 𝒩 , which proves the lower bound.
Upper bound: Choose an 𝜖 − 𝑠𝑒𝑝𝑒𝑟𝑎𝑡𝑒𝑑 set 𝒫 such that |𝒫| = 𝒫

(
𝐵𝑑2 , ∥·∥2 , 𝜖

)
. Notice that for any

distinct 𝑥, 𝑦 ∈ 𝒫, 𝐵
(
𝑥, 𝜖2

)
and 𝐵

(
𝑦, 𝜖2

)
are disjoint (since 𝑑 (𝑥, 𝑦) > 𝜖) and 𝐵

(
𝑥, 𝜖2

)
⊂

(
1 + 𝜖

2
)
𝐵𝑑2 , then

𝒫
(
𝐵𝑑2 , ∥·∥2 , 𝜖

)
Vol

( 𝜖
2𝐵

𝑑
2

)
= Vol

(
∪𝑥∈𝒫𝐵

(
𝑥,

𝜖
2

))
≤ Vol

((
1 + 𝜖

2

)
𝐵𝑑2

)
,

then implies that 𝒫
(
𝐵𝑑2 , ∥·∥2 , 𝜖

)
≤

(
1 + 2

𝜖

)𝑑. Finally, by Lemma 10.1, 𝒩
(
𝐵𝑑2 , ∥·∥2 , 𝜖

)
≤

(
1 + 2

𝜖

)𝑑.
Remark 10.3. It’s not hard to see that the upper bound for 𝒩

(
𝐵𝑑2 , ∥·∥2 , 𝜖

)
in Lemma 10.2 is also an upper bound

for 𝒩
(
𝑆𝑑−1, ∥·∥2 , 𝜖

)
, where 𝑆𝑑−1 is the 𝑑 − 1 dimensional unit sphere.
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10.2 Upper bound for matrices with independent entries
In this section we prove a concentration inequality for the random matrices with independent entries.

Theorem 10.4. Let 𝑋 =
(
𝑋𝑖 𝑗

)
𝑚×𝑛 be a 𝑚 × 𝑛 random matrix where the entries 𝑋𝑖 𝑗 are independent random

variables such that 𝔼𝑋𝑖 𝑗 = 0 for any 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 and 𝐾 = max𝑖 , 𝑗


𝑋𝑖 𝑗

𝜓2

< ∞. Recall the operator
norm ∥𝑋∥ = ∥𝑋∥𝑜𝑝 = sup𝑢∈𝑆𝑚−1 , 𝑣∈𝑆𝑛−1 𝑢⊤𝑋𝑣, then for any 𝛿 ∈ (0, 1), with probability at least 1 − 𝛿 we have

∥𝑋∥ ≤ 𝐶𝐾

(√
𝑚 +

√
𝑛 +

√
log (1/𝛿)

)
,

where 𝐶 > 0 is a universal constant.

The following is a key proposition.

Proposition 10.5. Given any matrix 𝐴 ∈ ℝ𝑚×𝑛 and 𝜖 ∈
(
0, 1

2
)
, let ℳ be an 𝜖-net for 𝑆𝑚−1 and 𝒩 be an 𝜖-net

for 𝑆𝑛−1, then we have

sup
𝑢∈ℳ , 𝑣∈𝒩

𝑢⊤𝐴𝑣 ≤ ∥𝐴∥𝑜𝑝 ≤ 1
1 − 2𝜖 sup

𝑢∈ℳ , 𝑣∈𝒩
𝑢⊤𝐴𝑣

Proof. The proof for lower bound is straightforward from the definition of the operator norm. For the upper
bound, we choose 𝑣0 ∈ 𝑆𝑛−1 such that ∥𝐴𝑣0∥2 = ∥𝐴∥ (this is achievable since ∥𝐴∥ = max𝑣∈𝑆𝑛−1 ∥𝐴𝑣∥2).
There exists 𝑣1 ∈ 𝒩 such that ∥𝑣0 − 𝑣1∥2 ≤ 𝜖, then we have

∥𝐴∥ = ∥𝐴𝑣0∥2 = ∥𝐴𝑣0 − 𝐴𝑣1 + 𝐴𝑣1∥2
≤ ∥𝐴𝑣0 − 𝐴𝑣1∥2 + ∥𝐴𝑣1∥2
≤ 𝜖 ∥𝐴∥ + ∥𝐴𝑣1∥2 ,

thus (1 − 𝜖) ∥𝐴∥ ≤ ∥𝐴𝑣1∥2 ≤ sup𝑣∈𝒩 ∥𝐴𝑣∥2. For the same reason, for any 𝑣 ∈ 𝑆𝑛−1

∥𝐴𝑣∥2 = sup
𝑢∈𝑆𝑚−1

𝑢⊤𝐴𝑣 ≤ 1
1 − 𝜖

sup
𝑢∈ℳ

𝑢⊤𝐴𝑣.

Finally,

∥𝐴∥ ≤ 1
(1 − 𝜖)2

sup
𝑢∈ℳ , 𝑣∈𝒩

𝑢⊤𝐴𝑣 ≤ 1
1 − 2𝜖 sup

𝑢∈ℳ , 𝑣∈𝒩
𝑢⊤𝐴𝑣,

where 1
(1−𝜖)2

≤ 1
1−2𝜖 since 𝜖 ∈

(
0, 1

2
)
.

Proof of Theorem 10.4. Let 𝒩 be a 1
4-net for 𝑆𝑛−1 and ℳ be a 1

4-net for 𝑆𝑚−1 such that |𝒩 | ≤ 9𝑛 and
|ℳ| ≤ 9𝑚 (this is achievable due to Lemma 10.2 and Remark 10.3). By Proposition 10.5,

∥𝑋∥ ≤ 2 sup
𝑢∈ℳ , 𝑣∈𝒩

𝑢⊤𝐴𝑣.

For any pair (𝑢, 𝑣) ∈ ℳ ×𝒩 , we have that

𝑢⊤𝑋𝑣

2
𝜓2

=


∑
𝑖 , 𝑗

𝑢𝑖𝑋𝑖 𝑗𝑣 𝑗


2
𝜓2

≤ 𝐶1
∑
𝑖 , 𝑗



𝑢𝑖𝑋𝑖 𝑗𝑣 𝑗

2
𝜓2

≤ 𝐶1𝐾
2
∑
𝑖 , 𝑗

𝑢2
𝑖 𝑣

2
𝑗 = 𝐶1𝐾

2

(∑
𝑖

𝑢2
𝑖

) ©­«
∑
𝑗

𝑣2
𝑗

ª®¬
50



≤ 𝐶1𝐾
2,

where we use 𝐶𝑖 to represent universal constants and the last inequality is because 𝑢 ∈ 𝑆𝑚−1, 𝑣 ∈ 𝑆𝑛−1.
Then the concentration inequality for sub-Gaussian random variables implies that for any 𝑡 > 0

Pr
(
𝑢⊤𝑋𝑣 ≥ 𝑡

)
≤ exp

(
−𝐶2𝑡

2

𝐾2

)
,

then using the union bound gives us that

Pr

(
sup

𝑢∈ℳ , 𝑣∈𝒩
𝑢⊤𝑋𝑣 ≥ 𝑡

)
≤ 9𝑚+𝑛 exp

(
−𝐶2𝑡

2

𝐾2

)
For any 𝛿, choose 𝑡 = 𝐶3𝐾

(√
𝑚 +

√
𝑛 +

√
log (1/𝛿)

)
, where 𝐶3 is chosen such that 9𝑚+𝑛 exp

(
−𝐶2𝑡2

𝐾2

)
≤ 𝛿

(this is possible because
(√
𝑚 +

√
𝑛
)2 ≥ 𝑚 + 𝑛) we have with probability at least 𝛿,

∥𝑋∥ ≤ 2 sup
𝑢∈ℳ , 𝑣∈𝒩

𝑢⊤𝑋𝑣 ≤ 2𝐶3𝐾

(√
𝑚 +

√
𝑛 +

√
log (1/𝛿)

)
,

which finishes the proof.

Example: (Wigner matrix) Let 𝑋 =
(
𝑋𝑖 𝑗

)
𝑛×𝑛 be a 𝑛×𝑛 random matrix such that

{
𝑋𝑖 𝑗

}
𝑖< 𝑗

are i.i.d. 𝒩 (0, 1),
{𝑋𝑖𝑖}1≤𝑖≤𝑛 are i.i.d. 𝒩 (0, 2) (also independent from 𝑋𝑖 𝑗) and 𝑋⊤ = 𝑋. Define 𝑌 =

(
𝑌𝑖 𝑗

)
𝑛×𝑛 such that

𝑌𝑖 𝑗 = 𝑋𝑖 𝑗 ∀𝑖 < 𝑗 , 𝑌𝑖𝑖 =
𝑋𝑖𝑖

2 ∀1 ≤ 𝑖 ≤ 𝑛, 𝑌𝑖 𝑗 = 0 ∀𝑖 > 𝑗 ,

then 𝑋 = 𝑌 + 𝑌⊤. By triangle inequality, ∥𝑋∥ ≤ ∥𝑌∥ + ∥𝑌⊤∥ = 2 ∥𝑌∥. Clearly max𝑖 𝑗


𝑌𝑖 𝑗

𝜓2

≤ 𝐶 < ∞
(∥0∥𝜓2 = 0), then apply Theorem 10.4 we have that for any 𝛿 ∈ (0, 1), with probability at least 1 − 𝛿

∥𝑋∥ ≤ 𝐶

(√
𝑛 +

√
log (1/𝛿)

)
.

10.3 Operator norm of sample covariance matrices
Now we consider sample covariance matrices: consider 𝑋 ∈ ℝ𝑑, 𝔼𝑋 = 0, and sub-Gaussian ∀𝑣 ∈ 𝑆𝑑−1,
∥⟨𝑋, 𝑣⟩∥𝜓2 ≤ 𝐶∥⟨𝑋, 𝑣⟩∥𝐿2 with absolute constant 𝐶. We want to bound ∥ 1

𝑛

∑𝑛
𝑖=1 𝑋𝑖𝑋

⊤
𝑖
− Σ∥𝑜𝑝 .

Define effective rank of Σ as 𝑟(Σ) = 𝑡𝑟(Σ)
∥Σ∥𝑜𝑝 (the denominator is the largest eigenvalue).

Theorem 10.6. For sub-Gaussian zero-mean independent sample 𝑋1, . . . , 𝑋𝑛 ,

∥ 1
𝑛

𝑛∑
𝑖=1

𝑋𝑖𝑋
⊤
𝑖 − Σ∥𝑜𝑝 ≤ 𝐶∥Σ∥𝑜𝑝

(√
𝑟(Σ)
𝑛

+
√

log(1/𝛿)
𝑛

)
with probability at least 1 − 𝛿 whenever 𝑛 ≥ 𝐶1(𝑟(Σ) + log(1/𝛿)).

Proof. Recall that from Lecture 7, we have the following lemma: Consider 𝑓 (𝑋, 𝜃) for r.v. 𝑋, and
parameter 𝜃 ∈ Θ ∈ ℝ𝑑. Choose the prior 𝜋 on Θ. Simultaneously for all measure 𝜌 : 𝐾𝐿(𝜌| |𝜋) < ∞. We
know 𝔼𝜃∼𝜌 𝑓 (𝑋, 𝜃) ≤ 𝔼𝜃∼𝜌 log𝔼𝑋 exp( 𝑓 (𝑋, 𝜃)) + 𝐾𝐿(𝜌| |𝜋) + log(1/𝛿) with probability at least 1 − 𝛿. We
use this lemma to get the following corollary:
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Corollary 10.7. Assume 𝑓 (𝑋, 𝜃) = ∑𝑛
𝑖=1 𝑓 (𝑋𝑖 , 𝜃) for random vector 𝑋 with i.i.d. 𝑋𝑖 . We plug it into the lemma

and have

1
𝑛

𝑛∑
𝑖=1

𝑓 (𝑋𝑖 , 𝜃) ≤ 𝐸𝜃∼𝜌 log𝔼𝑋 exp( 𝑓 (𝑋, 𝜃)) +
𝐾𝐿(𝜌| |𝜋) + log(1/𝛿)

𝑛
.

Since we are interested in bounding

∥ 1
𝑛

𝑛∑
𝑖=1

𝑋𝑖𝑋
⊤
𝑖 − Σ∥𝑜𝑝 = sup

𝑢,𝑣∈𝑆𝑑−1

(
1
𝑛

𝑛∑
𝑖=1

⟨𝑋𝑖 , 𝑢⟩⟨𝑋𝑖 , 𝑣⟩ − 𝑢⊤Σ𝑣
)

and we want to relate this to the Corollary:
We use two tricks. For the first trick, we consider 𝜋(𝜃) with 𝜋 ∼ 𝒩(0, 𝛽−1𝐼𝑑) where 𝛽 > 0 is some
parameter that we can tune. Let 𝜌𝑣(𝜃), 𝜌 > 0 defines the density as folows:

𝜌𝑣(𝜃) =
1

𝑝(2(𝜋−1𝛽)𝑑/2)
exp

(−𝛽∥𝜃 − 𝑣∥2

2

)
𝟙{∥Σ1/2(𝜃 − 𝑣)∥2 ≤ 𝑟}.

On RHS, 𝑝 in the denominator is a normalization factor because we restrict to the ellipsoid. The indicator
function also means putting it into the ellipsoid.
For the second trick, recall original 𝜃 ∈ Θ ⊆ ℝ𝑑. We let a new 𝜃 ∈ Θ2𝑑 , 𝜃 = (𝜃1, 𝜃2) with 𝜃1, 𝜃2 both 𝑑
dimensional vectors. We have 𝜌𝑢,𝑣 = 𝜌𝑢(𝜃1) ⊗ 𝜌𝑣(𝜃2),𝜋′(𝜃) = 𝜋(𝜃1) ⊗ 𝜋(𝜃2), and pair (𝜃, 𝜈) ∼ 𝜌𝑢,𝑣 . Then,

𝔼(𝜃,𝜈)∼𝜌𝑢,𝑣 ⟨𝑋, 𝜃⟩⟨𝑋, 𝜈⟩ = ⟨𝑋,𝔼𝜃∼𝜌𝑢,𝑣𝜃⟩⟨𝑋,𝔼𝜈∼𝜌𝑢,𝑣𝑣⟩ = ⟨𝑋, 𝑢⟩⟨𝑋, 𝑣⟩.

Plug the following function into the corollary:

sup
𝑢,𝑣∈𝑆𝑑−1

𝔼(𝜃,𝜈)∼𝜌𝑢,𝑣𝜆

(
𝑛∑
𝑖=1

⟨𝜃, 𝑋𝑖⟩⟨𝑋𝑖 , 𝜈⟩ − 𝜃⊤Σ𝜈

)
= 𝜆∥

𝑛∑
𝑖=1

(
𝑋𝑖𝑋

⊤
𝑖 − Σ

)
∥𝑜𝑝 ,

we have

𝜆∥ 1
𝑛

𝑛∑
𝑖=1

(
𝑋𝑖𝑋

⊤
𝑖 − Σ

)
∥𝑜𝑝 ≤ sup

𝑢,𝑣∈𝑆𝑑−1

(
𝔼(𝜃,𝜈)∼𝜌𝑢,𝑣 log𝔼𝑋 exp

(
𝜆

(
⟨𝜃, 𝑋⟩⟨𝑋, 𝜈⟩ − 𝜃⊤Σ𝜈

) )
+
𝐾𝐿(𝜌𝑢,𝑣 | |𝜋′) + log(1/𝛿)

𝑛

)
,

Consider the first term on the RHS as if 𝜃, 𝜈 are fixed:

𝔼(𝜃,𝜈)∼𝜌𝑢,𝑣 log𝔼𝑋 exp
(
𝜆

(
⟨𝜃, 𝑋⟩⟨𝑋, 𝜈⟩ − 𝜃⊤Σ𝜈

) )
= ∥⟨𝜃, 𝑋⟩⟨𝑋, 𝜈⟩ − 𝜃⊤Σ𝜈∥𝜓1

≤ 𝐶2∥⟨𝜃, 𝑋⟩⟨𝑋, 𝜈⟩∥𝜓1

≤ 𝐶2∥⟨𝜃, 𝑋⟩∥𝜓2 ∥⟨𝑋, 𝜈⟩∥𝜓2

≤ 𝐶3
√
𝜃⊤Σ𝜃

√
𝜈⊤Σ𝜈

≤ 𝐶3(𝜃⊤Σ𝜃 + 𝜈⊤Σ𝜈)
≤ 𝐶4∥Σ∥𝑜𝑝 .

Note that in above 𝜃⊤Σ𝜃 ≤ 2((𝜃 − 𝑢)⊤Σ(𝜃 − 𝑢) + (𝑢⊤Σ𝑢)) ≤ 2(𝑟2 + ∥Σ∥𝑜𝑝) (also applies to 𝜈⊤Σ𝜈). The
last line comes from picking 𝑟2 = 2∥Σ∥𝑜𝑝 , which will also be used to bound the normalization constant 𝑝.
Now what is left is to bound the second term on the RHS (i.e. 𝐾𝐿(𝜌𝑢,𝑣 | |𝜋′)

𝑛 ).
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STAT210B Theoretical Statistics Lecture 11 - 02/20/2024

Lecture 11: Matrix Bernstein & Gaussian Comparator Inequalities
Instructor: Nikita Zhivotovskiy Scriber: Jessica Dai Proofreader: Kota Okuda

11.1 Proof of sample covariance bound, continued.
We begin by finishing the proof of the result discussed last lecture, the bound on sample covariance for
random vectors. Recall the statement below:

Theorem 11.1. Let 𝑋1, . . . , 𝑋𝑛 be independent random vectors in ℝ𝑑 with 𝔼 [𝑋𝑖] = 0, true covariance Σ, and
subgaussian, i.e. for all 𝑣 ∈ 𝑆𝑑−1, ∥⟨𝑋, 𝑣⟩∥𝜓2 ≤ 𝐶∥⟨𝑋, 𝑣⟩∥2. Then, with probability 1 − 𝛿,

∥ 1
𝑛

∑
𝑖∈[𝑛]

𝑋𝑖𝑋
⊤
𝑖 − Σ∥op ≤ 𝐶∥Σ∥op

(√
𝑟(Σ)
𝑛

+
√

log(1/𝛿)
𝑛

)
,

where 𝑟(Σ) = Tr(Σ)
∥Σ∥op

is the effective rank of Σ and 𝐶 is some constant, as long as 𝑛 ≥ 𝐶′(𝑟(Σ) + log(1/𝛿)) for some
constant 𝐶′.

By the end of Lecture 10, we had shown

𝜆∥ 1
𝑛

∑
𝑖∈[𝑛]

𝑋𝑖𝑋
⊤
𝑖 − Σ∥op ≤ sup

𝑢,𝑣∈𝑆𝑑−1

[
𝔼𝜃∼𝜌𝑢,𝑣

[
log

(
𝔼𝑋

[
exp

(
𝜆 (⟨𝜃, 𝑋⟩⟨𝑋, 𝑣⟩ − 𝜃⊤Σ𝑣)︸                       ︷︷                       ︸

(𝐴)

) ] )]
+
𝐾𝐿(𝜌𝑢,𝑣 ∥𝜋 ⊗ 𝜋) + log(1/𝛿)

𝑛︸                             ︷︷                             ︸
(𝐵)

]
,

where 𝜃 ∈ ℝ𝑑 and 𝜌𝑢(𝜃) has density (with parameters 𝑝, 𝛽 and 𝑟 1) given by

1
𝑝(2𝜋𝛽−1)𝑑/2 exp

(−𝛽∥𝜃 − 𝑣∥2

2

)
· 1[∥Σ1/2(𝜃 − 𝑣)∥2 ≤ 𝑟],

allowing us to define 𝜌𝑢,𝑣(𝜃1, 𝜃2) = 𝜌𝑢(𝜃1) ⊗ 𝜌𝑣(𝜃2), and 𝜋(𝜃) ∼ 𝒩(0, 𝛽−1𝐼𝑑) for 𝛽 > 0.
We had begun analyzing (𝐴) by first looking at its 𝜓− 1 norm, showing that ∥(𝐴)∥𝜓1 ≤ 𝐶1(𝜃⊤Σ𝜃+ 𝑣⊤Σ𝑣).

Analyzing the first term, continued. In Lecture 11, we continue with this term:

∥(𝐴)∥𝜓1 ≤ 𝐶1(𝜃⊤Σ𝜃 + 𝑣⊤Σ𝑣)
≤ 𝐶2(∥Σ∥ + 𝑟2)
≤ 𝐶3∥Σ∥ ,

where in the second transition we note that

𝜃⊤Σ𝜃 + 𝑣⊤Σ𝑣 ≤ 2(𝜃 − 𝑢)⊤Σ(𝜃 − 𝑢) + 2𝑢⊤Σ𝑢 ≤ 2(𝑟2 + ∥Σ∥)

1Note this 𝑟 is not the same as the 𝑟(Σ) in the theorem statement.

53



and in the third transition we choose 𝑟2 = 2∥Σ∥.
Now, consider (𝐴) as a random variable. By the above, we know that ∥(𝐴)∥𝜓2 ≤ 𝐶3∥Σ∥. Then, as long as
𝜆 ≤ 1

𝐶3∥Σ∥ , we have by subgaussianity2 (Def. 1 from Prop. 2, Lec. 2) that

sup
𝑢,𝑣

𝔼𝑋[exp(𝜆(𝐴))] ≤ log exp
(
𝜆2𝐶4∥Σ∥2

)
= 𝜆2𝐶4∥Σ∥2.

Analyzing the KL term. We now move to analyzing 𝑛(𝐵) := 𝐾𝐿(𝜌𝑢,𝑣 ∥𝜋⊗𝜋)+ log(1/𝛿). We will proceed
in three steps.
Step 1: Computations. We can explicitly compute the KL divergence between 𝜌𝑢 and 𝜋 as

𝐾𝐿(𝜌𝑢 ∥𝜋) = 𝔼𝜃∼𝜌𝑢

[
log

𝜌𝑢(𝜃)
𝜋(𝜃)

]
= 𝔼𝜃∼𝜌𝑢

[
log

(
1
𝑝

exp
(
−∥𝜃 − 𝑢∥2 + ∥𝜃∥2

2𝛽−1

))]
= log(1/𝑝) + 𝔼𝜃∼𝜌𝑢

[
−∥𝜃∥2 − ∥𝑢∥2 + 2⟨𝜃, 𝑢⟩ + ∥𝜃∥2

2𝛽−1

]
= log(1/𝑝) + 𝛽/2,

where the final transition follows by noting that 𝔼𝜃∼𝜌𝑢 [𝜃] = 𝑢 by symmetry and ∥𝑢∥2 = 1.
Step 2: Converting to product measures. Using a property of KL for product measures, we have that

𝐾𝐿(𝜌𝑢,𝑣 ∥𝜋 ⊗ 𝜋) = 𝐾𝐿(𝜌𝑢 ∥𝜋) + 𝐾𝐿(𝜌𝑣 ∥𝜋) = 2 log(1/𝑝) + 𝛽.

Step 3: Dealing with the parameters 𝑝 and 𝛽. Recall that 𝑝 is a parameter to the density of 𝜌 that can
be interpreted as a normalization constant for a random variable 𝑍 ∼ 𝒩(0, 𝛽−1𝐼𝑑). Then, we have that
𝑝 = Pr

[
∥Σ1/2𝑍∥2 ≤ 𝑟

]
; we can find a lower bound for 𝑝 by upper bounding as follows:

Pr
[
∥Σ1/2𝑍∥2 > 𝑟

]
≤

𝔼
[
∥Σ1/2𝑍∥2

2
]

𝑟2 =
Tr(Σ)𝛽−1𝐼𝑑

𝑟2 =
Tr(Σ)
𝛽2∥Σ∥ =

1
2 ,

where the final transition follows by choosing 𝛽 = 𝑟(Σ). Hence we have 𝑝 ≥ 1/2. Plugging this (and our
choice of 𝛽) into the result from Step 2, we have

𝐾𝐿(𝜌𝑢,𝑣 ∥𝜋 ⊗ 𝜋) = 2 log(2) + 𝑟(Σ) ≤ 𝐶𝑟(Σ).

Completing the proof. Optimizing over 𝜆, we will find that

𝜆opt ≈
1

∥Σ∥

√
𝑟(Σ) + log(1/𝛿)

𝑛
;

plugging this in gives us the desired result. Note that this requires 𝑛 ≥ 𝐶(𝑟(Σ) + log(1/𝛿)) for some
constant 𝐶.

Remark 11.2. None of these constants are any larger than approx. 20.
2Note that the randomness in the below expectation is due to (𝐴), but the only randomness in (𝐴) is due to 𝑋 because we

are working inside an outer expectation over 𝜃, which means we can take it to be fixed.
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11.2 Matrix Bernstein Inequality
Fun fact: this result is only around 13-14 years old. The statement is as follows.

Theorem 11.3. Let 𝑋1 . . . 𝑋𝑛 be independent, zero-mean, symmetric 𝑑 × 𝑑 matrix such that ∥𝑋𝑖 ∥op ≤ 𝐾 for all 𝑖.
Then, for all 𝑡 ≥ 0, we have

Pr
∥

∑
𝑖∈[𝑛]

𝑋𝑖 ∥op ≥ 𝑡

 ≤ 2𝑑 exp

(
−𝑡2/2∑

𝑖∈[𝑛] 𝔼∥𝑋2
𝑖
∥op + 𝐾𝑡

3

)
.

Rearranging, we get that with probability 1 − 𝛿,

∥
∑
𝑖∈[𝑛]

𝑋𝑖 ∥op ≤
√

2∥
∑
𝑖∈[𝑛]

𝔼∥𝑋2
𝑖
∥op log(2𝑑/𝛿) + 2

3𝐾 log(2𝑑/𝛿).

When comparing to the scalar Bernstein inequality, we see that we use the operator norm instead of the
exact variance; we have boundedness replaced by 𝐾; and pay an additional 𝑑 term.

11.2.1 Useful facts for proof of Theorem 11.3.
We will use the following facts in the proof of Theorem 11.3.

Proposition 11.4. Consider 𝑋 symmetric and a function 𝑓 : ℝ → ℝ. SVD on 𝑋 gives us 𝑋 =
∑
𝑗∈[𝑑] 𝜆 𝑗𝑢𝑗𝑢

⊤
𝑗

,
where 𝜆 𝑗 are the (ordered) eigenvalues of 𝑋 and 𝑢𝑗 are the corresponding eigenvectors. Define

𝑓 (𝑋) =
∑
𝑗∈[𝑑]

𝑓 (𝜆 𝑗)𝑢𝑗𝑢⊤𝑗 .

Then, we have the following facts:

(a) If 𝑓 (𝑥) ≤ 𝑔(𝑥),∀|𝑥 | ≤ 𝐾, then 𝑓 (𝑋) ⪰ 𝑔(𝑋) if ∥𝑋∥op ≤ 𝐾, i.e. 𝑓 (𝑋) − 𝑔(𝑋) is PSD.

(b) If 0 ⪰ 𝑋 ⪰ 𝑌, then log(𝑋) ⪰ log(𝑌).

(c) If 𝑋 ⪰ 𝑌, then Tr
(
exp(𝑋)

)
≤ 𝑇𝑟(exp(𝑌)).

For fact (b), note that log is monotonic in 𝑑 > 1, but not all functions that are monotonic in one dimension
preserve monotonicity in the matrix sense—for example, monotonicity is violated even for 𝑑 = 2 for
functions like exp(𝑥) or 𝑥2. Fact (c), on the other hand, is true for any function that is monotone in one
dimension.
The fourth fact is known as Lieb’s Inequality and is nontrivial to prove for 𝑑 > 1. We will be using a
corollary of Prop. 11.5, which applies the result to random matrices.

Proposition 11.5 (Lieb’s Inequality.). For symmetric 𝐻 ∈ ℝ𝑑×𝑑, the function 𝜓(𝐴) = Tr
(
exp

(
𝐻 + log(𝐴)

) )
is

concave for PSD 𝐴. That is, ∀𝛼 ∈ (0, 1) and PSD 𝐴, 𝐵,

𝜓(𝛼𝐴 + (1 − 𝛼)𝐵) ≥ 𝛼𝜓(𝐴) + (1 − 𝛼)𝜓(𝐵).

Corollary 11.6. Let 𝑍 be a random matrix and 𝐴 = exp(𝑍). Then, by concavity (via Lieb’s) and Jensen, we have

𝔼
[
Tr

(
exp(𝐻 + 𝑍)

) ]
≤ Tr

(
exp

(
𝐻 + log𝔼

[
exp(𝑍)

] ) )
.

55



11.2.2 Proof of Theorem 11.3.
We are now ready to prove Theorem 11.3.
First, define 𝑆 :=

∑
𝑖∈[𝑛] 𝑋𝑖 . Then, ∥𝑆∥op = max(𝜆max(𝑆),𝜆max(−𝑆)), where the second term is to handle

possible negative eigenvalues. For ease of exposition, we assume all eigenvalues are nonnegative for
now. Then, we have3:

Pr[𝜆 · 𝜆max(𝑆) ≥ 𝜆𝑡] ≤
𝔼

[
exp(𝜆 · 𝜆max(𝑆))

]
exp(𝜆𝑡) (standard Chernoff in 1 dimension)

=
𝔼

[
𝜆max · exp(𝜆𝑆)

]
exp(𝜆𝑡) (property of exp applied to matrices)

≤
𝔼

[
Tr

(
exp(𝜆𝑆)

) ]
exp(𝜆𝑡) (all eigenvalues are non-negative)

=

𝔼
[
Tr

(
exp

(
𝜆
∑𝑛−1
𝑖=1 𝑋𝑖 + 𝜆𝑋𝑛

))]
exp(𝜆𝑡)

=

𝔼𝑖∈[𝑛−1][Tr
(
exp

(
𝜆
∑𝑛−1
𝑖=1 𝑋𝑖

)
· 𝔼𝑖=𝑛[exp(𝜆𝑋𝑛) | 𝑋1...𝑛−1

)
]]

exp(𝜆𝑡) , (∗)

where the final transition follows by noting that all 𝑋𝑖 are independent so we can condition on 𝑋1...𝑛−1 to
isolate the randomness in 𝑋𝑛 . Then, with 𝐻 = 𝜆

∑
𝑖∈[𝑛−1] 𝑋𝑖 , we can apply Cor. 11.6 to get

(∗) ≤
𝔼𝑖∈[𝑛−1][Tr

(
exp

(
𝜆
∑𝑛−1
𝑖=1 𝑋𝑖 + log𝔼𝑖=𝑛[exp(𝜆𝑋𝑛) | 𝑋1...𝑛−1]

))
]

exp(𝜆𝑡) .

Applying lines from the proof of 1-d Bernstein and property (a) of Prop. 11.4, we have that for a single 𝑋𝑖 ,

𝔼
[
exp(𝜆𝑋𝑖)

]
⪯ exp

(
𝑔(𝜆)𝔼

[
𝑋2
𝑖

] )
,

where 𝑔(𝜆) = 𝜆2/2
1−𝜆𝐾/3 and |𝜆| ≤ 3/𝐾.

Applying the conditioning trick and Lieb’s repeatedly for 𝑖 ∈ [𝑛 − 1], we have

(∗) ≤
Tr

(
exp

(
𝑔(𝜆)𝔼

[∑𝑛
𝑖=1 𝑋

2
𝑖

] ) )
exp(𝜆𝑡)

≤
𝑑𝜆max(exp

(
𝑔(𝜆)𝔼

[∑𝑛
𝑖=1 𝑋

2
𝑖

] )
)

exp(𝜆𝑡)

=
𝑑 exp

(
𝑔(𝜆)∥∑𝑛

𝑖=1 𝑋
2
𝑖
∥op

)
exp(𝜆𝑡) .

We can optimize over 𝜆; repeat these steps for 𝜆max(−𝑆); and apply the union bound to complete the
proof.

11.2.3 Extensions of Matrix Bernstein Inequality.
We briefly consider two extensions/applications of Theorem 11.3.

3Note the distinction between 𝜆 the Chernoff parameter and 𝜆max the max eigenvalue of 𝑆.
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Controlling 𝔼
[
∥𝑆∥op

]
. Chernoff’s method would give us a bound of the form

𝔼
[
∥𝑆∥op

]
≤ 1

𝜆 log𝔼
[
exp

(
𝜆∥𝑆∥op

) ]
. In the setup of Theorem 11.3, we instead have

𝔼
[
∥𝑆∥op

]
≤

√√
2 log(2𝑑)∥

𝑛∑
𝑖=1

𝔼
[
𝑋2
𝑖

]
∥op + 2

3𝐾 log(2𝑑).

General rectangular matrices. Consider 𝐴 ∈ ℝ𝑑1×𝑑2 . Then we can construct the block matrix

𝐴̃ =

[
0 𝐴

𝐴⊤ 0

]
,

and can proceed with analyzing 𝐴̃, noting that 𝜆max(𝐴̃) = ∥𝐴∥op.

11.3 Gaussian Comparator Inequalities
We finish with a preview of Gaussian processes.

Definition 11.7 (Gaussian process.). Consider the random process (𝑋𝑡)𝑡∈𝒯 . A Gaussian process is one where,
for all finite 𝒯0 ⊆ 𝒯 , the random vector (𝑋𝑡)𝑡∈𝒯0 is (multivariate) Gaussian.

Generally, we care about the behavior of sup𝑡∈𝒯 𝑋𝑡 , or 𝔼
[
sup𝑡∈𝒯 𝑋𝑡

]
. We now give a statement (to be

proven in future lectures) of the Slepian Lemma.

Theorem 11.8. Assume 𝑋𝑡 and 𝑌𝑡 are zero-mean Gaussian processes such that 𝔼
[
𝑋2
𝑡

]
= 𝔼

[
𝑌2
𝑡

]
and ∀𝑠, 𝑡 ∈ 𝒯 ,

𝔼
[
(𝑋𝑡 − 𝑋𝑠)2

]
≤ 𝔼

[
(𝑌𝑡 − 𝑌𝑠)2

]
. Then, for all 𝑡 ∈ 𝒯 :

1. Pr
[
sup𝑡∈𝒯 𝑋𝑡 ≥ 𝜏

]
≤ Pr

[
sup𝑡∈𝒯 𝑌𝑡 ≥ 𝜏

]
for all 𝜏, and

2. 𝔼
[
sup𝑡∈𝒯 𝑋𝑡

]
≤ 𝔼

[
sup𝑡∈𝒯 𝑌𝑡

]
.

57



STAT210B Theoretical Statistics Lecture 12 - 02/22/2024

Lecture 12: Gaussian processes
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12.1 Slepian’s inequality
Theorem 12.1 (Slepian’s inequality). Suppose (𝑋𝑡)𝑡∈𝑇 , (𝑌𝑡)𝑡∈𝑇 are zero-mean Gaussian processes such that,
∀𝑡 , 𝑠 ∈ 𝑇, we have

𝔼
[
𝑋2
𝑡

]
= 𝔼

[
𝑌2
𝑡

]
and 𝔼

[
(𝑋𝑡 − 𝑋𝑠)2

]
≤ 𝔼

[
(𝑌𝑡 − 𝑌𝑠)2

]
.

Then ∀𝜏 ∈ ℝ, we have

1. Pr
(
sup𝑡∈𝑇 𝑋𝑡 ≥ 𝜏

)
≤ Pr

(
sup𝑡∈𝑇 𝑌𝑡 ≥ 𝜏

)
2. 𝔼

[
sup𝑡∈𝑇 𝑋𝑡

]
≤ 𝔼

[
sup𝑡∈𝑇 𝑌𝑡

]
Remark 12.2. When we say 𝔼

[
sup𝑡∈𝑇 𝑋𝑡

]
, there are some concerns with measurability depending on what exactly

we mean. To avoid these, we use Talagrand’s convention, which states that

𝔼

[
sup
𝑡∈𝑇

𝑋𝑡

]
B sup

𝑇0⊆𝑇
𝑇0 finite

𝔼

[
sup
𝑡∈𝑇0

𝑋𝑡

]
.

To prove this Theorem 12.1, we will first need to establish several lemmas.

Lemma 12.3 (Stein’s lemma). Let 𝑓 : ℝ → ℝ be a differentiable function. If 𝑋 ∼ 𝑁(0, 1), then we have

𝔼 [ 𝑓 ′(𝑋)] = 𝔼 [𝑋 𝑓 (𝑋)] .

Proof of Lemma 12.3. Assume for simplicity that 𝑓 has bounded support. Define

𝑔(𝑥) = 1√
2𝜋

exp
(
−𝑥2

2

)
.

This is the probability density function of 𝑋, because we stated 𝑋 ∼ 𝑁(0, 1). Let’s find the expectation of
𝑓 ′(𝑋):

𝔼 [ 𝑓 ′(𝑋)] =
∫
ℝ

𝑓 ′(𝑥)𝑔(𝑥)𝑑𝑥 = [ 𝑓 (𝑥)𝑔(𝑥)]∞−∞ −
∫
ℝ

𝑓 (𝑥)𝑔′(𝑥) 𝑑𝑥.

In the second equality we have simply used integration by parts. Because 𝑓 has bounded support, and
𝑔(𝑥) approaches zero as 𝑥 → ∞ or 𝑥 → −∞, the first term is zero and we get

𝔼 [ 𝑓 ′(𝑋)] =
∫
ℝ

− 𝑓 (𝑥)𝑔′(𝑥) 𝑑𝑥.

Now we can notice that 𝑔′(𝑥) = −𝑥𝑔(𝑥), and rewrite the RHS as

𝔼 [ 𝑓 ′(𝑋)] =
∫
ℝ

𝑥 𝑓 (𝑥)𝑔(𝑥) 𝑑𝑥 = 𝔼 [𝑋 𝑓 (𝑋)] .
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As Slepian’s inequality deals with Gaussian processes (such that any finite collection is a multivariate
Gaussian), we would like to have a version of Stein’s lemma which applies to multivariate Gaussians.

Lemma 12.4 (Multivariate Stein’s lemma). Let 𝑓 : ℝ𝑛 → ℝ be a differentiable function. If 𝑋 ∼ 𝑁𝑛(0,Σ), then
we have

𝔼 [𝑋 𝑓 (𝑋)] = Σ𝔼 [∇ 𝑓 (𝑋)] = ©­«
𝑛∑
𝑗=1

Σ𝑖 , 𝑗𝔼

[
𝜕 𝑓

𝜕𝑥 𝑗
(𝑋)

]ª®¬
𝑛

𝑖=1

.

Note that the result is an 𝑛-vector. The proof is essentially the same as in the univariate case. Now that
we have the multivariate Stein’s lemma, we can get the Gaussian interpolation lemma.

Lemma 12.5 (Gaussian interpolation). Suppose 𝑋 = (𝑋1, . . . , 𝑋𝑛) ∼ 𝑁(0,Σ𝑋) and 𝑌 = (𝑌1, . . . 𝑌𝑛) ∼
𝑁(0,Σ𝑌) are two independent Gaussian random vectors. Define

𝑍(𝑢) =
√
𝑢𝑋 +

√
1 − 𝑢𝑌, 𝑢 ∈ [0, 1]. (33)

Then if 𝑓 : ℝ𝑛 → ℝ is a twice-differentiable function (with nice properties so that we can swap integrals and
derivatives, and hence expectation and derivatives), we get

𝑑

𝑑𝑢
𝔼 [ 𝑓 (𝑍(𝑢))] = 1

2

∑
𝑖 , 𝑗

(Σ𝑋𝑖,𝑗 − Σ𝑌𝑖,𝑗)
𝜕2 𝑓

𝜕𝑥𝑖𝜕𝑥 𝑗
(𝑍(𝑢)).

Proof of Lemma 12.5. Under the assumptions of the Lemma, we get

𝑑

𝑑𝑢
𝔼 [ 𝑓 (𝑍(𝑢))] = 𝔼

[
𝑑

𝑑𝑢
𝑓 (𝑍(𝑢))

]
= 𝔼

[
𝑛∑
𝑖=1

𝜕 𝑓

𝜕𝑥𝑖
(𝑍(𝑢)) · 𝑑𝑍𝑖(𝑢)

𝑑𝑢

]
=

𝑛∑
𝑖=1

𝔼

[
𝜕 𝑓

𝜕𝑥𝑖
(𝑍(𝑢)) · 𝑑𝑍𝑖(𝑢)

𝑑𝑢

]
.

Now note that, by the definition of 𝑍 in Equation 33, we have

𝑑𝑍𝑖(𝑢)
𝑑𝑢

=
1
2

(
1√
𝑢
𝑋𝑖 −

1√
1 − 𝑢

𝑌𝑖

)
.

Thus we get

𝑑

𝑑𝑢
𝔼 [ 𝑓 (𝑍(𝑢))] = 1

2

𝑛∑
𝑖=1

𝔼

[
𝜕 𝑓

𝜕𝑥𝑖
(𝑍(𝑢)) ·

(
1√
𝑢
𝑋𝑖 −

1√
1 − 𝑢

𝑌𝑖

)]
.

Let’s work on the first term. Let
ℎ𝑖(𝑥) =

𝜕 𝑓

𝜕𝑥𝑖
(𝑍(𝑢)), (34)

where we think of 𝑌 (which is an additive term in 𝑍) as fixed. We get that

1
2

𝑛∑
𝑖=1

𝔼

[
𝜕 𝑓

𝜕𝑥𝑖
(𝑍(𝑢)) · 1√

𝑢
𝑋𝑖

]
=

1
2
√
𝑢

𝑛∑
𝑖=1

𝔼 [𝔼 [ℎ𝑖(𝑋)𝑋𝑖 |𝑌]]

=
1

2
√
𝑢

𝑛∑
𝑖=1

(𝔼 [𝔼 [ℎ𝑖(𝑋)𝑋 |𝑌]])𝑖
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=
1

2
√
𝑢

𝑛∑
𝑖=1

𝔼


𝑛∑
𝑗=1

Σ𝑋𝑖,𝑗𝔼

[
𝜕ℎ𝑖
𝜕𝑥 𝑗

(𝑋)|𝑌
]

=
1

2
√
𝑢
𝔼


𝑛∑

𝑖=1, 𝑗=1
Σ𝑋𝑖,𝑗

𝜕ℎ𝑖
𝜕𝑥 𝑗

(𝑋)


=
1
2𝔼


𝑛∑

𝑖=1, 𝑗=1
Σ𝑋𝑖,𝑗

𝜕2 𝑓

𝜕𝑥𝑖𝜕𝑥 𝑗
(𝑍(𝑢))

 .
The third equality is an application of Lemma 12.4. The final equality is by substituting ℎ𝑖(𝑥) from
Equation 34. Repeating the same computation on the other term, we get

𝑑

𝑑𝑢
𝔼 [ 𝑓 (𝑍(𝑢)] = 1

2

𝑛∑
𝑖=1

𝔼

[
𝜕 𝑓 (𝑍(𝑢))

𝜕𝑥𝑖
·
(

1√
𝑢
𝑋𝑖 −

1√
1 − 𝑢

𝑌𝑖

)]
=

1
2

∑
𝑖 , 𝑗

(Σ𝑋𝑖,𝑗 − Σ𝑌𝑖,𝑗)
𝜕2 𝑓 (𝑍(𝑢))
𝜕𝑥𝑖𝜕𝑥 𝑗

, (35)

which completes the proof.

Corollary 12.6. Under the assumptions of Lemma 12.5, we have that if additionally, for all 𝑖 ≠ 𝑗:

1. Σ𝑋
𝑖,𝑗

≥ Σ𝑌
𝑖,𝑗

2. Σ𝑋
𝑖,𝑖

= Σ𝑌
𝑖,𝑖

3.
𝜕2 𝑓

𝜕𝑥𝑖𝜕𝑥 𝑗
≥ 0

then 𝔼 [ 𝑓 (𝑋)] ≥ 𝔼 [ 𝑓 (𝑌)].

Proof of Corollary 12.6. We can see this by noting that 𝔼 [ 𝑓 (𝑋)] = 𝔼 [ 𝑓 (𝑍(1))] and 𝔼 [ 𝑓 (𝑌)] = 𝔼 [ 𝑓 (𝑍(0))],
and Equation 35 with the assumed conditions tells us that the derivative of 𝔼 [ 𝑓 (𝑍(𝑢))] with respect to 𝑢
is nonnegative for 𝑢 ∈ [0, 1].

We are now finally equipped to prove Slepian’s lemma.

Proof of Result 1 of Theorem 12.1. Suppose (𝑋𝑡)𝑡∈𝑇 , (𝑌𝑡)𝑡∈𝑇 are zero-mean Gaussian processes such that,
∀𝑡 , 𝑠 ∈ 𝑇, we have

𝔼
[
𝑋2
𝑡

]
= 𝔼

[
𝑌2
𝑡

]
and 𝔼

[
(𝑋𝑡 − 𝑋𝑠)2

]
≤ 𝔼

[
(𝑌𝑡 − 𝑌𝑠)2

]
.

By Talagrand’s convention (Remark 12.2), we can focus on a finite 𝑇, |𝑇 | = 𝑛, and compare the Gaussian
random vectors 𝑋 = (𝑋1, . . . , 𝑋𝑛) ∼ 𝑁(0,Σ𝑋) and 𝑌 = (𝑌1, . . . , 𝑌𝑛) ∼ 𝑁(0,Σ𝑌). Now instead of thinking
of a supremum over 𝑡 ∈ 𝑇, we can think of a maximum over 𝑖 ∈ [𝑛].
By the assumption that 𝔼

[
𝑋2
𝑡

]
= 𝔼

[
𝑌2
𝑡

]
and that the vectors are zero-mean, we have that ∀𝑖, Σ𝑋

𝑖,𝑖
= Σ𝑌

𝑖,𝑖
.

By the assumption that ∀𝑡 , 𝑠 𝔼
[
(𝑋𝑡 − 𝑋𝑠)2

]
≤ 𝔼

[
(𝑌𝑡 − 𝑌𝑠)2

]
and that the vectors are zero-mean, we have

that ∀𝑖 , 𝑗, Σ𝑋
𝑖,𝑗

≥ Σ𝑌
𝑖,𝑗

(lower squared difference but same variances means higher covariances).
Assume WLOG that 𝑋 ⊥⊥ 𝑌. We can make this simplifying assumption because, if 𝑋 and 𝑌 are not
independent, we can replace𝑌𝑡 with its uncorrelated copy; all the tail bounds given in Slepian’s inequality
will be the same.
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Let 𝑔𝜏 : ℝ → [0, 1] be a twice-differentiable approximation of 1[𝑥 < 𝜏]. This approximation can be made
arbitrarily good. We then have

1[max
𝑖

(𝑥𝑖) < 𝜏] ≈ (𝑔𝜏(𝑥1) · 𝑔𝜏(𝑥2) · . . . · 𝑔𝜏(𝑥𝑛)) = 𝑓𝜏(x)

Note that 𝑓𝜏 is also twice-differentiable. We would like it to satisfy Condition 3 of Corollary 12.6:

𝜕2 𝑓𝜏

𝜕𝑥𝑖𝜕𝑥 𝑗
=

{
𝑔𝜏(𝑥1) · . . . · 𝑔′𝜏(𝑥𝑖) · . . . · 𝑔′𝜏(𝑥 𝑗) · . . . · 𝑔𝜏(𝑥𝑛) 𝑖 ≠ 𝑗

𝑔𝜏(𝑥1) · . . . · 𝑔′′𝜏 (𝑥𝑖) · . . . · 𝑔𝜏(𝑥𝑛) 𝑖 = 𝑗

In the first case, the derivative is always nonpositive, hence the product of the two first derivatives will
be nonnegative. The second case seems like it could be negative, but it doesn’t matter to us as Condition
3 only regards 𝑖 ≠ 𝑗. Thus 𝑓𝜏 satisfies Condition 3 of Corollary 12.6. So this setup with 𝑋, 𝑌, and 𝑓𝜏
satisfies Corollary 12.6, from which we can conclude that 𝔼 [ 𝑓𝜏(𝑋)] ≥ 𝔼 [ 𝑓𝜏(𝑌)] and therefore

Pr
(
max
𝑖

(𝑋𝑖) < 𝜏

)
= 𝔼

[
1[max

𝑖
(𝑋𝑖) < 𝜏]

]
≈ 𝔼 [ 𝑓𝜏(𝑋)] ≥ 𝔼 [ 𝑓𝜏(𝑌)] ≈ 𝔼

[
1[max

𝑖
(𝑌𝑖) < 𝜏]

]
.

It then follows that
Pr

(
max
𝑖

(𝑋𝑖) ≥ 𝜏

)
≤ Pr

(
max
𝑖

(𝑌𝑖) ≥ 𝜏

)
,

so we have shown result 1 of Theorem 12.1.

We have neglected result 2 of Theorem 12.1. For this we will need a different theorem.

Theorem 12.7 (Sudakov-Fernique). If (𝑋𝑡)𝑡∈𝑇 , (𝑌𝑡)𝑡∈𝑇 are zero-mean Gaussian processes such that ∀𝑠, 𝑡 ∈ 𝑇 we
have

𝔼
[
(𝑋𝑡 − 𝑋𝑠)2

]
≤ 𝔼

[
(𝑌𝑡 − 𝑌𝑠)2

]
,

then
𝔼

[
sup
𝑡∈𝑇

𝑋𝑡

]
≤ 𝔼

[
sup
𝑡∈𝑇

𝑌𝑡

]
.

Proof idea for Sudakov-Fernique. We can do the same trick applying Remark 12.2 to deal only with finite
Gaussian random vectors. As 𝜆 → ∞, we can approximate

max
𝑖∈[𝑛]

(𝑥𝑖) ≈
1
𝜆

log

(
𝑛∑
𝑖=1

exp(𝜆𝑥𝑖)
)
= 𝑓𝜆(𝑥).

Now we can apply Theorem 12.5 to this 𝑓𝜆 as we did for 𝑓𝜏. 𝑓𝜆 is twice-differentiable, defining
𝑍(𝑢) =

√
𝑢𝑋 +

√
1 − 𝑢𝑌 as before, we get

𝑑

𝑑𝑢
𝔼 [ 𝑓𝜆(𝑍(𝑢))] =

1
2

∑
𝑖 , 𝑗

(Σ𝑋𝑖,𝑗 − Σ𝑌𝑖,𝑗)
𝜕2 𝑓𝜆

𝜕𝑥𝑖𝜕𝑥 𝑗
(𝑍(𝑢)) ≤ 0,

which implies that 𝔼 [ 𝑓𝜆(𝑍(0))] ≥ 𝔼 [ 𝑓𝜆(𝑍(1))] and thus

𝔼

[
max
𝑖∈[𝑛]

(𝑋𝑖)
]
≈ 𝔼 [ 𝑓𝜆(𝑋)] = 𝔼 [ 𝑓𝜆(𝑍(1))] ≤ 𝔼 [ 𝑓𝜆(𝑍(0))] = 𝔼 [ 𝑓𝜆(𝑌)] ≈ 𝔼

[
max
𝑖∈[𝑛]

(𝑌𝑖)
]
.

Proof of Result 2 of Theorem 12.1. Sudakov-Fernique directly proves the second result in Slepian’s Theorem.
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12.2 Applications
Let 𝑋 ∈ ℝ𝑚×𝑛 be a random matrix whose elements 𝑋𝑖 𝑗 are iid 𝑁(0, 1). We can show that

𝔼
[
| |𝑋 | |op

]
≤
√
𝑚 +

√
𝑛.

Proof. Recall that, by the definition of | |·| |op

| |𝑋 | |op = sup
𝑢∈𝑆𝑚−1

𝑣∈𝑆𝑛−1

𝑢⊤𝑋𝑣,

where 𝑢⊤𝑋𝑣 is a Gaussian process indexed by 𝑡 = (𝑢, 𝑣) ∈ 𝑇 = 𝑆𝑚−1 × 𝑆𝑛−1. Let’s try to satisfy the
condition of Theorem 12.7. Let 𝑢, 𝑤 be in 𝑆𝑚−1, and let 𝑣, 𝑧 be in 𝑆𝑛−1. We have

𝔼
[
(𝑢⊤𝑋𝑣 − 𝑤⊤𝑋𝑧)2

]
= 𝔼

©­«
∑
𝑖 , 𝑗

𝑢𝑖𝑋𝑖 𝑗𝑣 𝑗 −
∑
𝑖 , 𝑗

𝑤𝑖𝑋𝑖 𝑗𝑧 𝑗
ª®¬

2
= 𝔼

©­«
∑
𝑖 , 𝑗

𝑢𝑖𝑋𝑖 𝑗𝑣 𝑗
ª®¬

2 − 2𝔼
©­«

∑
𝑖 , 𝑗

𝑢𝑖𝑋𝑖 𝑗𝑣 𝑗
ª®¬ ©­«

∑
𝑖 , 𝑗

𝑤𝑖𝑋𝑖 𝑗𝑧 𝑗
ª®¬
 + 𝔼

©­«
∑
𝑖 , 𝑗

𝑤𝑖𝑋𝑖 𝑗𝑧 𝑗
ª®¬

2 .
At this point, any cross terms containing 𝑋𝑖 𝑗𝑋𝑘𝑙 where (𝑖 , 𝑗) ≠ (𝑘, 𝑙) will disappear, as 𝔼

[
𝑋𝑖 𝑗𝑋𝑘𝑙

]
will be

zero (recall that 𝑋𝑖 𝑗 ∼ 𝑁(0, 1)). Recall also that 𝔼
[
𝑋𝑖 𝑗

]
= 1. Hence we get

𝔼
[
(𝑢⊤𝑋𝑣 − 𝑤⊤𝑋𝑧)2

]
=

∑
𝑖 , 𝑗

𝑢2
𝑖 𝑣

2
𝑗𝔼

[
𝑋2
𝑖 𝑗

]
− 2

∑
𝑖 , 𝑗

𝑢2
𝑖 𝑤

2
𝑖 𝑣

2
𝑗 𝑧

2
𝑗𝔼

[
𝑋2
𝑖 𝑗

]
+

∑
𝑖 , 𝑗

𝑤2
𝑖 𝑧

2
𝑗𝔼

[
𝑋2
𝑖 𝑗

]
=

∑
𝑖 , 𝑗

𝑢2
𝑖 𝑣

2
𝑗 − 2

∑
𝑖 , 𝑗

𝑢2
𝑖 𝑤

2
𝑖 𝑣

2
𝑗 𝑧

2
𝑗 +

∑
𝑖 , 𝑗

𝑤2
𝑖 𝑧

2
𝑗

=
∑
𝑖 , 𝑗

(𝑢𝑖𝑣 𝑗 − 𝑤𝑖𝑧 𝑗)2

= | |𝑢𝑣⊤ − 𝑤𝑧⊤ | |2F
≤ ||𝑢 − 𝑤 | |22 + ||𝑣 − 𝑧 | |22.

Note that 𝑢𝑣⊤ − 𝑤𝑧⊤ is a matrix with the 𝑖 , 𝑗th entry being 𝑢𝑖𝑣 𝑗 − 𝑤𝑖𝑧 𝑗 . Its squared Frobenius norm is
exactly the sum of the squared elements. The final inequality is nontrivial.
Now we can consider the process 𝑌𝑢,𝑣 = ⟨𝑢, 𝑍1⟩ + ⟨𝑣, 𝑍2⟩, where 𝑍1 ∼ 𝑁(0, 𝐼𝑚) and 𝑍2 ∼ 𝑁(0, 𝐼𝑛). We
can compute that

𝔼
[
(𝑌𝑢,𝑣 − 𝑌𝑤,𝑧)2

]
= | |𝑢 − 𝑤 | |22 + ||𝑣 − 𝑧 | |22.

This process 𝑌𝑢,𝑣 will act as the second, simpler, dominating process in the Sudakov-Fernique inequality,
as the condition is satisfied

𝔼
[
(𝑢⊤𝑋𝑣 − 𝑤⊤𝑋𝑧)2

]
≤ ||𝑢 − 𝑤 | |22 + ||𝑣 − 𝑧 | |22 = 𝐸[(𝑌𝑢,𝑣 − 𝑌𝑤,𝑧)2].

Hence by the Sudakov-Fernique inequality, we have

𝔼
[
| |𝑋 | |op

]
= 𝔼

 sup
𝑢∈𝑆𝑚−1

𝑣∈𝑆𝑛−1

𝑢⊤𝑋𝑣

 ≤ 𝔼

 sup
𝑢∈𝑆𝑚−1

𝑣∈𝑆𝑛−1

𝑌𝑢,𝑣

 = 𝔼

 sup
𝑢∈𝑆𝑚−1

𝑣∈𝑆𝑛−1

⟨𝑢, 𝑍1⟩ + ⟨𝑣, 𝑍2⟩
 = 𝔼 [| |𝑍1 | |2 + ||𝑍2 | |2]

≤ (𝔼
[
| |𝑍1 | |22

]
)1/2 + (𝔼

[
| |𝑍2 | |22

]
)1/2 =

√
𝑛 +

√
𝑚.

The second inequality is by Jensen’s inequality.
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As a corollary, if 𝑋 is a square matrix, 𝑋 ∈ ℝ𝑛×𝑛 , then 𝔼
[
| |𝑋 | |op

]
≤ 2

√
𝑛. But what about a high-

probability bound on | |𝑋 | |op? Let’s think of 𝑋 as a vector in ℝ𝑛2 , and | |𝑋 | |op as a function from ℝ𝑛2 to ℝ.
We have that

| | |𝑋 | |op − ||𝑌 | |op | ≤ ||𝑋 − 𝑌 | |op ≤ ||𝑋 − 𝑌 | |F = | |vec(𝑋) − vec(𝑌)| |2,
where the function “vec” maps from matrices to vectors. This shows that | |·| |op is 1-Lipschitz. Thus by
Gaussian concentration, we get that with probability 1 − 𝛿,

| |𝑋 | |op ≤ 2𝔼
[
| |𝑋 | |op

]
+

√
2 log(1/𝛿) = 2

√
𝑛 +

√
2 log(1/𝛿).

Let’s finish with a theorem which we will discuss more next time. Recall that 𝒩(𝑇, 𝑑, 𝜖) is the covering
number of 𝜖-balls (under distance 𝑑) over set 𝑇.

Theorem 12.8 (Sudakov minoration). Let 𝑋𝑡 be a zero-mean Gaussian process. Define the distance

𝑑(𝑡 , 𝑠) =
√
𝔼 [(𝑋𝑡 − 𝑋𝑠)2].

Then there exists an absolute constant 𝑐 > 0 such that ∀𝜀 > 0,

𝔼

[
sup
𝑡∈𝑇

𝑋𝑡

]
≥ 𝑐 · 𝜀 ·

√
log(𝒩(𝑇, 𝑑, 𝜀)).
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STAT210B Theoretical Statistics Lecture 13 - 02/27/2024

Lecture 13: Sudakov Minoration and Gaussian Processes
Instructor: Nikita Zhivotovskiy Scriber: Max Hirsch Proofreader: Michael Xiao

1 Sudakov Minoration

Theorem 1 (Sudakov minoration). Let Xt be a zero-mean Gaussian process indexed by t ∈ T and define
for t, s ∈ T ,

d(t, s) =
√
E(Xt −Xs)2.

Then for all ε > 0,
ε
√

logN (T, d, ε) ≤ cE sup
t∈T

Xt,

where c > 0 is some absolute constant.

Proof. Let Pε ⊆ T be such that Pε is a maximum packing. In particular, for all t, s ∈ Pε we have d(t, s) > ε.
Then

N (T, d, ε) ≤ |Pε|,
and

E sup
t∈T

Xt ≥ E sup
t∈Pε

Xt.

Now define the process Yt =
ε√
2
Zt for t ∈ Pε, where Zt ∼ N (0, 1) and Z1, . . . , Z|Pε| are independent. We

have that for all t, s ∈ Pε,

E(Xt −Xs)
2 = d(t, s)2 > ε2, and E(Yt − Ys)

2 = ε2,

where the second equality is by construction. It follows by the Sudakov-Fernique theorem that

E sup
t∈Pε

Yt ≤ E sup
t∈Pε

Xt.

Finally, observe that

E sup
t∈Pε

Yt =
ε√
2
E
(

max
i∈{1,...,|Pε|}

Zt

)
≳ ε · C

√
log(|Pε|),

where C > 0 is an absolute constant, and the last inequality is an exercise used in homework. Combining
these inequalities yields

ε
√

logN (T, d, ε) ≤ ε
√

log(|Pε|) ≤ C−1E sup
t∈Pε

Yt ≤ C−1E sup
t∈Pε

Xt ≤ C−1E sup
t∈T

Xt.

It suffices to take c = C−1.

1.1 Canonical Gaussian Process Covering Number Examples

We now consider examples in which we use Theorem 1 to give bounds on covering numbers. The setup is as
follows: Let T ⊆ Rd and Xt = ⟨g, t⟩ with t ∈ T and g ∼ N (0, Id). Observe that

d(t, s)2 = E(Xt −Xs)
2 = E(⟨g, t− s⟩)2 = ∥t− s∥22

so that d(t, s) = ∥t− s∥2 for t, s ∈ T . Now consider the following examples:

1
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1. Let T = Σ1/2Bd
2 . By Theorem 1, we have

ε
√
logN (Σ1/2Bd

2 , ∥ · ∥2, ε) ≤ cE sup
t∈Σ1/2Bd

2

⟨g, t⟩ = cE∥g′∥2 ≤ c
√
Tr(Σ),

where g′ = Σ1/2g ∼ N (0,Σ) and the last inequality follows from Jensen’s inequality:

E∥g′∥2 ≤
√
E∥g′∥22 =

√
Tr(Σ).

It follows that

logN (Σ1/2Bd
2 , ∥ · ∥2, ε) ≤

c1 Tr(Σ)

ε2
,

with c1 = c2.

2. Now consider T = Bd
1 = {x ∈ Rd : ∥x∥1 ≤ 1}. Then by Theorem 1,

ε
√

logN (Bd
1 , ∥ · ∥2, ε) ≤ cE sup

t∈Bd
1

⟨g, t⟩ = cE∥g∥∞ = cEmax
i∈[d]

|gi| ≤ c1
√
log(2d)

for some constants c, c1 > 0. It follows that for some c2 > 0,

logN (Bd
1 , ∥ · ∥2, ε) ≤

c2 log(2d)

ε2
. (1)

Remark 2. The same proof works for polytopes with unit diameter and d vertices.

Now we compare this with a volumetric argument. As an exercise, it is easy to show that Bd
1 ⊆ Bd

2 ⊆√
dBd

1 . Then we have

N (Bd
1 , ∥·∥2, ε) ≤

Vol(Bd
1 + ε

2B
d
2 )

Vol( ε2B
d
2 )

≤ Vol(Bd
1 (1 +

ε
√
d

2 ))

Vol( ε2B
d
2 )

=
(1 + ε

√
d

2 )d

(ε/2)d

(
Vol(Bd

1 )

Vol(Bd
2 )

)
≤
(
c

(
2

ε
√
d
+ 1

))d

,

where we used the fact from Wikipedia that

Vol(Bd
1 )

Vol(Bd
2 )

≤
(

c√
d

)d

.

It follows that we have

logN (Bd
1 , ∥ · ∥2, ε) ≤ d log

(
c

(
1 +

2

ε
√
d

))
.

Combining this with the first bound (1) gives

logN (Bd
1 , ∥ · ∥2, ε) ≤ min


d log

(
c

(
1 +

2

ε
√
d

))

︸ ︷︷ ︸
I

,
c2 log(2d)

ε2︸ ︷︷ ︸
II


 .

Note that when ε = 1/
√
d, we have I ≈ d and II ≈ d log d. When ε ≲ 1/

√
d, the bound I is better,

while II is better for ε ≳ 1/
√
d.

2
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2 Dual Sudakov Minoration

Definition 3. Take T a convex and symmetric (meaning T = −T ) set in Rd. Then the polar set T ◦ is

T ◦ =

{
y ∈ Rd : sup

x∈T
⟨x, y⟩ ≤ 1

}
.

We list a few examples of polar sets:

1. (Bd
2 )

◦ = Bd
2 .

2. (Bd
p)

◦ = Bd
q , where Bd

p is the ℓp ball with p ≥ 1 and p−1 + q−1 = 1.

3. If T is an ellipsoid with semi-axes a1, . . . , ad > 0 then T ◦ is an ellipsoid with semi-axes a−1
1 , . . . , a−1

d .

In what follows, we will use the notation N (T, ∥ · ∥2, ε) := N (T, εBd
2 ), the minimum number of εBd

2

required to cover T .

Theorem 4 (Dual Sudakov minoration). If T is a symmetric convex body, then for all ε > 0,

ε
√

logN (Bd
2 , εT

◦) ≤ cE sup
t∈T

⟨g, t⟩.

We will not prove this result. We further have the following conjecture:

Conjecture 5. For any T,K convex, symmetric bodies, there are c, C > 0 universal constants such that

c logN (T,K) ≤ logN (K◦, T ◦) ≤ C logN (T,K).

2.1 Euclidean Ball Covering Number

Let T = Σ1/2Bd
2 and note that

E sup
t∈T

⟨g, t⟩ ≤
√
Tr(Σ).

We have that
T ◦ = {y ∈ Rd : sup

x∈T
⟨x, y⟩ ≤ 1} = {y ∈ Rd : ∥Σ1/2y∥2 ≤ 1}.

Thus, we are covering Bd
2 with the sets {y ∈ Rd : ∥Σ1/2y∥2 ≤ 1}. Defining

dΣ(t, s)
2 = (t− s)⊤Σ(t− s),

we then obtain by Theorem 4 that

logN (Bd
2 , dΣ, ε) ≤

cTr(Σ)

ε2
.

3 Gaussian Width

Definition 6. Let T ⊆ Rd and g ∼ N (0, Id). Then the Gaussian width of T is

W (T ) = E sup
t∈T

⟨t, g⟩.

3
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Figure 1: Gaussian width measures the width of T in the direction g and averages over g ∼ N (0, Id).

3.1 Properties of Gaussian Width

We have the following properties of the Gaussian width:

1. W (T ) is finite if and only if T is bounded.

2. If Q is an orthogonal matrix and y a fixed vector, then W (QT + y) = W (T ).

3. W (T +K) = W (T )+W (K) and W (αT ) = |α|W (T ), where α ∈ R and we recall that T +K = {t+k :
t ∈ T, k ∈ K}.

4. W (T ) = 1
2W (T − T ) = 1

2E supx,y∈T ⟨g, x− y⟩.

5. If T is a finite set then W (T ) ≤ c
√
log(|T |) · diam(T ).

3.2 Gaussian Width Examples

1. W (Bd
2 ) = E∥g∥2 ≤

√
d

2. W (Σ1/2Bd
2 ) ≤

√
Tr(Σ)

3. W (Bd
1 ) = E∥g∥∞ ≤

√
2 log(2d)

4. W (Bd
∞) = E∥g∥1 = d

√
2
π

3.3 Gaussian Concentration Inequality

We conclude this section with the following result:

Theorem 7 (Gaussian concentration inequality). Let φ1, . . . , φd : R → R be 1-Lipschitz. Then

E sup
t∈T

d∑

i=1

giφi(ti) ≤ E sup
t∈T

d∑

i=1

giti = W (T ).

4
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Proof. For t, s ∈ T , we have that

E

(
d∑

i=1

(giφi(ti)− giφi(si))

)2

=
d∑

i=1

(φi(ti)− φi(si))
2 ≤

d∑

i=1

(ti − si)
2 = E

(
d∑

i=1

gi(ti − si)

)2

,

so applying the Sudakov-Fernique theorem yields the result.

4 Next Time

Next lecture, we will begin discussing empirical processes. As an example, consider X1, . . . , Xn i.i.d. random
variables and the CDF and empirical CDF

F (t) = Pr(X ≤ t), Fn(t) =
1

n

n∑

i=1

Ind[Xi ≤ t].

To test whether this empirical distribution came from the distribution corresponding to the CDF F , Kol-
mogorov suggested the test statistic

sup
t∈R

|Fn(t)− F (t)|.

As n → ∞, if the data are sampled from the distribution F , then this statistic converges almost surely to 0.
Our question is this: for a finite sample size n, what should we expect from the above test statistic?

5
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STAT210B Theoretical Statistics Lecture 14 - 02/29/2024

Lecture 14: Empirical Process Theory
Instructor: Nikita Zhivotovskiy Scriber: Xueda Shen Proofreader: Xueda Shen

1 Motivation

Last class we introduced the KS-test statistics to motivate the study of empirical process theory. Suppose
we observe Xi, i = 1, ..., n sampled i.i.d. from a distribution. We would like to test whether Xi ∼ P a given
probability measure. Let F (t) := P (X ≤ t) the population cdf function, Fn(t) :=

1
n

∑n
i=1 1{Xi ≤ t}. In fact,

the KS statistics is known as an instantiation of a wider class of process called empirical process.

Definition 1 (Empirical Process). Given F a class of functions with X1:n ∼i.i.d. P. The process Ef(X) −
1
n

∑n
i=1 f(Xi) is called empirical process indexed by F .

Definition 2 (Gilvenko-Cantelli). The function class F is called Gilvenko-Cantelli with respect to measure
PX if supf∈F

∣∣Ef(X)− 1
nf(Xi)

∣∣→ 0 almost surely.

2 Symmetrization

One of the central techniques used to analyze empirical process is to establish an expectation upper bound
via symmetrization.

Lemma 3 (Symmetrization upperbound). Let ε1, ..., εn be i.i.d. Rademacher random variables, X1, ..., Xn ∼i.i.d.

P We have:

EX sup
f∈F

[
Ef(X)− 1

n

n∑

i=1

f(Xi)

]
≤ 2EXEε sup

f∈F

[
1

n

n∑

i=1

εif(Xi)

]

EX sup
f∈F

[
1

n

n∑

i=1

f(Xi)− Ef(X)

]
≤ 2EXEε sup

f∈F

[
1

n

n∑

i=1

εif(Xi)

]

EX sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

f(Xi)− Ef(X)

∣∣∣∣∣ ≤ 2EXEε sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

f(Xi)

∣∣∣∣∣

Proof. We only prove the first one, as the rest are identical arguments. Introduce ghost samples X
′
1, ..., X

′
n

i.i.d copies of Xi. We have that

E sup
f∈F

[
Ef(X)− 1

n

n∑

i=1

f(Xi)

]
= EX sup

f∈F

[
1

n

n∑

i=1

Ef(X
′
i)−

1

n

n∑

i=1

f(Xi)

]

≤ EXEX′ sup
f∈F

[
1

n

n∑

i=1

f(X
′
i)− f(Xi)

]

The first inequality essentially follows from the observation that for f = f(X,β), supβ Ef(X,β) ≤ E supβ f(X,β).

Now observe that f(Xi)− f(X
′
i)

D
= ε(f(Xi)− f(X

′
i)) where ε is a Rademacher variable. This could be seen

1
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via conditioning on the value of ε. This leaves us with

EXEX′ sup
f∈F

[
1

n

n∑

i=1

f(X
′
i)− f(Xi)

]
= EXEX′Eε sup

f∈F

[
1

n

n∑

i=1

εi

(
f(X

′
i)− f(Xi)

)]

≤ EXEε sup
f∈F

[
1

n

n∑

i=1

εif(Xi)

]
+ EX′Eε sup

f∈F

[
1

n

n∑

i=1

εif(X
′
i)

]

= 2EXEε sup
f∈F

[
1

n

n∑

i=1

εif(Xi)

]

where in the first inequality we observed that εf(Xi) = −εf(Xi).

3 Desymmetrization

Alternatively, given quantity of the form EXEε supf∈F
1
n

∑n
i=1 εif(Xi), we can upperbound it via Desym-

metrization, essentially unwinding what we have done before.

EXEε sup
f∈F

[
1

n

n∑

i=1

εif(Xi)

]
= EXEε sup

f∈F

[
1

n

n∑

i=1

(εif(Xi) + Ef(Xi)− Ef(Xi))

]

≤ EXEε

[
sup
f∈F

1

n

n∑

i=1

εi

(
f(Xi)− f(X

′
i)
)]

+ Eε sup
f∈F

[
1

n

n∑

i=1

εiEf(Xi)

]

We first analyze the first term on RHS.

EXEε

[
sup
f∈F

1

n

n∑

i=1

εi

(
f(Xi)− f(X

′
i)
)]

= EX,X′Eε

[
sup
f∈F

1

n

n∑

i=1

εi

(
f(Xi)− Ef(Xi) + Ef(X

′
i)− f(X

′
i)
)]

= EX,X′Eε

[
sup
f∈F

1

n

n∑

i=1

(
f(Xi)− Ef(Xi) + Ef(X

′
i)− f(X

′
i)
)]

≤ EX,X′Eε

[
sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

(
f(Xi)− Ef(Xi) + Ef(X

′
i)− f(X

′
i)
)∣∣∣∣∣

]

≤ EXEε

[
sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

f(Xi)− Ef(Xi)

∣∣∣∣∣

]
+ EX′Eε

[
sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

f(X
′
i)− Ef(X

′
i)

∣∣∣∣∣

]

= 2EXEε

[
sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

f(Xi)− Ef(Xi)

∣∣∣∣∣

]

Recall our remainder term is yet analyzed. This is a great place to exercise Hölder’s inequality.

Eε sup
f∈F

[
1

n

n∑

i=1

εiEf(Xi)

]
≤ Eε sup

f∈F

[
1

n

∣∣∣∣∣
n∑

i=1

εiEf(Xi)

∣∣∣∣∣

]

This allows us to immediately recognize |∑n
i=1 εiEf(Xi)| as a 1-norm and apply Hölder’s inequality with

1,∞ norm. ∣∣∣∣∣
n∑

i=1

εiEf(Xi)

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑

i=1

εi

∣∣∣∣∣ |Ef(X)|
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The last term to analyze is E|∑n
i=1 εi|. However, we have

E

∣∣∣∣∣
n∑

i=1

εi

∣∣∣∣∣ = E

√√√√
∣∣∣∣∣

n∑

i=1

εi

∣∣∣∣∣

2

≤

√√√√E

∣∣∣∣∣
n∑

i=1

εi

∣∣∣∣∣

2

=
√
n

Recollecting the pieces, we are able to bound the remainder

Eε sup
f∈F

[
1

n

n∑

i=1

εiEf(Xi)

]
≤ n− 1

2 sup
f∈F

|Ef(X)|

Remark 4. The same conclusion applies to E supf∈F | 1n
∑n

i=1 εif(Xi)|, whose proof we essentially estab-
lished.

4 Analysis of KS statistics

We analyze the KS test statistics by establishing expectation and high probability bound in turn. Via
symmetrization, we immediately have

EX sup
t∈R

∣∣∣∣∣
1

n

n∑

i=1

1{Xi ≤ t} − P (X ≤ t)

∣∣∣∣∣ ≤ 2EXEε

∣∣∣∣∣
1

n

n∑

i=1

εi1{Xi ≤ t}
∣∣∣∣∣

A naive union bound would not work since there are uncountably many events involved. However, a closer
inspection tells us that conditional on X1:n, at most n + 1 values of 1{Xi ≤ t} is realizable. Hence if we
are able to find a random variable is sub-Gaussian, then this expectation could be controlled. Let’s find sG
constant for 1

n

∑n
i=1 1{Xi ≤ t} with a fixed t. A quick calculation suggests the variance proxy σ ≤ n− 1

2 .
Hence by maximal inequality, we have

EX

{
Eε sup

t∈T,|T |≤n+1

[
1

n

n∑

i=1

1{Xi ≤ t}
]}

≤ 2

√
2 log(2(n+ 1))

n

Next we establish the high probability bound by relating supf∈F
∣∣Ef(X)− 1

n

∑n
i=1 f(Xi)

∣∣ to its expec-
tation. We can readily establish such bounds if the function class in question is uniformly bounded: i.e.,
||f ||∞ ≤ l. This leads to the following proposition

Proposition 5. Consider a uniformly bounded function class F , where ||f ||∞ ≤ l. Then with probability at
least 1− δ we have

sup
f∈F

∣∣∣∣∣Ef(X)− 1

n

n∑

i=1

f(Xi)

∣∣∣∣∣ ≤ E sup
f∈F

∣∣∣∣∣Ef(X)− 1

n

n∑

i=1

f(Xi)

∣∣∣∣∣+ l

√
2 log(δ−1)

n

Proof. The main task is to ascertain the bounded difference constant for a suitably defined function. After-
which we can just apply the bounded difference inequality. Consider

g(X1:n) = sup
f∈F

∣∣∣∣∣Ef(X)− 1

n

n∑

i=1

f(Xi)

∣∣∣∣∣

Let X1,,i′ ,n denote the sequence of X1, ..., Xi−1, X
′
i , Xi+1, ..., Xn i.e. where i−th element is replaced. We now

work out the bounded difference constant of g. Without loss of generality, suppose f⋆ ∈ F be the maximizer
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of
∣∣Ef(X)− 1

n

∑n
i=1 f(Xi)

∣∣ . We have that

sup
f∈F

∣∣∣∣∣Ef(X)− 1

n

n∑

i=1

f(Xi)

∣∣∣∣∣− sup
f ′∈F

∣∣∣∣∣∣
Ef

′
(X)− 1

n


∑

j ̸=i

f
′
(Xj) + f

′
(X

′
i)



∣∣∣∣∣∣

≤
∣∣∣∣∣Ef

⋆(X)− 1

n

n∑

i=1

f⋆(Xi)

∣∣∣∣∣−

∣∣∣∣∣∣
Ef⋆(X)− 1

n


∑

j ̸=i

f⋆(Xj) + f⋆(X
′
i)



∣∣∣∣∣∣

≤
∣∣∣∣
1

n

(
f⋆(Xi)− f⋆(X

′
i)
)∣∣∣∣ ≤

2b

n
.

The first inequality follows from

∣∣∣∣∣∣
Ef⋆(X)− 1

n


∑

j ̸=i

f⋆(Xj) + f⋆(X
′
i)



∣∣∣∣∣∣
≤ sup

f ′∈F

∣∣∣∣∣∣
Ef(X)− 1

n


∑

j ̸=i

f(Xj) + f(X
′
i)



∣∣∣∣∣∣

since the maximizer with X
′
i instead of Xi is not necessary f⋆. The second inequality is an application

of |a| − |b| ≤ |a − b|, and the final inequality applies boundedness assumption. Apply bounded difference
inequality.

5 Vapnik-Chervonenkis Theory

Before we shift gear to discuss VC theory, we introduce some empirical process theory notations, and motivate
why we shift to discuss such theory. Let A denote a collection of events, and X1:n i.i.d samples on X . We
define Pf := Ef(X), Pnf := 1

n

∑n
i=1 f(Xi). We are interested in the following quantity, also called Uniform

Law of Large Numbers:
sup
A∈A

|Pn(A)− P (A)|

where P (A) = Pr(X ∈ A);Pn(A) = 1
n

∑n
i=1 1[Xi ∈ A]

Definition 6 (Growth/Shattering for a set of events). Let n ∈ N. The shattering number of a set of events
A is

SA(n) := max
x1,...,xn∈X

| { (1{x1 ∈ A}, ...,1{xn ∈ A}) , A ∈ A}|

In words, the shattering number is the maximum cardinality of set of binary vectors.

We finally introduce some basic properties of shattering function.

• SA(n) ≤ 2n

• If |A| ≤ ∞, SA(n) ≤ |A|

• If A is induced by cylinder sets (−∞, t), then SA(n) = n+ 1

4
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STAT210B Theoretical Statistics Lecture 15 - 03/05/2024

Lecture 15: Shattering Function Bound & VC dimension
Instructor: Nikita Zhivotovskiy Scribe: Rita Lyu Proofreader: Xueda Shen

1 Notations

Let A denote a collection of events, and X1, · · · , Xn denote i.i.d. samples on X .

2 Growth function

Definition 1 (Growth function/Shattering function for a set of events). Let n ∈ N. The shattering number
of a set of events A is

SA(n) := max
x1,··· ,xn∈X

|{(1{x1 ∈ A}, . . . ,1{xn ∈ A}), A ∈ A}|

In words, the shattering number is the maximum number of different values of n indicator functions that can
take on a set of events A.

For SA, we know it has following properties:

• SA(n) ≤ 2n (this is because we have n binary elements and this inequality always holds, but is not a
good bound.)

• If |A| < ∞, SA(n) ≤ |A| (this is because of each A in A, we only have one vector with binary outcome.)

• If A is induced by cylinder sets (−∞, t), then SA(n) = n+ 1.

Proposition 2. If the family of events A has the shatter function SA(n), then with probability at least 1−δ,

sup
A∈A

|Pn(A)− P (A)| ≤ 2

√
2 log(2SA(n))

n
+

√
2 log

(
1
δ

)

n
,

where Pn(A) = 1
n

∑n
i=1 1{Xi ∈ A} is the empirical measure and P (A) = Pr(x ∈ A).

Remark 3. We emphasize (i) this bound only holds when X1, · · · , Xn are i.i.d. samples; (ii) A is the
collection of events and can be infinite. This proposition indicates that even though |A| is infinite, the total
number can be bounded by SA(n), which is the projection to indicators; (iii) This bound holds simultaneously
for all events in A. (iv) For the bound, the first 2 (outside of square root) comes from the symmetrization,
the other 2s come from the bound; (v) The typical example is that when SA(n) = n + 1, then the bound

becomes O

(√
log(n)

n

)
(see Big O notation for more detailed explanation for this notation), and we can see

as n → ∞, the error converges to 0.

The general idea is that the “uniform law of large numbers” holds if SA(n) ≪ 2n, because otherwise√
log(SA(n))

n will not converges to 0, as n → ∞.

Example 4. Let A be the collection of all subsets of R, then SA(n) = 2n, and the first term in error bound

turns to be 2
√

2(n+1)
n , which is the constant bound and does not converge to 0.

Now the question comes when can we have SA(n) ≪ 2n? The answer is that we can infer whether
SA(n) ≪ 2n by looking at the Vapnik-Chervonenkis dimension (VC dim) of the set A.

1
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3 VC dimension

Definition 5 (VC dimension). The VC dimension of A is the largest integer d, such that SA(d) = 2d.

Remark 6. We can regard V C(A) = max{i|SA(i) = 2i} and it characterizes the richness of the class A.

We introduce the following examples to characterize the interplay between the shattering function and
the VC dimension.

Example 7. Let A be the set of all closed intervals in R. We determine the VC dimension by working
through the shattering function with d = 2 and d = 3. We claim VC dimension is 2, so we need to show
when d = 3, we have less than 8 patterns. From Figure 7, we can see

1. When there are just two points, SA(2) = 2.

2. When there are three points, SA(3) is at most 23 patterns. However, the pattern in the Figure cannot
be realized. Thus, V C(A) = 2.

Figure 1: VC dimension for Example 7.

Remark 8. For A, V C(A) = d means (i) ∀n ≤ d, we are able to have 2n patterns by the definition 1, (ii)
when n > d, the 2n patterns cannot be realized.

Example 9. A is induced by half spaces in R2, then V C(A) = 3. From the left panel of Figure 2, we can
find a shattered set of size 3, satisfying SA(3) = 23. However, we cannot find a half space such that the right
panel is realized, because the convex hulls of between points with label 1 and points with label 0 intersect.
This would work for any 4 points, not only for those on the picture.

Figure 2: VC dimension for Example 9.

More rigorously, we provide the following theorem without proof (see more discussion in Radon Theorem).
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Theorem 10 (Radon). If we have p+ 2 points in Rp, then we can split these points into two groups A ⊔B
(no intersect), such that their convex hulls intersect.

Thus, in this example, with p = 2, we can always separate 4 points into two groups with their convex
hulls intersecting. Then, we cannot make SA(4) = 24. Based on Theorem 10, we have the following corollary.

Corollary 11. For A induced by half spaces in Rp, V C(A) = p+ 1.

For example, a simplex in R3, we can find 23+1 binary vectors, thus V C(A) ≥ 3 + 1. But because
of Theorem 10, if we take any 3 + 2 points, there are 2 groups with intersecting convex hulls. Thus,
V C(A) < 3 + 2. Finally, V C(A) = 4.

Figure 3: VC dimension for simplex in R3.

We claim that for A, if VC dimension is small, then the shattering function is also small.

Theorem 12 (Sauer-Shelah-Vapnik-Chervonenkis). If V C(A) = d, then

SA(n) ≤
n∑

i=0

(
n
i

)
≤
(en
d

)d
(n ≥ d).

Proof for the second inequality can be found in Lecture 9 Section 2 of Sparse Linear Regression.

Remark 13. From Theorem 12, we can see if d = ∞, then SA(n) = 2n, which is the naive bound. If d < ∞,
SA(n) = O(nd), which is the polynomial bound.

Corollary 14. If V C(A) = d, by applying Proposition 2 and Theorem 12, then with probability 1− δ,

sup
A∈A

|Pn(A)− P (A)| ≤ 4

√
d log

(
en
d

)

n
+

√
2 log

(
1
δ

)

n
.
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If d is finite, we can see

sup
A∈A

|Pn(A)− P (A)| = O

(√
d log(n)

n

)
→ 0, as n → ∞.

Remark 15. This corollary result indicates the relationship between the VC dimension, the shattering func-
tion, and the uniform law of large numbers. We can bound the distance between the empirical measure and
the true probability measure using the shattering function. Moreover, the shattering function can have an
upper bound induced by the VC dimension. Then, we can characterize whether the uniform law of large
numbers holds by looking at the VC dimension of the class A.

Corollary 16. From Corollary 14, we can see that set system with finite VC dimension satisfy the uniform
law of large numbers.

4 Proof of Proposition 2

Proof. Because our 1{x ∈ A} is an indicator function, it is bounded by 1. Apply results in Lecture 14 Section
4, we observe that conditional on X1:n, at most SA(n) values of

∑n
i=1 1{Xi ∈ A},∀A ∈ A is realizable. Then

by symmetrization and the maximal inequality, we have

E sup
A∈A

|Pn(A)− P (A)| ≤ 2

√
2 log(2SA(n))

n
.

Because the function is bounded by 1, we apply the Proposition 5 in Lecture 14 with l = 1, then we have,
with probability at least 1− δ,

sup
A∈A

|Pn(A)− P (A)| ≤ E sup
A∈A

|Pn(A)− P (A)|+

√
2 log

(
1
δ

)

n
≤ 2

√
2 log(2SA(n))

n
+

√
2 log

(
1
δ

)

n
.

5 Proof of Theorem 12

Proof. Our main idea is that in the definition of shattering function, we just care about the binary function
(fix x1, . . . , xn, (1{x1 ∈ A}, . . . ,1{xn ∈ A}) ∈ {0, 1}n)1. Thus, we reduce our problem to counting the size
of V , where V is the matrix whose row vectors are realized values of indicator vector with n columns, (from
set system to the matrix), such that, by VC dimension definition, (i) we can find d columns in V , such that
all 2d vectors are realized, (ii) ∀d+ 1 columns, we have smaller than 2d+1 different vectors.

V =



0 1 · · · 0 0
0 1 · · · 1 1

· · ·




︸ ︷︷ ︸
n

.

E.g. For VC dimension 2, for the first two columns, we find 22 distinct binary row vectors, but for the first
three columns, we cannot see full 23 row vectors.




0 0 1
1 0 0
0 1 0
1 1 0


 .

1We do not fix arbitrary x1, . . . , xn. We fix x1, . . . , xn that satisfy the VC dimension.
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We use shifting-based proof here. Shifting allows us to change the original set of vectors without changing
its size. Induction-based proof can be found in [Vershynin, 2018]. Before moving on, we first introduce the
shifting operator S. For v ∈ V , take i ∈ [n], we change 1 to 0 iff this does not cause copies of the same
vector.

Si(v) =

{
(v1, . . . , vi−1, 0, vi+1, . . . , vn), if (v1, . . . , vi−1, 0, vi+1, . . . , vn) /∈ V

v = (v1, . . . , vi−1, vi, vi+1, . . . , vn), Otherwise
.

If we apply Si to every vector in V , then by construction

|Si(V )| = |V |,
meaning that the size will not change after shifting. More importantly, if a subset of columns is shattered by
Si(V ), then it is also shattered by the original V ( “shattered by ” here means if we project these columns
to indicator and we can see all patterns of 2 taking power to the number of columns). E.g.

[
1 1
0 0

]
→ shifting on the first column

[
0 1
0 0

]
all two combinations are possible.

We then prove this claim.

Proof. W.L.G, take i = 1, columns are first K columns, 1, . . . ,K, by definition of shattering, ∀u ∈ {0, 1}K
(for all possible patterns in K columns), ∃v ∈ Si(V ), such that ui = vi, i = 1, · · · ,K. The previous claim
holds because our condition is that the first K columns are shattered by Si(V ). We next want to show there
is v′ ∈ V , such that ui = v′i, i = 1, · · · ,K. Assume u = [1, u2, · · · , uK , · · · ],∃v ∈ Si(V ), ui = vi, i ∈ [K]

1. one pattern u = [1, u2, · · · , uK , · · · ], is a vector starting with 1 after shifting means [0, u2, · · · , uK ] ∈ V
(because shifting will lead to [0, u2, · · · , uK , · · · ] when the vector does not in V , but now the vector
starts with 1, meaning [0, u2, · · · , uK , · · · ] is already in V .)

2. Since 1 does not be changed, meaning that [1, u2, · · · , uK , · · · ] is also in V .

⇒,∀u ∈ {0, 1}K ,∃v′ ∈ V , such that v′i = u′
i, i ∈ [K].

Then, we apply Si(V ) in a loop for all i, in any order until we reach such a set V ∗, so that for all i,

Si(V
∗) = V ∗,∀i,

meaning that shifting will not change the element anymore. We know that by construction, |V ∗| = |V |.
Finally, we need to compute |V ∗|, for v ∈ V ∗. W.L.G., we assume all ones are stacked at the front, that is,

1, 1, 1, · · · , 1, 0, · · · , 0, 0.
If we assume there are more than (d + 1)−ones at the beginning, as shifting will not change the size (it is
already stable), then

0, 1, 1, · · · , 1, 0, · · · , 0, 0
1, 0, 1, · · · , 1, 0, · · · , 0, 0
0, 1, 1, · · · , 1, 0, · · · , 0, 0
· · ·

should also be in V ∗. Finally, the more than (d+1)−ones by shifting will result in more than 2d+1 patterns.
However, this contradicts the VC dimension. This is because if the subset is shattered by Si(V ), then it
should also be shattered by the original V . We conclude that no vector v ∈ V ∗ contains more than d-ones.

So the vector in V ∗ contains at most d-ones. Therefore, by taking the number of ones to be 0 to d, we
have

|V ∗| = |V | ≤
d∑

i=0

(
n
i

)
.
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6 Proof of Corollary 14

Proof. Based on Proposition 2 and Theorem 12, we know that

sup
A∈A

|Pn(A)− P (A)| ≤ 2

√
2 log(2SA(n))

n
+

√
2 log

(
1
δ

)

n
,

log(2SA(n)) ≤ log

(
2
(en
d

)d)
≤ log

((en
d

)2d)
= 2d log

(en
d

)

⇒ sup
A∈A

|Pn(A)− P (A)| ≤ 4

√
d log

(
en
d

)

n
+

√
2 log

(
1
δ

)

n
.
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STAT210B Theoretical Statistics Lecture 16 - 03/07/2024

Lecture 16: Empirical Risk Minimization & Dudley Integral
Instructor: Nikita Zhivotovskiy Scriber: Jingxi Wang Proofreader: Jinglin Yang

16.1 Example: Statistical learning (classification)

16.1.1 Definitions
We will start by introducing some definitions. A set of classifiers is as follows ℱ = { 𝑓 : 𝒳 → {0, 1}}.
(𝑋𝑖 , 𝑌𝑖)𝑛𝑖=1 is an i.i.d sample from some unknown distribution 𝑃𝑋,𝑌 , where 𝑋 ∈ 𝒳, 𝑌 ∈ {0, 1}. Given
𝑓 ∈ ℱ , the empirical error is defined by

𝑅𝑛( 𝑓 ) =
1
𝑛

𝑛∑
𝑖=1

Ind{ 𝑓 (𝑋𝑖) ≠ 𝑌𝑖},

and the population risk is defined by

𝑅( 𝑓 ) = Pr
𝑋,𝑌∼𝑃𝑋,𝑌

( 𝑓 (𝑋) ≠ 𝑌).

Next we introduce VC-dimension of ℱ . The following two definitions are equivalent: (a) We
say ℱ has the VC-dimension 𝑑, if 𝑑 is the size of the largest shattered set; (b) Define 𝑆ℱ (𝑛) :=
max𝑋1 ,...,𝑋𝑛 #{( 𝑓 (𝑋1), . . . , 𝑓 (𝑋𝑛)) | 𝑓 ∈ ℱ }, then the VC-dimension of ℱ is the largest 𝑑 such that
𝑆ℱ (𝑑) = 2𝑑.
For a classifier 𝑓 constructed based on the sample, we define the excess risk is 𝑅( 𝑓 ) − inf 𝑓 ∈ℱ 𝑅( 𝑓 ). We
denote 𝑓 ∗ = argmin 𝑓 ∈ℱ 𝑅( 𝑓 ), and 𝑓 = arg min 𝑓 ∈ℱ 𝑅𝑛( 𝑓 ), i.e. 𝑓 ∗ is the minimizer of 𝑅( 𝑓 ) and 𝑓 is the
minimizer of 𝑅𝑛( 𝑓 ). Then we define the generalization error to be |𝑅𝑛( 𝑓 ) − 𝑅( 𝑓 )|.

16.1.2 Empirical Risk Minimization

Utilizing results about VC-dimension from previous lectures, we can bound 𝑅( 𝑓 ) − 𝑅( 𝑓 ∗).

Proposition 16.1.

𝑅( 𝑓 ) − 𝑅( 𝑓 ∗) ≤ 𝐶

(√
𝑑 log(𝑒𝑛/𝑑)

𝑛
+

√
log(2/𝛿)

𝑛

)
.

Proof. By definition of 𝑓 , we have 𝑅𝑛( 𝑓 ) − 𝑅𝑛( 𝑓 ∗) ≤ 0. It follows that

𝑅( 𝑓 ) − 𝑅( 𝑓 ∗) = 𝑅( 𝑓 ) − 𝑅𝑛( 𝑓 ) + 𝑅𝑛( 𝑓 ) − 𝑅𝑛( 𝑓 ∗) + 𝑅𝑛( 𝑓 ∗) − 𝑅( 𝑓 ∗) ≤ 2 sup
𝑓 ∈ℱ

|𝑅( 𝑓 ) − 𝑅𝑛( 𝑓 )|.

Now our goal is to bound 2 sup 𝑓 ∈ℱ |𝑅( 𝑓 ) − 𝑅𝑛( 𝑓 )|.
Step 1: Let 𝐴 𝑓 := { 𝑓 (𝑋) ≠ 𝑌},𝒜ℱ := {𝐴 𝑓 | 𝑓 ∈ ℱ }. We want to show 𝑆ℱ (𝑛) = 𝑆𝒜ℱ (𝑛). Verify that the
value of

sup
𝑋1 ,...,𝑋𝑛∈𝒳
𝑌1 ,...,𝑌𝑛∈{0,1}

#{(Ind[ 𝑓 (𝑋1) ≠ 𝑌1], . . . , Ind[ 𝑓 (𝑋𝑛) ≠ 𝑌𝑛]) : 𝑓 ∈ ℱ }
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is invariant of the choice of 𝑌1, . . . , 𝑌𝑛! (Since after changing a single 𝑌𝑖 , it either remains unchanged or
flips the bit in a column) Therefore we can choose 𝑌1 = 𝑌2 = · · · = 𝑌𝑛 = 0. Observe that Ind[𝑡 ≠ 0] = 𝑡

for 𝑡 ∈ {0, 1}. Since 𝑓 is {0, 1}-valued, then (Ind[ 𝑓 (𝑋1) ≠ 0], . . . , Ind[ 𝑓 (𝑋𝑛) ≠ 0]) = ( 𝑓 (𝑋𝑖), . . . , 𝑓 (𝑋𝑛)),
indicating that 𝑆ℱ (𝑛) = 𝑆𝒜ℱ (𝑛). It follows that VC(𝒜ℱ ) = VC(ℱ ).
Step 2: By Sauer–Shelah lemma from previous lecture, with probability at least 1 − 𝛿, we have

𝑅( 𝑓 ) − 𝑅𝑛( 𝑓 ) = Pr( 𝑓 (𝑋) ≠ 𝑌) − 1
𝑛

𝑛∑
𝑖=1

Ind{ 𝑓 (𝑋𝑖) ≠ 𝑌𝑖}

≤ 𝐶
©­«
√

log
(
𝑆𝒜ℱ (𝑛)

)
𝑛

+
√

log(2/𝛿)
𝑛

ª®¬
≤ 𝐶

(√
𝑑 log(𝑒𝑛/𝑑)

𝑛
+

√
log(2/𝛿)

𝑛

)
. (𝐶 ≤ 10)

16.2 Sub-Gaussian Process
Definition 16.2. (Sub-Gaussian process) The following two definitions are equivalent: (a) We say (𝑋𝑡)𝑡∈𝑇 is a
sub-Gaussian process wrt. the metric 𝑑(𝑡 , 𝑠) on 𝑇, if it is 0-mean, and for all 𝑡 , 𝑠 ∈ 𝑇,

𝔼 exp(𝜆(𝑋𝑡 − 𝑋𝑠)) ≤ exp
(
𝜆2𝑑2(𝑡 , 𝑠)

2

)
;

(b) Say (𝑋𝑡)𝑡∈𝑇 is a sub-Gaussian process wrt. the metric 𝑑(𝑡 , 𝑠) on 𝑇, if it is 0-mean, and ∃𝐶 > 0 (absolute
constant), such that ∀𝑡 , 𝑠 ∈ 𝑇,

∥𝑋𝑡 − 𝑋𝑠 ∥𝜓2 ≤ 𝐶𝑑(𝑡 , 𝑠).

16.2.1 Examples
Example 1 Suppose 𝑇 ⊆ ℝ𝑑 , 𝑔 ∼ 𝒩(0, 𝐼𝑑), 𝑋𝑡 = ⟨𝑔, 𝑡⟩, the distance 𝑑(𝑡 , 𝑠) = ∥𝑡 − 𝑠∥2. Then

𝔼 exp (𝜆⟨𝑔, 𝑡 − 𝑠⟩) ≤ exp

(
𝜆2∥𝑡 − 𝑠∥2

2
2

)
.

Example 2 (Rademacher Process)
Suppose 𝑇 ⊆ ℝ𝑑 , 𝜀 = (𝜀1, . . . , 𝜀𝑛), where 𝜀𝑖’s are i.i.d Rademacher random variables, 𝑋𝑡 = ⟨𝜀, 𝑡⟩, the
distance 𝑑(𝑡 , 𝑠) = ∥𝑡 − 𝑠∥2. Then

𝔼 exp (𝜆(𝑋𝑡 − 𝑋𝑠)) ≤ exp

(
𝜆2∥𝑡 − 𝑠∥2

2
2

)
.

16.2.2 Definitions
Definition 16.3. We introduce some definitions.

• Gaussian width is 𝔼 sup𝑡∈𝑇 ⟨𝑔, 𝑡⟩;
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• The Rademacher average is 𝔼 sup𝑡∈𝑇 ⟨𝜀, 𝑡⟩;

• Gaussian complexity is 𝔼 sup𝑡∈𝑇 |⟨𝑔, 𝑡⟩|;

• Rademacher complexity is 𝔼 sup𝑡∈𝑇 |⟨𝜀, 𝑡⟩|;

• (Empirical) Rademacher complexity of class of functions ℱ : { 𝑓 : 𝒳 → ℝ} is

ℛ𝑛(ℱ ) = 𝔼𝜀

{
sup
𝑓 ∈ℱ

����� 1𝑛 𝑛∑
𝑖=1

𝜀𝑖 𝑓 (𝑋𝑖)
�����
}
.

• Rademacher complexity is

ℛ(ℱ ) = 𝔼𝑋1 ,...,𝑋𝑛𝔼𝜀

{
sup
𝑓 ∈ℱ

����� 1𝑛 𝑛∑
𝑖=1

𝜀𝑖 𝑓 (𝑋𝑖)
�����
}
.

By symmetrization, we have

𝔼𝑋 sup
𝑓 ∈ℱ

�����𝔼 𝑓 (𝑋) − 1
𝑛

𝑛∑
𝑖=1

𝑓 (𝑋𝑖)
����� ≤ 2𝔼𝑋1 ,...,𝑋𝑛𝔼𝜀 sup

𝑓 ∈ℱ

����� 1𝑛 𝑛∑
𝑖=1

𝜀𝑖 𝑓 (𝑋𝑖)
����� = 2ℛ(ℱ ).

16.3 Dudley Integral

16.3.1 Statement
Theorem 16.4. Assume that (𝑋𝑡)𝑡∈𝑇 is a sub-Gaussian process with metric 𝑑, diam(𝑇) := sup𝑡 ,𝑠∈𝑇 𝑑(𝑡 , 𝑠), then
for any 𝛿 > 0,

𝔼 sup
𝑡∈𝑇

𝑋𝑡 ≤ 2𝔼 sup
𝑡 ,𝑠∈𝑇,𝑑(𝑡 ,𝑠)≤𝛿

(𝑋𝑡 − 𝑋𝑠) + 16
∫ diam(𝑇)

2

𝛿
4

√
log𝒩(𝑇, 𝑑, 𝜀)𝑑𝜀,

where
∫ diam(𝑇)

2
𝛿
4

√
log𝒩(𝑇, 𝑑, 𝜀)𝑑𝜀 is called Dudley integral.

Proof. This is left for next lecture.
Remark 16.5. It can also apply to absolute value.

16.3.2 Application
Consider 𝔼 sup𝑡∈𝑇 ⟨𝑔, 𝑡⟩, where 𝑇 = 𝐵𝑑2 , 𝑑(𝑡 , 𝑠) = ∥𝑡 − 𝑠∥2. Then diam(𝑇) = 2, and 𝜀 ≤ diam(𝑇)/2 = 1. We
can let 𝛿 = 0. Recall that 𝒩(𝐵𝑑2 , 𝑑, 𝜀) ≤ (1 + 2/𝜀)𝑑 ≤ (3/𝜀)𝑑 , then

𝔼 sup
𝑡∈𝐵𝑑2

⟨𝑔, 𝑡⟩ ≤ 16
∫ 1

0

√
𝑑 log

(
3
𝜀

)
𝑑𝜀

= 16
√
𝑑

∫ 1

0

√
log

(
3
𝜀

)
𝑑𝜀 ≤ 𝐶

√
𝑑,

Since
∫ 1

0

√
log (3/𝜀)𝑑𝜀 is a finite absolute constant.

Comparison: Recall 𝔼 sup𝑡∈𝐵𝑑2 ⟨𝑔, 𝑡⟩ = 𝔼∥𝑔∥ ≤
√
𝑑.

From theorem 16.4, we can bound 𝔼 sup𝑡∈𝑇 𝑋𝑡 using covering number. We know that for different norms,
the covering number may not be the same. Next, we introduce two useful norms.
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Definition 16.6. Given the i.i.d sample 𝑋1, . . . , 𝑋𝑛 ∼ ℙ, define 𝐿2(ℙ)-norm is ∥ 𝑓 ∥2
𝐿2(ℙ) = 𝔼𝑋∼ℙ 𝑓 2(𝑋), and

𝐿2(ℙ𝑛)-norm is ∥ 𝑓 ∥2
𝐿2(ℙ𝑛) =

1
𝑛

∑𝑛
𝑖=1 𝑓

2(𝑋𝑖), then the covering number wrt. 𝐿2(ℙ𝑛) is

𝒩(ℱ , ∥ · ∥𝐿2(ℙ𝑛), 𝜀).
Corollary 16.7. Given 𝑥1, . . . 𝑥𝑛 , the 𝐿2(ℙ𝑛)-distance is defined by

∥ 𝑓 − 𝑔∥2
𝐿2(ℙ𝑛) =

1
𝑛

𝑛∑
𝑖=1

( 𝑓 (𝑥𝑖) − 𝑔(𝑥𝑖))2.

Define the zero-mean random variable 𝑍 𝑓 := 1√
𝑛

∑𝑛
𝑖=1 𝜀𝑖 𝑓 (𝑥𝑖), and the sub-Gaussian process {𝑍 𝑓 } 𝑓 ∈ℱ . Sub-

stituting the 𝐿2(ℙ𝑛)-distance into the covering number in Dudley integral, we can obtain following upper
bound

𝔼 sup
𝑓 ∈ℱ

(
1
𝑛

𝑛∑
𝑖=1

𝜀𝑖 𝑓 (𝑥𝑖)
)
≤ 2 · 1

𝑛
𝛿 · 𝑛 + 16√

𝑛

∫ diam(ℱ )
2

𝛿
4

√
log𝒩(ℱ , 𝐿2(ℙ𝑛), 𝜀)𝑑𝜀.

Proof. For conciseness, we denote condition 𝑀 = { 𝑓 , 𝑔 ∈ ℱ }, and condition 𝑁 = {∥ 𝑓 − 𝑔∥𝐿2(ℙ𝑛) ≤ 𝛿}. By
theorem 16.4, we only need to show that 𝔼 sup𝑀,𝑁

∑𝑛
𝑖=1 𝜀𝑖( 𝑓 (𝑋𝑖) − 𝑔(𝑋𝑖)) ≤ 𝑛𝛿. In fact,

𝔼 sup
𝑀,𝑁

𝑛∑
𝑖=1

𝜀𝑖( 𝑓 (𝑋𝑖) − 𝑔(𝑋𝑖))

(Cauchy-Schwarz) ≤𝔼 sup
𝑀,𝑁

∥𝜀∥

√√
𝑛∑
𝑖=1

( 𝑓 (𝑋𝑖) − 𝑔(𝑋𝑖))2

=
√
𝑛 𝔼 sup

𝑀,𝑁

∥𝜀∥

√√
1
𝑛

𝑛∑
𝑖=1

( 𝑓 (𝑋𝑖) − 𝑔(𝑋𝑖))2

(∥ 𝑓 − 𝑔∥𝐿2(ℙ𝑛) ≤ 𝛿) ≤𝛿
√
𝑛 𝔼 ∥𝜀∥

(Cauchy-Schwarz) ≤𝛿
√
𝑛

[
𝔼 ∥𝜀∥2] 1

2

=𝛿 · 𝑛.

Definition 16.8. We say that ℱ is a parametric class of functions if

sup
ℙ𝑛

𝒩(ℱ , ∥ · ∥𝐿2(ℙ𝑛), 𝜀) ≤
(
𝐶

𝜀

)𝑝
,

where 𝑝 plays the role of dimension.
For parametric classes ℱ such that ∥ 𝑓 ∥∞ ≤ 1, applying theorem 16.4, we can derive

𝔼 sup
𝑓 ∈ℱ

(
1
𝑛

𝑛∑
𝑖=1

𝜀𝑖 𝑓 (𝑥𝑖)
)
≤ 16√

𝑛

∫ 1

0

√
log𝒩(ℱ , ∥ · ∥𝐿2(ℙ𝑛), 𝜀)𝑑𝜀

=
16√
𝑛

∫ 1

0

√
𝑝 log

(
𝐶

𝜀

)
𝑑𝜀

=
𝐶1

√
𝑝

√
𝑛
,

where 𝐶, 𝐶1 are absolute constants.
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Proposition 16.9. (Dudley) If ℱ is a class of {0, 1}-valued functions with VC-dimension 𝑑, then

sup
ℙ𝑛

𝒩(ℱ , ∥ · ∥𝐿2(ℙ𝑛), 𝜀) ≤
(
𝐶

𝜀

)4𝑑
.

Proof. This is left for next lecture.
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STAT210B Theoretical Statistics Lecture 17 - 03/12/2024

Lecture 17: Proof of Dudley’s integral
Instructor: Nikita Zhivotovskiy Scriber: Zora Tung Proofreader: Weijie Zhao

1 Dudley’s Lemma
Lemma 1. Assume that F is a class of binary-valued functions/classifiers with the VC dimension d. Then
∃c > 0 (an absolute constant) such that for any empirical measure Pn,

sup
Pn

N (F , L2 (Pn) , ϵ) ≤
(c
ϵ

)4d

As per Lecture 14 (VC Theory) Pn is understood to be parameterized by x1, ...xn ∈ X (we are, more
precisely, taking the supremum over these xi), and more exactly defined as Pn (A ⊆ X ) = 1

n

∑n
i=1 1 {xi ∈ A}.

For a real-valued function f , we can Pnf = 1
n

∑n
i=1 f (Xi).

Proof. We think of a subset V ⊆ {0, 1}n where V has VC-dimension d; i.e. there is a subset of d “columns”
which are shattered (see Lecture 16), and there is no subset of d+ 1 columns which are shattered.

We will bound the packing numbers instead of covering numbers, which works because the packing
number is always greater than the covering number (see Lecture 9),

N (K, ρ, ϵ) ≤ P (K, ρ, ϵ) .

Our distance measure will be,

∥f − g∥L2(Pn)
=

√√√√√
1

n

n∑

i=1

(g (xi)− f (xi))
2

︸ ︷︷ ︸
for binary fcn’s, 0 or 1

.

If we write these functions as vectors in V , such that ui = g (xi), then we get an equivalent distance metric
on V ,

ρ (u, v) =

√√√√ 1

n

n∑

i=1

1 {ui ̸= vi} (u, v ∈ V ) .

Recall V 0 is a packing of V if ∀u, v ∈ V 0 (u ̸= v),

ρ (u, v) > ϵ ⇐⇒
n∑

i=1

1 {ui ̸= vj} > nϵ2. (1)

Fix a u, v ∈ V 0 and consider a fixed
Au,v = {i ∈ [n] ;ui ̸= vi} .

Consider Y1, ..., Yk iid random variables distributed uniformly on [n] = {1, ..., n}. Then

Pr (Y1 /∈ Au,v) ≤ 1− ϵ2 (2)

since (1) implies that on average the ith coordinate is ≥ ϵ2 apart for u ̸= v. We want to bound,

Pr
(
∀u, v ∈ V 0, u ̸= v, ∃j ∈ [k] such that Yj ∈ Au,v

)
, (3)

1
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so we can apply the union bound to all pairs u, v (there are ≤
∣∣V 0

∣∣2 pairs) and from (2) that Pr (∀j ∈ [k] , Yj /∈ Au,v) ≤(
1− ϵ2

)k, this is

≥1−
∣∣V 0

∣∣2 (1− ϵ2
)k

≥1−
∣∣V 0

∣∣2 exp
(
−ϵ2k

)
.

We can choose

k =

⌈
2 log

∣∣V 0
∣∣

ϵ2

⌉
+ 1,

then (3) becomes

≥ 1−
∣∣V 0

∣∣2 exp


log

(∣∣V 0
∣∣−2
)
− 2ϵ2︸︷︷︸

from ceil


 = 1− exp

(
−2ϵ2

)
≥ 0

(replace 2ϵ2 with ϵ2 when the ceiling doesn’t change the expression in k). Then because (3) is greater than
0, there is a realization of the random variables such that the event is true, i.e.

∃y1, ..., yk ∈ [n] such that ∀u, v ∈ V 0, u ̸= v, ∃j ∈ [k] such that yj ∈ Au,v.

As an illustration, we can pick a set of indices where for any u and v, at least one of the indices picks up on
one of the the difference between the vectors; y2 in the figure below,

0 0 1 0 0 1 0 0 1

0 0 1 0 1 1 0 0 0

u:

v:

Therefore, if we project V 0 on only columns corresponding to indices y1, ..., yk, then the size of the newly-
obtained set V ′ ⊆ {0, 1}k is the same as V 0: we cannot project any u ̸= v to the same point, because one of
the yj ’s will distinguish them.

Then the Sauer-Shelah-Vapnik-Chervonenkis Lemma tells us
∣∣V 0

∣∣ = |V ′| ≤
(
ek

d

)d

,

and since 4x ≥ ⌈2x⌉+ 1 for x ≥ 1, assuming log
∣∣V 0

∣∣ ≥ ϵ2,

k =

⌈
2 log

∣∣V 0
∣∣

ϵ2

⌉
+ 1 ≤ 4 log

(∣∣V 0
∣∣)

ϵ2

then we can plug this in to get,

∣∣V 0
∣∣ =

∣∣V 1
∣∣ ≤

(
4e log

(∣∣V 0
∣∣)

dϵ2

)d

log
(∣∣V 0

∣∣) ≤ d log
(
4e

ϵ2

)
+ �d log

(
log
(∣∣V 0

∣∣)

�d

)
,

use the fact log (x) ≤ x
e , and get,

log
(∣∣V 0

∣∣) ≤ d log
(
4e

ϵ2

)
+

log
(∣∣V 0

∣∣)

e

log
(∣∣V 0

∣∣) ≤
(
1− 1

e

)−1

d log
(
4e

ϵ2

)
.

2
85



Now taking the exponential again

∣∣V 0
∣∣ ≤

(
4e

ϵ2

)2d

=

(√
4e

ϵ

)4d

.

2 Applications
If F is a class of {0, 1}-valued functions with VC-dimension d, then

E

[
sup
f∈F

(
1

n

n∑

i=1

ϵif (xi)

)]
≤ C

√
d

n
. (4)

We showed this last time, deriving the bound

16√
n

∫ 1

0

√
ud log

(
c′

ϵ

)
dϵ,

which is ≤ C
√

d
n .

Corollary (Dvoretzky–Kiefer–Wolfowitz inequality) Let F (x) be the true CDF, Fn (x) be an em-
pirical CDF. Then we are interested in achieving a tail bound for,

sup
t∈R

|Fn (t)− F (t)| ,

where Fn is the random variable. We just apply

• symmetrization

• bounded differences

• the bound for Rademacher complexity of a {0, 1}-valued function with VC-dimension d (4)

• the fact that the VC dimension of the class of intervals {(−∞, t) ; t ∈ R} used to define the CDF is 1

to get with probability 1− δ,

sup
t∈R

|Fn (t)− F (t)| ≤ C︸︷︷︸
absolute const


 1√

n
+

√
log
(
2
δ

)

n


 .

More specifically, this is

≤ C ′

√
log
(
2
δ

)

n
.

Remark 2. This is not the sharpest possible constant; Massart’s version of DKW tells us that

sup
t∈R

|Fn (t)− F (t)| ≤

√
log
(
2
δ

)

2n

but this is optimal (we cannot make it sharper for all CDFs).
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3 Dudley integral proof
Let’s return to the Dudley integral bound proof.

We want to show: If Xt is a sub-Gaussian process indexed by T (with canonical distance d), then

E
[
sup
t∈T

Xt

]
≤2E


 sup

t,s∈T
d(t,s)≤δ

(Xt −Xs)


+16

∫ Diam/2

δ/4

√
log (N (T , d, ϵ))dϵ

where Diam = supt,s∈T d (t, s).
We generally analyze the first term case-by-case (see previous lecture for Rademacher process, for exam-

ple), and we can always take δ = 0 to just have the integral.

3.1 Part 1: Finite net bounds
In this part, we work with a “single-shot” approximation of T . Assume that T 0 ⊆ T , where T 0 is finite.
Then we can say

E

[
sup

t,s∈T 0

(Xt −Xs)

]
≤ 2 max

t,s∈T 0
d (t, s)

√
log (|T 0|).

We know that since Xt is a sub-Gaussian process, then by definition / equivalent properties,

E [exp (λ (Xt −Xs))] ≤ exp
(
λ2 (d (t, s))

2

2

)
,

and maxt,s∈T 0 d (t, s) is the upper bound on the sub-Gaussian process. Then

E

[
sup

t,s∈T 0

(Xt −Xs)

]
≤ max

t,s∈T 0
d (t, s)

√
2 log

(
|T 0|2

)
.

because if Y1, ..., Yn are SG with parameter σ1, ..., σn, then

E
[
max

i
Yi

]
≤ maxσi

√
2 log (n),

where we are using T 0 being finite. Here we can think of i indexing pairs in T 0 × T 0, so Yi↔s,t = Xs −Xt

which is mean-zero and sub-Gaussian.

3.2 Step 2

E
[
sup
t∈T

Xt

]
= E

[
sup
t∈T

(Xt −Xs)

]
(for any s since E [Xs] = 0)

≤ E
[

sup
t,s∈T

(Xt −Xs)

]
.
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Let N be a covering of T at scale δ. Given t, and let t̂ be the closest t̂ ∈ N to t, the same for ŝ (just choosing
the closest points in the net). Then this is

≤E
[

sup
t,s∈T

(Xt −Xs +Xt̂ −Xt̂ +Xŝ −Xŝ)

]

=︸︷︷︸
reorder

E
[

sup
t,s∈T

(Xt −Xt̂ +Xŝ −Xs +Xt̂ −Xŝ)

]

≤︸︷︷︸
property of sup

E

[
sup
t∈T

(Xt −Xt̂) + sup
s∈T

(Xŝ −Xs) + sup
t̂,ŝ∈N

(Xt̂ −Xŝ)

]

=E

[
sup
t̂,ŝ∈N

(Xt̂ −Xŝ)

]
+ 2E


sup
t∈T


Xt − Xt̂︸︷︷︸

closest to Xt







≤E

[
sup
t̂,ŝ∈N

(Xt̂ −Xŝ)

]
+ 2E


 sup

t,s∈T
d(t,s)≤δ

(Xt −Xs)


 .

we’ve basically used the net to make it so we are taking the supremum over a finite set.

3.3 Step 3
We now want to use a trick of “chaining”, where we look at the sequence where we “zoom in”, and improve
the granularity. We are analyzing the first term from Step 2,

E

[
sup
t̂,ŝ∈N

(Xt̂ −Xŝ)

]
.

For j = 0, 1, ..., consider the cover/covering number

Nj ⊆ T at scale / using balls of radius 2−j · Diam (T ) .

Visually,

Let m be the first integer such that
2−m · Diam (T ) ≤ δ,

so we only have to bound
E
[

sup
tm,sm∈Nm

(Xtm −Xsm)

]
(5)

Chaining We can write

Xtm =
m∑

i=1

(
Xti −Xπi−1(ti)

)
+Xt0 ,
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where we recursively define
ti−1 := πi−1 (ti) is the closest element inNi−1 to ti ∈ Ni.

Relating this back to our supremum (5), we write

Xtm −Xsm =
m∑

i=1

(
Xti −Xπi−1(ti)

)
+��Xt0 −

m∑

i=1

(
Xsi −Xπi−1(si)

)
−��Xs0 .

Pictorially, we follow the path to the coarsest cover, which is a single point t0 = s0,

. So (5) is

2E

[
sup

tm∈Nm

m∑

i=1

(
Xti −Xπi−1(ti)

)
]

≤2E

[
m∑

i=1

sup
ti∈Ni

(
Xti −Xπi−1(ti)

)
]

≤2

m∑

i=1

Diam ·
(
2−(i−1)

)√
2 log (N (T , d, 2−i · Diam))

≤16

∫ Diam/2

δ/4

√
log (T , d, ϵ)dϵ.

where the third step uses the expectation bound from the Step 1 (for a single shot). The last step comes
from using the integral as a smooth upper bound of the summation; it is not hard to derive.
Remark 3. This is a very useful bound for empirical processes; you can see papers on Arxiv using it every
day.

4 Remarks about covering numbers
There is a Lp norm

Lp (P ) defined as ∥X∥Lp
= EX∼P [|X|p]1/p ,

where for vectors

∥x∥p =

(
d∑

i=1

|xi|p
)1/p

.

The “order” of p for these Lp norms is reversed from the geometric sense. For 1 ≤ p ≤ q ≤ ∞,
• N (F , Lp (P ) , ϵ) ≤ N (F , Lq (P ) , ϵ)

• N
(
T , ∥·∥p , ϵ

)
≥ N

(
T , ∥·∥q , ϵ

)
for 1 ≤ p ≤ q ≤ ∞. i.e. it is harder to cover a space with ℓ1 balls

than ℓ∞ balls.
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STAT210B Theoretical Statistics Lecture 18 - 03/14/2024

Lecture 18: Nonparametric classes, Contraction, Bracketing
Instructor: Nikita Zhivotovskiy Scriber: Vilas Winstein Proofreader: Zekai Wang

18.1 Nonparametric classes
We start with a motivating example.

18.1.1 Example: Lipschitz functions
Let ℱ denote the class of 1-Lipschitz functions 𝑓 : [0, 1] → [0, 1]. We are interested in

𝔼𝑋,𝜀

[
sup
𝑓 ∈ℱ

1
𝑛

𝑛∑
𝑖=1

𝜀𝑖 𝑓 (𝑋𝑖)
]

(∗)

for some i.i.d. random variables 𝑋𝑖 ∈ [0, 1]. We wish to apply the chaining argument (Dudley’s integral)
to bound (∗), but for that we need to get a bound on the covering numbers. First notice that since the 𝐿∞
norm of a random variable is bigger than the 𝐿2 norm, the 𝐿∞ balls are smaller and so the 𝐿∞ covering
numbers are bigger. In other words, we have

𝒩(ℱ , 𝐿2(𝑃𝑛), 𝜀) ≤ 𝒩(ℱ , 𝐿∞(𝑃𝑛), 𝜀).

In order to get a bound on the 𝐿∞ covering numbers, we need to be able to find a net of functions which
approximate 1-Lipschitz functions uniformly on the interval. For this, draw an 𝜀-spaced grid on the unit
square [0, 1]2 as in the figure below.

𝜀

Lipschitz function
Step function

Since a 1-Lipschitz function (shown in red) cannot cross two different horizontal grid lines in between
two of the vertical grid lines, there is always a horizontal segment of the grid which stays within 𝜀 of the
1-Liptschitz function between any two vertical grid lines. Taking the step function consisting of these
horizontal segments (shown in blue), we see that the 𝐿∞ distance between the step function and the
Liptschitz function is at most 𝜀.
So, the set of all of these step functions is an 𝜀-net of ℱ . Note that this is an example of a net which
consists of functions that are not in the set to be covered, since the step functions are not 1-Lipschitz. It
remains to count the number of possible step functions. A generous overcounting, noticing that there
are at most 2

𝜀 horizontal intervals and at most 2
𝜀 segments to choose from yields

𝒩(ℱ , 𝐿∞(𝑃𝑛), 𝜀) ≤
(

2
𝜀

)( 2
𝜀 )
.
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In fact, since the next segment is constrained to be not too far away from the previous one, we could
probably get away with an upper bound of the formalism 𝐶1/𝜀, but on a logarithmic scale this only
differs by a logarithmic factor from the previous bound.
Now we apply the Dudley integral to obtain

(∗) ≤ 16√
𝑛

∫ 1

0

√
2
𝜀

log 2
𝜀
𝑑𝜀.

Since
∫ 1

0
1
𝜀𝑞 𝑑𝜀 converges when 𝑞 < 1, the integral above is a finite constant, and we obtain (∗) ≤ 𝐶√

𝑛
.

Note that this is the same rate as for a single function in ℱ ; by Höfding’s inequality, for any fixed 𝑓 ∈ ℱ ,
we have

𝔼

[
1
𝑛

𝑛∑
𝑖=1

𝑓 (𝑋𝑖) − 𝔼 𝑓 (𝑋)
]
≤ 𝐶√

𝑛
.

But we have gotten the same rate uniformly in ℱ .

18.1.2 General nonparametric classes
Recall that for parametric classes ℱ we had

sup
𝑃𝑛

log𝒩(ℱ , 𝐿2(𝑃𝑛), 𝜀) ≤ 𝑝 log
(
𝐶

𝜀

)
for some 𝑝, and thus that we got the order 1√

𝑛
bound uniformly in such classes.

The covering number bound for parametric classis is much better than the bound we obtained for the
1-Lipschitz example above, which is polynomial in 1

𝜀 . Nonetheless, we were able to obtain the same
order of uniform bound on (∗). We would like to be able to understand when we can get this kind of
bound for somewhat worse classes than parametric classes, like the 1-Lipschitz functions, in a more
systematic way. This motivates the following definition:

Definition 18.1. A nonparametric class ℱ is one for which

sup
𝑃𝑛

log𝒩(ℱ , 𝐿2(𝑃𝑛), 𝜀) ≲
(
𝐶

𝜀

)𝑝
for some 𝑝.

Let’s calculate the Dudley integral for nonparametric classes. First, as long as 𝑝 < 2, we have

16√
𝑛

∫ 1

0

√(
𝐶

𝜀

)𝑝
𝑑𝜀 =

16𝐶𝑝/2
√
𝑛

∫ 1

0
𝜀−𝑝/2 𝑑𝜀

=
16𝐶𝑝/2
√
𝑛

[
𝜀1−𝑝/2

1 − 𝑝/2

]1

𝜀=0

=
16√
𝑛

𝐶𝑝/2

1 − 𝑝/2

= 𝑂𝜀,𝑝

(
1√
𝑛

)
.
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In other words, as long as 𝑝 < 2, we get the same bound uniformly as for a single function. For 𝑝 ≥ 2
the above integral does not converge, and so we need to use the full form of the Dudley integral bound.
Let’s also assume for simplicity that ∥ 𝑓 ∥∞ ≤ 1 for every 𝑓 ∈ ℱ . The bound is then

2𝛿 + 16𝐶𝑝/2
√
𝑛

∫ 1

𝛿/4
𝜀−𝑝/2 𝑑𝜀 = 2𝛿 + 16𝐶𝑝/2

√
𝑛

[
𝜀1−𝑝/2

1 − 𝑝/2

]1

𝜀=𝛿/4

= 2𝛿 + 𝐶√
𝑛
𝛿1−𝑝/2,

possibly changing 𝐶 and using the fact that 𝛿 < 1. Taking 𝛿 = 𝑛
− 1
𝑝 we then obtain

2𝑛−
1
𝑝 + 𝐶𝑛−

1
2− 1

𝑝+
𝑝
2

1
𝑝 = 𝐶𝑛

− 1
𝑝

again changing 𝐶. In conclusion, for nonparametric classes, we have

𝔼

[
sup
𝑓 ∈ℱ

(
1
𝑛

𝑛∑
𝑖=1

𝑓 (𝑋𝑖) − 𝔼 𝑓 (𝑋)
)]

≤ 𝐶 ·
{ 1√

𝑛
when 𝑝 < 2,

1
𝑝
√
𝑛

when 𝑝 > 2.

Finally, we did not prove it in class, but for 𝑝 = 2 there is an extra logarithmic factor.

18.2 Contraction for Rademacher averages/processes
We start by stating a theorem which states that we can “erase” Lipschitz functions when taking
Rademacher averages to get an upper bound.

18.2.1 Theorem statement and proof
Theorem 18.2 (Ledoux-Talagrand). Let 𝜑1, . . . , 𝜑𝑛 be 𝐿-Liptschitz functions ℝ → ℝ such that 𝜑𝑖(0) = 0.
Then for any 𝑇 ⊆ ℝ𝑛 , we have

𝔼

[
sup
𝑡∈𝑇

����� 1𝑛 𝑛∑
𝑖=1

𝜀𝑖𝜑𝑖(𝑡𝑖)
�����
]
≤ 2𝐿𝔼

[
sup
𝑡∈𝑇

����� 1𝑛 𝑛∑
𝑖=1

𝜀𝑖𝑡𝑖

�����
]
.

For this theorem, unlike many of the results previously discussed in the course, the absolute values make
a big difference, in terms of the difficulty of the proof. We will only prove a much easier version without
the absolute values (and without the assumption that 𝜑𝑖(0) = 0).

Theorem 18.3. Let 𝜑1, . . . , 𝜑𝑛 be 𝐿-Liptschitz functions ℝ → ℝ. Then for any 𝑇 ⊆ ℝ𝑛 , we have

𝔼

[
sup
𝑡∈𝑇

1
𝑛

𝑛∑
𝑖=1

𝜀𝑖𝜑𝑖(𝑡𝑖)
]
≤ 𝐿𝔼

[
sup
𝑡∈𝑇

1
𝑛

𝑛∑
𝑖=1

𝜀𝑖𝑡𝑖

]
.

Proof. Without loss of generality, assume that 𝐿 = 1. Then, expanding the expectation over 𝜀𝑛 only,

𝔼

[
sup
𝑡∈𝑇

𝑛∑
𝑖=1

𝜀𝑖𝜑𝑖(𝑡𝑖)
]
=

1
2𝔼

[
sup
𝑡∈𝑇

(
𝑛−1∑
𝑖=1

𝜀𝑖𝜑𝑖(𝑡𝑖) + 𝜑𝑛(𝑡𝑛)
)
+ sup

𝑠∈𝑇

(
𝑛−1∑
𝑖=1

𝜀𝑖𝜑𝑖(𝑠𝑖) − 𝜑𝑛(𝑠𝑛)
)]

≤ 1
2𝔼

[
sup
𝑡 ,𝑠∈𝑇

(
𝑛−1∑
𝑖=1

𝜀𝑖(𝜑𝑖(𝑡𝑖) + 𝜑𝑖(𝑠𝑖)) + |𝑡𝑛 − 𝑠𝑛 |
)]
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=
1
2𝔼

[
sup
𝑡 ,𝑠∈𝑇

(
𝑛−1∑
𝑖=1

𝜀𝑖(𝜑𝑖(𝑡𝑖) + 𝜑𝑖(𝑠𝑖)) + 𝑡𝑛 − 𝑠𝑛

)]
= 𝔼

[
sup
𝑡∈𝑇

(
𝑛−1∑
𝑖=1

𝜀𝑖𝜑𝑖(𝑡𝑖) + 𝜀𝑛𝑡𝑛

)]
,

where in the second equality we used the symmetry between 𝑡 and 𝑠 to remove the absolute value. The
result follows by induction.

18.2.2 Application: excess risk in general
We will apply the contraction theorem to excess risk. First, we define a few different loss functions to
which the next computation applies. In general, we may have an i.i.d. sample of (𝑋𝑖 , 𝑌𝑖), and hypothesize
that 𝑌 = 𝑓 (𝑋) describes the data. We can measure the loss of this hypothesis in a variety of ways, using a
loss function ℓ ( 𝑓 (𝑋), 𝑌) which represents the “price” for predicting 𝑌 = 𝑓 (𝑋). For example, we could
take

ℓ ( 𝑓 (𝑋), 𝑌) =


Ind( 𝑓 (𝑋) = 𝑌) (binary loss)
(𝑌 − 𝑓 (𝑋))2 (squared loss)
|𝑌 − 𝑓 (𝑋)| (absolute loss)
max{0, 1 − 𝑌 · 𝑓 (𝑋)} (hinge loss).

Note that hinge loss generalizes binary loss, in the case where 𝑌 ∈ {±1}. From a loss function we can
define the population risk 𝑅 and the empirical risk 𝑅𝑛 of predicting 𝑌 = 𝑓 (𝑋) as

𝑅( 𝑓 ) = 𝔼 [ℓ ( 𝑓 (𝑋), 𝑌)] ,

𝑅𝑛( 𝑓 ) =
1
𝑛

𝑛∑
𝑖=1

ℓ ( 𝑓 (𝑋𝑖), 𝑌𝑖).

We may prefer to choose the estimator 𝑓 which minimizes the empirical risk. Then the excess risk ℰ̂ is

ℰ̂ = 𝑅( 𝑓 ) − inf
𝑓 ∈ℱ

𝑅( 𝑓 ), where 𝑓 = argmin
𝑓 ∈ℱ

𝑅𝑛( 𝑓 ).

Now we calculate, using the version of the theorem which we have proved, that

𝔼
[
ℰ̂
]
≤ 𝔼

[
sup
𝑓 ∈ℱ

(𝑅( 𝑓 ) − 𝑅𝑛( 𝑓 ))
]
+ 𝔼

[
sup
𝑓 ∈ℱ

(𝑅𝑛( 𝑓 ) − 𝑅( 𝑓 ))
]

≤ 4𝔼

[
sup
𝑓 ∈ℱ

1
𝑛

𝑛∑
𝑖=1

𝜀𝑖ℓ ( 𝑓 (𝑋𝑖), 𝑌𝑖)
]

≤ 4𝐿𝔼

[
sup
𝑓 ∈ℱ

1
𝑛

𝑛∑
𝑖=1

𝜀𝑖 𝑓 (𝑋𝑖)
]
.

18.2.3 Application: hinge loss
Suppose that 𝑌𝑖 ∈ {−1,+1}, and define 𝜓(𝑡) = max{0, 1 − 𝑡}. It iis easy to check that 𝜓(0) = 0 and 𝜓 is
1-Lipschitz. So we have

𝔼

[
sup
𝑓 ∈ℱ

1
𝑛

𝑛∑
𝑖=1

𝜀𝑖𝜓(𝑌𝑖 𝑓 (𝑋𝑖))
]
≤ 𝔼

[
sup
𝑓 ∈ℱ

1
𝑛

𝑛∑
𝑖=1

𝜀𝑖𝑌𝑖 𝑓 (𝑋𝑖)
]
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= 𝔼

[
sup
𝑓 ∈ℱ

1
𝑛

𝑛∑
𝑖=1

𝜀𝑖 𝑓 (𝑋𝑖)
]
,

where in the last step we used the fact that (𝜀𝑖) has the same distribution as (𝜀𝑖𝑌𝑖), since the 𝑌𝑖 are
independent and ±1-valued.

18.2.4 Application: Rademacher complexity of a linear class
Let 𝐵𝑑2 be the Euclidean ball in ℝ𝑑, let 𝑏 > 0, and let

ℱ = {𝑋 ↦→ ⟨𝑋, 𝑤⟩ : 𝑤 ∈ 𝑏 · 𝐵𝑑2}.

Further assume that ∥𝑋𝑖 ∥2 ≤ 𝑟 almost surely for all 𝑖. Then we have

𝔼

 sup
𝑤∈𝑏·𝐵𝑑2

1
𝑛

𝑛∑
𝑖=1

𝜀𝑖 ⟨𝑋𝑖 , 𝑤⟩
 =

𝑏

𝑛
𝔼

[




 𝑛∑
𝑖=1

𝜀𝑖𝑋𝑖







]

≤ 𝑏

𝑛

√√√√√
𝔼







 𝑛∑
𝑖=1

𝜀𝑖𝑋𝑖






2
≤ 𝑏

𝑛

√
𝑛𝑟2

=
𝑏𝑟√
𝑛
.

Note that we could have used the Dudley integral to bound the left-hand side, but this would have
resulted in an upper bound which depends on dimension. Here we have used the linear structure
present in the family, and avoided the dependence on dimension.

18.3 Bracketing entropy
This section just contains some definitions that we will use in the next lecture.

Definition 18.4. For a class ℱ of functions on 𝒳, the bracket between two functions 𝑢, 𝑙 : 𝒳 → ℝ is defined to
be the set

[𝑢, 𝑙] = { 𝑓 ∈ ℱ : 𝑙(𝑥) ≤ 𝑓 (𝑥) ≤ 𝑢(𝑥) for all 𝑥 ∈ 𝒳}.

Definition 18.5. For a fixed distribution 𝑃 on 𝒳, and a fixed number 𝑞, a bracket [𝑢, 𝑙] is an 𝜀-bracket with
respect to 𝐿𝑞(𝑃) if ∥𝑢 − 𝑙∥𝐿𝑞(𝑃) ≤ 𝜀.

Definition 18.6. The 𝜀-bracketing number of ℱ with respect to 𝐿𝑞(𝑃) is

𝒩[ ](ℱ , 𝐿𝑞(𝑃), 𝜀) = minimal number of 𝜀-brackets covering ℱ .

Exercise 18.7. Show that 𝒩(ℱ , 𝐿𝑞(𝑃), 𝜀) ≤ 𝒩[](ℱ , 𝐿𝑞(𝑃), 𝜀/2).

In light of the above exercise, it may seem pointless to introduce this notion. Indeed, we will see that
many results about 𝒩 can be extended to 𝒩[ ]. However, importantly, 𝒩[ ] depends on 𝑃, whereas 𝒩 in
principle does not (since we typically take the supremum over 𝑃𝑛).
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STAT210B Theoretical Statistics Lecture 19 - 03/19/2024

Lecture 19: Bracketing, Sub-Gaussian Mean Estimators
Instructor: Nikita Zhivotovskiy Scriber: Xiyuan Zhang Proofreader: Xiyuan Zhang

1 Bracketing

1.1 Recap from last lecture

The bracket [u, l] is formed by f ∈ F : l(x) ≤ f(x) ≤ u(x) for all x ∈ X .
[u, l] is an ε-bracket with respect to Lq(P ) if [u, l] is a bracket and ∥u− l∥Lq(P ) ≤ ε.
For a fixed distribution P on X , N[ ](F , Lq(P ), ε) is a bracketing entropy .
The power of bracketing is that we do not work with the sup with respect to empirical measures.

1.2 Theorem

Theorem 1. Assume that F is a class of functions such that ∥f∥L∞(P )≤m. Then if X1 · · ·Xn is an i.i.d.
sample of copies of the random variable X which distributes to P , there exists an absolute constant C such
that

E sup
f∈F

| 1
n

n∑

i=1

f(Xi)− Ef(X)| ≤ C√
n

∫ m

0

√
logN[](F , L2(P ), ε)dε.

To sum up, if we want to bound E supf∈F | 1n
∑n

i=1 f(Xi) − Ef(X)|, one method is to bound it as
above. Another method is to bound it through standard symmetrization and chaining. Then we can get
supPn

N(F , L2(Pn), ε) ≤ supP N(F , L2(P ), ε), where P denotes all measures.

Remark 2 (Koltchinskii-Pollard entropy). supPn
N(F , L2(Pn), ε) ≤ supP N(F , L2(P ), ε), where P denotes

all measures.

2 Sub-Gaussian mean estimators

Let’s start with an example. Let X1, · · · , Xn be i.i.d. Sub-Gaussian random variables with parameter σ and
mean µ. For non-asymptotic regime,

| 1
n

n∑

i=1

−µ| ≤ σ

√
2 log(1δ )

n
.

Compare this with CLT with Var(Xi) = 1,

√
n(

1

n

n∑

i=1

Xi − µ)
d−→ N (0, 1).

The difference is that the non-asymptotic method requires all moments while CLT only requires 2 moments.
There is a fix in the non-asymptotic regime.

1
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2.1 Median-of-means estimator (Mean estimator in R)
Let X1, · · · , Xn be i.i.d. random variables with mean µ and Var(Xi) = σ2. Split n points in to K non-
intersecting blocks B1, · · · , BK where |Bj | = n

K = m, and X̄j = 1
m

∑
i∈Bj

Xi. Then the median of means

estimator is X̂j = Med(X̄1, X̄2, · · · , X̄K), where the median is defined as Med(y1, · · · , yn) = yi such that

|j ∈ [K] : yj ≤ yi| ≥
K

2
and |j ∈ [K] : yj ≥ yi| ≥

K

2
.

Theorem 3. Fix the number of blocks K = 8 log( 1δ ). Assume without loss of generality that K is an integer
and n

K is an integer. X1, · · · , Xn are i.i.d. copies of the random variable X with mean µ and Var(Xi) = σ2.
Then with probability 1− δ,

|µ̂− µ| ≤ σ

√
32 log( 1δ )

n

Proof. First fix the j-th block Bj , where |Bj | = m and X̄j =
1

|Bj |
∑

i∈Bj
Xi. By Chebyshev’s inequality,

Pr(|X̄j − µ| ≥ t) ≤ Var(Xi)

t2m
=

σ2

mt2
.

Choose t = 2σ√
m
. Then the good event happens with probability at least 3

4 ,

|X̄j − µ| ≤ 2σ√
m
.

Since the good event for a block has the probability ≥ 3
4 , and these events are independent, the probability

that there are more than K
2 blocks corresponding to a good event can be interpreted as

Pr(Binom(
3

4
,K) ≥ K

2
) ⇔ Pr(Binom(

1

4
,K)− 1

4
K <

K

4
) ≥ 1− exp(−2× K2

16

K
) = 1− δ

with K = 8 log( 1δ ).
Thus, with probability at least 1− δ, there are more than K/2 blocks satisfying |X̄j − µ| ≤ 2σ√

m
, and the

median should pick one of those good X̄j = µ̂. Therefore, with probability 1− δ,

|µ̂− µ| ≤ 2σ√
m

=
2σ√

n
8 log( 1

δ )

= σ

√
32 log(1δ )

n
.

Remark 4. The form of the bound as if µ̂ is a sample mean and the distribution is Sub-Gaussian.

2.2 Multivariate extensions of Median-of-means estimator

Let B1, · · ·BK be the blocks, for a function f ,

MOM(f) := Med(f̄1, · · · , f̄K) = Med(
1

m

∑

i∈B1

f(Xi), · · · ,
1

m

∑

i∈BK

f(Xi)).

Proposition 5 (uniform bound for Median-of-means estimator). Fix K = 8 log( 1δ ), and let εi be Rademacher
random sign. Then with probability 1− δ,

sup
f∈F

(MOM(f)− Ef) ≤ 32E sup
f∈F

(
1

n

n∑

i=1

εif(Xi)) +

√
128 supf∈F Var(f(X)) log(1δ )

n

2
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sup
f∈F

(Ef −MOM(f)) ≤ 32E sup
f∈F

(
1

n

n∑

i=1

εif(Xi)) +

√
128 supf∈F Var(f(X)) log(1δ )

n

Remark 6. The nice thing about this uniform bound is that it only requires 2 moments as in CLT.

Proof. We want to control

sup
f∈F

(MOM(f)− Ef) = sup
f∈F

(Ef −MOM(f)) = sup
f∈F

(MOM(Ef − f)) < t.

It is enough to show that ∀f ∈ F , there are more than 1/2 of blocks satisfying Ef − f̄j < t,

1

K
sup
f∈F

K∑

j=1

Ind[Ef − f̄j ≥ t] <
1

2
,

where f̄j =
1

|Bj |
∑

i∈Bj
f(Xi).

Let φ(t) = (t− 1)Ind[1 ≤ t ≤ 2] + Ind[t > 2], and by construction, we have

φ(t) ≥ Ind(t ≥ 2),

and
φ(t) ≤ Ind(t ≥ 1).

Now we bound the probability of the bad event.

1

K
sup
f∈F

K∑

j=1

Ind[Ef − f̄j ≥ t] =
1

K
sup
f∈F

K∑

j=1

Ind[
2(Ef − f̄j)

t
≥ 2]

≤ sup
f∈F

1

K

K∑

j=1

φ(
2(Ef − f̄j)

t
)

= sup
f∈F

1

K

K∑

j=1

Eφ(
2(Ef − f̄j)

t
) (∗)

+ sup
f∈F

1

K

K∑

j=1

φ(
2(Ef − f̄j)

t
)− sup

f∈F

1

K

K∑

j=1

Eφ(
2(Ef − f̄j)

t
) (∗∗)

For the first part,

(∗) ≤ sup
f∈F

1

K

K∑

j=1

EInd(
2(Ef − f̄j)

t
≥ 1)

= sup
f∈F

1

K

K∑

j=1

Pr(Ef − f̄j ≥
t

2
)

= sup
f∈F

Pr(Ef − f̄1 ≥ t

2
)

≤ sup
f∈F

4Var(f(X))

mt2
. (by Chebyshev’s inequality)

For the second part,
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sup
h∈H

1

K

K∑

j=1

h(Yj)− sup
h∈H




1

K




K∑

j=1
j ̸=i

h(Yj) + h(Y ′
i )





 ≤ 1

K

K∑

j=1

h∗(Yj)−
1

K




K∑

j=1
j ̸=i

h∗(Yj) + h∗(Y ′
i )




=
1

K
(h∗(Yi)− h∗(Y ′

i ))

≤ 1

K
|h∗(Yi)− h∗(Y ′

i )|

≤ 1

K
.

Then by bounded diffenrence inequality,

Pr((∗∗)− E(∗∗) ≥ y) ≤ exp(− 2y2

K/K2
) = exp(−2y2K).

With probability at least 1− exp(−2Ky2),

(∗∗) ≤ E(sup
f∈F

1

K

K∑

j=1

φ(
2(Ef − f̄j)

t
)− sup

f∈F

K∑

j=1

Eφ(
2(Ef − f̄j)

t
)) (***)

+ y

By symmetrization,

(∗ ∗ ∗) ≤ 2E sup
f∈F

1

K

K∑

j=1

εjφ(
2(Ef − f̄j)

t
) (sup(a− b) ≤ sup(a) + sup(b))

≤ 2E sup
f∈F

1

K

K∑

j=1

εj(
2(Ef − f̄j)

t
) (φ(t) is 1-Lipschitz)

=
4

t
E sup

f∈F

1

K

K∑

j=1

εj(Ef − 1

m

∑

i∈Bj

f(Xi))

=
4

t
E sup

f∈F

1

K

K∑

j=1

εj(E′ 1
m

∑

i∈Bj

f(X ′
i)−

1

m

∑

i∈Bj

f(Xi)) (X ′
i is an i.i.d. copy of Xi)

≤ 4

tK
EE′ sup

f∈F

K∑

j=1

εj(
1

m

∑

i∈Bj

(f(X ′
i)− f(Xi))) (Jensen’s Inequality)

=
4

tKm
EE′ sup

f∈F

K∑

j=1

εj
∑

i∈Bj

ε′(f(X ′
i)− f(Xi))

≤ 8

tn
EE′ sup

f∈F

K∑

j=1

∑

i∈Bj

εjε
′
if(Xi)

=
8

tn
E sup

f∈F

n∑

i=1

εif(Xi). (εjε
′
i ∼ εi)

4
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Then with probability at least 1− exp(−2Ky2),

sup
f∈F

1

K

K∑

j=1

Ind[Ef − f̄j ≥ t] ≤ 8

tn
E sup

f∈F

n∑

i=1

εif(Xi) +
4 supf∈F Var(f(X))K

nt2
(****)

+ y

To ensure this bound is less than 1/2, set y = 1
4 , and let K = 8 log( 1δ ), yielding 1− exp(−2Ky2) = 1− δ.

When

t = 32E sup
f∈F

(
1

n

n∑

i=1

εif(Xi)

)
+

√
128 supf∈F Var(f(X)) log

(
1
δ

)

n
,

it follows that (∗ ∗ ∗∗) < 1
4 .
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STAT210B Theoretical Statistics Lecture 20 - 03/21/2024

Lecture 20: Applications of the Median-Of-Means Estimator
Instructor: Nikita Zhivotovskiy Scribe: Jianzhi Wang

In this lecture, we apply the median-of-means (MOM) estimator to two examples: estimating the mean of a
random vector and estimating the higher moments of a random variable. In both examples, we only require
the first two moments. We conclude by proving a one-sided lower tail bound under the same conditions
(having only the first two moments).

1 Estimating the mean of a random vector

1.1 Motivation

Let X ∼ N(µ,Σ). From both Gaussian concentration and bound for the concentration of norm, we have
∥∥ 1
n

∑n
i=1 Xi − µ

∥∥
2
≤
√

tr(Σ)
n + 2

√
2∥Σ∥op log 1

δ

n . However, can we get an estimator which has a similar bound

given that we only know the first two moments E [X] = µ and E
[
(X − µ)(X − µ)T

]
= Σ? After all, Central

Limit Theorem, which only requires the first two moments, seems to suggest it is possible.
The idea is to construct an estimator using median-of-means. Last time, we proved that given k ≥

8 log
(
1
δ

)
where k is the number of blocks, then:

sup
f∈F

{|E [f ]−MOM(f)|} ≤ 64E

[
sup
f∈F

{
1

n

n∑

i=1

ϵif(xi)

}]
+ 2

√
128 supf∈F {Var [f(x)]} log

(
2
δ

)

n

1.2 Set-Up and Derivations

Consider F =
{
fv : v ∈ Bd

2

}
where fv(x) = ⟨x, v⟩ for x ∈ Rd. Let µ̂ be an estimator for the mean and µ be

the true mean (i.e. µ = E [X]). Then ∥µ̂− µ∥2 = supv∈Bd
2
{|⟨µ̂− µ, v⟩|}.

We construct our chosen estimator µ̂ := argminν∈Rd

{
supv∈Bd

2
{|⟨ν, v⟩ −MOM(⟨X, v⟩)|}

}
. Intuitively,

we are finding the vector ν∗ that best approximates the median-of-means estimator, as measured by the
worst difference in the projection along any direction v ∈ Bd

2 .
The L2 difference can be bounded as follows:

∥µ̂− µ∥2 = sup
v∈Bd

2

|⟨µ̂− µ, v⟩|

≤ sup
v∈Bd

2

|⟨µ̂, v⟩ −MOM(⟨x, v⟩)|+ sup
v∈Bd

2

|⟨µ, v⟩ −MOM(⟨x, v⟩)|

≤ 2 sup
v∈Bd

2

|⟨µ, v⟩ −MOM(⟨x, v⟩)|

= 2 sup
v∈Bd

2

|MOM(⟨x− µ, v⟩)|

= 2 sup
f∈F

|MOM(f (x− µ))|

The first inequality is due to the triangle inequality and sup {a+ b} ≤ sup a+sup b. The second inequality
is because µ̂ is the minimiser of the objective. The second-to-last equality is due to the translation equivariant
property of MOM(·) estimator.

1
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Now, note that E [fv (X − µ)] = E [⟨X − µ, v⟩] = 0 ∀v ∈ Bd
2 . Applying the uniform bound for median-of-

means inequality, we get:

2 sup
f∈F

|MOM(f (x− µ))| = 2 sup
f∈F

|MOM(f (x− µ))− E [f(x− µ)]|

≤ 128E

[
sup
f∈F

{
1

n

n∑

i=1

ϵif(xi)

}]
+ 4

√
128 supf∈F {Var [f(x)]} log

(
2
δ

)

n

The first term can be bounded directly by optimisation.

128E

[
sup
f∈F

{
1

n

n∑

i=1

ϵif(xi)

}]
=

128

n
E

[
sup
v∈Bd

2

{
n∑

i=1

ϵi⟨xi, v⟩
}]

=
128

n
E

[
sup
v∈Bd

2

{
⟨

n∑

i=1

ϵixi, v⟩
}]

=
128

n
E

[∥∥∥∥∥
n∑

i=1

ϵi (xi − µ)

∥∥∥∥∥
2

]

≤ 128

n

√√√√√E



∥∥∥∥∥

n∑

i=1

ϵi (xi − µ)

∥∥∥∥∥

2

2




=
128

n

√√√√√E



∥∥∥∥∥

n∑

i=1

(xi − µ)

∥∥∥∥∥

2

2




≤ 128

√
tr (Σ)

n

The second term can be bounded by direct optimisation as well:

4

√
128 supf∈F {Var [f(x)]} log

(
2
δ

)

n
= 4

√
128 supv∈Bd

2
{Var [⟨x, v⟩]} log

(
2
δ

)

n

= 4

√
128 supv∈Bd

2
{E [⟨x, v⟩2]} log

(
2
δ

)

n

= 4

√
128 ∥Σ∥op log

(
2
δ

)

n

Hence,

∥µ̂− µ∥2 ≤ C



√

tr (Σ)

n
+

√
∥Σ∥op log

(
2
δ

)

n




Thus, we recover a similar bound for µ̂ compared to the sample mean 1
n

∑n
i=1 Xi. The upshot is that this

estimator works for a larger class of distributions, including the heavy-tailed Student’s t-distribution.

2
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Remark 1. We are assuming that there is an efficient algorithm to calculate the median-of-means estimator.
There is an algorithm that does so in polynomial time.

2 Estimating higher moments of a random variable

2.1 Definitions

Definition 2. ((p, q) Hypercontractive) Let X be a random variable. Then, X is (p, q)-hypercontractive
if there exists a “nice” function Lp,q such that q ≥ p implies ∥X∥q ≤ Lp,q ∥X∥p.

For example, take X ∼ N(0, σ2). Then, for p ≥ 2, ∥X∥p ≤ C
√
p ∥X∥2, where C is an absolute constant.

Hence, the higher Lp norms are controlled by the lower L2 norm, implying that X is (2, p)-hypercontractive.
We can extend the definition of hypercontractivity to the high dimensional case. If X ∈ Rd is a vector,

then X is hypercontractive if it is hypercontractive in all directions i.e. ⟨X, v⟩ is hypercontractive ∀v ∈ Sd−1.

2.2 Set-Up and Derivations

Theorem 3. Let p be an even integer. Assume that X is a zero-mean random vector in Rd such that ∀v ∈
Sd−1, E

[
⟨X, v⟩2p

] 1
2p ≤ LE [⟨X, v⟩p] 1p where L is some “nice” function (i.e. X is (p, 2p)-hypercontractive).

Then, with probability 1− δ, ∀v ∈ Sd−1:

|MOM (⟨X, v⟩p)− E [⟨X, v⟩p]| ≤ C2
√
2LpE [⟨X, v⟩p]

√
d log p+ log

(
1
δ

)

n

This works simultaneously for all v, with C being an absolute constant. Before proceeding with the proof,
we first require two lemmas.

Lemma 4. (Warren) The VC dimension of a binary class induced by polynomials of d variables and power
at most p is less than 2d log (12p).

In other words, let X ∈ Rd be a vector of d variables. Then, the binary class induced by polynomials
of d variables and power at most p consists functions of the form 1 {P (X) > 0} where P is a polynomial of
degree at most p.

The proof of the lemma, which requires machinery from Algebraic Geometry, is omitted. As an example,
this lemma says that the VC dimension of

{
⟨X, v⟩2p : v ∈ Sd−1

}
is small, since it is a polynomial of d variables

and degree at most 2p when expanded. Furthermore, note that this lemma concerns only the degree and the
number of variables in the family of polynomials, giving no regards to their coefficients.

Lemma 5. Assume that Y1, ..., Yk are independent random vectors and F is a class of {0, 1} valued functions
with VC dimension d. Assume also that ∀f ∈ F , P [f(Yi) = 0] ≥ 7

8 ∀i. Then, if k is chosen as C ′ (d+ log 1
δ

)
,

then with probability 1− δ, ∀f ∈ F , 1
k

∑k
i=1 f(Yi) ≤ 1

4 .

The constant C ′ is adjusted for the other constant 7
8 ; otherwise, it is absolute. This lemma allows us to

conduct block-level analysis first, then merge them into an overall statement.

Proof. By the VC bound for empirical processes, with probability 1− δ, ∀f ∈ F :

1

k

k∑

i=1

f(Yi) ≤ E

[
1

k

k∑

i=1

f(Yi)

]
+ C ′′

√
d+ log 1

δ

k
≤ 1

8
+

1

8
≤ 1

4

The second inequality is due to E [f(Yi)] = P [f(Yi) = 1] ≤ 1
8 and our choice of k.
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Proof. (of Theorem 3) To set up the problem, let there be n observations, k blocks for median-of-means and

m = n
k elements per block. Consider the mapping (x1, ..., xm) 7→ 1

{
| 1
m

∑m
i=1⟨xi,v⟩p−E[⟨x,v⟩p]|

E[⟨x,v⟩p] ≥ 2
√
2Lp 1√

m

}
.

Intuitively, it maps elements of a block to an indicator, denoting whether the block is “bad”. Denote the
mapping by fv, where v is just a particular direction.

By Chebyshev’s inequality, we bound the probability of a “bad” block:

P

[∣∣ 1
m

∑m
i=1⟨xi, v⟩p − E [⟨x, v⟩p]

∣∣
E [⟨x, v⟩p] ≥ 2

√
2Lp 1√

m

]
≤ E

[
⟨x, v⟩2p

]

m (E [⟨x, v⟩p])2 8L2p 1
m

≤ 1

8

where the last inequality holds by hypercontractivity, which gives E
[
⟨x, v⟩2p

]
≤ L2pE [⟨x, v⟩p]2.

We repeat the above process for each direction v ∈ Sd−1, obtaining a class of {0, 1}-valued functions
defined on each block Yi =

(
Xim−(m−1), ..., Xim

)
for i ∈ {1, ..., k}. Mathematically, our function class is F ={

fv : v ∈ Sd−1
}
, each satisfying P [fv(Yi) = 0] ≥ 7

8 ∀i ∈ {1, ..., k}. It suffices to check that F has a small VC

dimension, which is guaranteed by Warren’s lemma. To see this, note that
1
m

∑m
i=1⟨xi,v⟩p−E[⟨x,v⟩p]

E[⟨x,v⟩p] −2
√
2Lp 1√

m

is a polynomial of degree p and has d variables. By Warren’s lemma, F has VC dimension less than C ′′′d log p.
Thus, by Lemma 5, we choose the number of blocks k = C1

(
d log p+ log

(
1
δ

))
, it implies that the

condition
| 1
m

∑m
i=1⟨xi,v⟩p−E[⟨x,v⟩p]|

E[⟨x,v⟩p] ≤ 2
√
2Lp 1√

m
∀v ∈ Sd−1 is violated in less than 1

4 of the blocks with high

probability. In the case where the condition is not violated, the median block satisfies the condition (since
the condition must be violated consecutively starting from the tails). Hence, the median block satisfies the
condition with high probability.

In conclusion, with 1√
m

=
d log p+log ( 1

δ )
n , we have:

|MOM(⟨X, v⟩p)− E [⟨X, v⟩p]| ≤ C2
√
2LpE [⟨X, v⟩p]

√
d log p+ log

(
1
δ

)

n

The upshot is that the median-of-means estimator allows you to estimate the moments of hypercontractive
distributions while only knowing the first two moments.

3 One-sided Lower Tail Bound Under Few Moments

3.1 Motivation

Many statistics, such as variances and singular values, are always nonnegative. For example, we care about
the smallest singular value because it appears as we invert a covariance matrix in regression problems. In
those scenarios, we can still give a non-asymptotic, high probability, one-sided lower tail bound with only
the first two moments.

Lemma 6. Let X1, ..., Xn be i.i.d. random variables such that E [Xi] = µ and E
[
X2

i

]
= σ2 and Xi ≥ 0

∀i ∈ {1, ..., n}. Then ∀t ≥ 0, P
[
µ− 1

n

∑n
i=1 Xi > t

]
≤ e−

t2n
2σ2

Proof. Take λ > 0. Consider E
[
e−λXi

]
.

E
[
e−λXi

]
≤ E

[
1− λXi +

1

2
λ2X2

i

]

= 1− λµ+
1

2
λ2σ2

≤ e−λµ+ 1
2λ

2σ2

4
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Thus, E
[
eλ(µ−Xi)

]
≤ e

1
2λ

2σ2

.

P

[
µ− 1

n

n∑

i=1

Xi > t

]
≤

E
[
eλ(µ−

1
n

∑n
i=1 Xi)

]

eλt
=

Πn
i=1E

[
e

λ
n (µ−Xi)

]

eλt
≤ e

λ2σ2

2n

eλt
= e

λ2σ2

2n −λt

Optimising over λ yields λ∗ = tn
σ2 and P

[
µ− 1

n

∑n
i=1 Xi > t

]
≤ e

−t2n

2σ2 as desired.

5
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STAT210B Theoretical Statistics Lecture 21 - 04/02/2024

Lecture 21: Scribe template
Instructor: Nikita Zhivotovskiy Scriber: Jimmy Chin

1 One-sided Lower Tail Bound Under Few Moments (cont.)

From the last lecture, we can derive a one-sided tail bound for the sample mean.

Proposition 1. Suppose X1, ..., Xn are iid with Xi ≥ 0, EX2
i = σ2, and EXi = µ. Then ∀t,

Pr(µ− 1

n

n∑

i=1

Xi ≥ t) ≤ exp{− t
2n

2σ2
}.

Note that the right-hand side of the above looks sub-Gaussian. The “magic” of this bound is that we
only require two moments.

2 Least Singular Value of the Sample Covariance

Let X be a zero-mean random vector in Rd.

Assumption 2. Assume there exists c ∈ (0, 1), β ∈ (0, 1), and for all υ ∈ Sd−1,

Pr(|〈X, υ〉| > c
√
E〈X, υ〉2) ≥ β

Note λmin(Σ) = infυ∈Sd−1 υTΣυ, where Σ is psd. Then for all υ ∈ Sd−1,

υT (
1

n

n∑

i=1

XiX
T
i )υ =

1

n

n∑

i=1

〈Xi, υ〉2

≥ c2E〈X, υ〉2
n

| {i ∈ [n] : |〈Xi, υ〉| ≥ c
√

E〈X, υ〉2} |, (1)

where we have used Assumption 2 to obtain the lower bound. We also have

n∑

i=1

Ind[|〈Xi, υ〉| ≥ c
√

E〈X, υ〉2]− Pr(|〈Xi, υ〉| ≥ c
√

E〈X, υ〉2)︸ ︷︷ ︸
β

≤ c2
√
n(d+ log(1/δ)), (2)

which follows by either applying properties of the VC dimension for half spaces or Warren’s lemma (which
implies the VC dimension ≤ c1d).

Inequalities (1) and (2) imply

υT (
1

n

n∑

i=1

XiX
T
i )υ ≥ c2E〈X, υ〉2

n
[βn− c2

√
n(d+ log(1/δ)]

= c2E〈X, υ〉2 [β − c2
√
d+ log(1/δ)

n
]

︸ ︷︷ ︸
(?)

.

1

105



Assume that n is such that (?) ≥ β
2 ⇔ c2

√
d+log(1/δ)

n ≤ β
2 ⇔ n ≥ ( 2c2

β )2(d + log(1/δ)). Then it follows

that

λmin(
1

n

n∑

i=1

XiX
T
I ) ≥ c2β

2
λmin(Σ),

where Σ = EXXT .
When does Assumption 2 hold?

Lemma 3. Paley-Zygmund Inequality. If Z ≥ 0 is a random variable and c ∈ (0, 1), then

Pr(Z ≥ cEZ) ≥ (1− c)2 (EZ)2

EZ2
.

Proof of Lemma 3.

EZ = E[Z · Ind[Z ≥ cEZ]] + E[Z · Ind[Z < cEZ]]

≤
√
EZ2

√
Pr(Z ≥ cEZ) + cEZ

⇒ Pr(Z ≥ cEZ) ≥ (1− c)2 (EZ)2

EZ2
,

where we have used Cauchy-Schwarz in the first inequality.

Now we can apply this to (?). Assume that

∀υ ∈ Sd−1, (E〈X, υ〉4)1/4 ≤ L(E〈X, υ〉2)1/2, (hypercontractivity).

Apply the Paley-Zygmund inequality to obtain

Pr(|〈X, υ〉| ≥ c
√
E〈X, υ〉2) = Pr(〈X, υ〉2 ≥ c2E〈X, υ〉2)

= (1− c2)2
(E〈X, υ〉2)2

E〈X, υ〉4

≥ (1− c2)2
1

L4

= β.

3 Nonparametric Least Squares

The setup is

Yi = f∗(Xi) + ξi,

where X1, ..., Xn are fixed design vectors, ξ ∼ N (0, 1), and ξ1, ..., ξn are independent. Previously, we studied
linear regression where f∗(Xi) = 〈β∗, Xi〉. Here, we only know that f∗ belongs to some class F , which we
could estimate via least squares

f̂ = arg min
f∈F

1

n

n∑

i=1

(f(Xi)− Yi)2.

We define the following norm

2
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Definition 4.

|| f − Y ||2n:=
1

n

n∑

i=1

(f(Xi)− Yi)2.

Our goal is to bound || f̂ − f∗ ||2n. By definition we have

|| f∗ − Y ||2n ≥|| f̂ − Y ||2n
=|| f̂ − f∗ ||2n + || f∗ − Y ||2n +

2

n
〈f̂ − f∗, f∗ − Y︸ ︷︷ ︸

−ξ

〉

⇒|| f̂ − f∗ ||2n ≤
2

n
〈ξ, f̂ − f∗〉

⇔|| f̂ − f∗ ||n ≤
2

n
〈ξ, f̂ − f∗
|| f̂ − f∗ ||n

〉,

where in the second line 〈f̂ − f∗, f∗ − Y 〉 =
∑n
i=1(f̂(Xi)− f∗(Xi))(f

∗(Xi)− Yi).
For the next trick fix t > 0. Then

|| f̂ − f∗ ||n =|| f̂ − f∗ ||n Ind{|| f̂ − f∗ ||n< t}+ || f̂ − f∗ ||n Ind{|| f̂ − f∗ ||n> t}

≤ t+ sup
f∈F,||f−f∗||≥t

2

n
〈ξ, f − f∗
|| f − f∗ ||n

〉
︸ ︷︷ ︸

(??)

.

In what follows, we will make use of the following definition.

Definition 5. F is star-shaped around f∗ if ∀α ∈ [0, 1] and f ∈ F , α(f − f∗) ∈ F − f∗.

The left side of the above is an example of a star-shaped class. The right side is an example of a class
that is not star-shaped.

Remark 6. If F is convex, then it is star-shaped. A star-shaped set is not necessarily convex.

We claim that if F is star-shaped around f∗. Then the supremum in (??) is achieved at some f such
that ||f − f∗|| = t. Let f − f∗ be a maximizer with ||f − f∗||n > t. Then

t
f − f∗

|| f − f∗ ||n
∈ F − f∗.

3
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Moreover,

(??) ≤ t+
2

nt
sup

f∈F,||f−f∗||n
〈ξ, f − f∗〉 = G(ξ),

where G is the Gaussian width.
Consider 1

n supf∈F,||f−f∗||≤t〈ξ, f − f∗〉 = G(ξ). Then

G(ξ)−G(υ) ≤ 1

n
[sup
f∈F
〈ξ, f − f∗〉 − sup

f∈F
〈υ, f − f∗〉]

≤ 1

n
sup
f∈F
〈ξ − υ, f − f∗〉

= G(ξ − υ)

≤ 1

n
|| ξ − υ ||2|| f − f∗ ||2

≤ t√
n
|| ξ − υ ||2 .

By Gaussian concentration, we have

Pr(
1

n
sup

f∈F,||f−f∗||n≤t
〈ξ, f − f∗〉 ≥ EG(ξ) + µ) ≤ exp(−µ

2n

2t2
),

for all µ > 0.
Let Wt = EGt(ξ). Before we had (??) ≤ t+ 2

t (Wt + µ) with high probability.

Check that since F is star-shaped around f∗, the function Wt/t is non-increasing. We want to find the
fixed point tn such that tn = 2

tn
Wtn (see figure above). Moreover, by the non-increasing property, we have

for all t ≥ tn that 2
tWt ≤ t. Choose t ≥ tn such that (??) ≤ inft≥tn 2t+ 2µ

t . To sum up, we have

Proposition 7. If F is star-shaped around f∗ and ξ is Gaussian noise, then for all t ≥ tn

|| f̂ − f∗ ||2n≤ (2t+
2µ

t
)2,

with probability at least 1− exp(−µ2n
2t2 ).

4
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STAT210B Theoretical Statistics Lecture 22 - 01/16/2024

Lecture 22: Applications of Localization
Instructor: Nikita Zhivotovskiy Scriber: Yichen Xu Proofreader: Shunan Jiang

1 Proposition revisit

In last the lecture, we investigated the Proposition related to the localization methods, approaches in statistics
working with Gaussian width/Rademacher averages of localized sets of functions.

Proposition 1. Suppose F is a star-shaped function shape. The model is y = f∗(xi)+ξi, where x1, · · · , xn ∈
Rd, ξi ∼ N(0, 1), ξ = (ξ1, · · · , ξn)T . Let f∗ ∈ F and F star shaped around f∗. Let f̂ be the least squares

estimator, i.e. f̂ = argminf∈F
1
n

∑n
i=1(f(Xi)− Yi)

2. Let tn be the solution of the equation

t =
2

tn
Esupf∈F,∥f−f∗∥n≤t⟨ξ, f − f∗⟩

Then for any u > 0 with probability 1− exp(−u2n
2t2 ), we have

∥f̂ − f∗∥2n ≤
(
2t+

2

t
u

)2

Remark 2. In the proposition, we do not care about the complexity of the whole class, but those f close to
f∗. The uniform convergence tells us that for all f , ∥f − Y ∥n ≈ E∥f − Y ∥n, while in the localization, we do
not care about f faraway since they do not affect the empirical minimizer a lot.

2 Example 1.

We explore the application of Proposition 1 by examples. Suppose we are interested in the case u = t2.

Then ∥f̂ − f∗∥2n ≤ (2t+ 2t)2 = 16t2, with probability 1− exp
(
− t2n

2

)
. First we bound the Gaussian width

of {f : ∥f − f∗∥2n ≤ t}, by Dudley integral.

1

n
Esupf∈F,∥f−f∗∥≤t⟨ξ, f − f∗⟩ ≤ c(α+

1√
n

∫ t

α
4

√
logN(F − f∗, L2(Pn), ϵ)dϵ

︸ ︷︷ ︸
Denoted as (∗)

)

For nonparametric classes, we have supPn
logN(F , L2(Pn), ϵ) ≤ c

′
ϵ−p. Here, we assume p ∈ (0, 2).

Choose α = 0, we have

(∗) ≤ c
′′ ∫ t

0
ϵ−

p
2 dϵ√

n
≤ c

′′′
t−

p
2+1

√
n

Then we reduce everything to solving

1
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t2 = c1
t−

p
2+1

√
n

t
p
2+1 =

c1

n
1
2

t =
c2

n
1
2 · 1

p
2
+1

=
c2

n
1

p+2

Remark 3. When we want to apply Proposition 1, we can solve the equation by substituting the upper bound
of the ”Gaussian width term” since the we are guaranteed that t ≥ tn and the inequality holds for t ≥ tn.
When t = tn, the bound is the tightest.

Plug in the solved t and continue with Proposition 1, we have

∥f̂ − f∗∥ ≤ c3n
− 2

p+2

Note that in uniform convergence, ∥f − f∗∥2n − E∥f − f∗∥2n ∼ n− 1
2 . When p ∈ (0, 2), 1

n
2

p+2
≪ 1√

n
.

More concretely, we can choose t = c2n
− 1

p+2 +
2
√

log( 1
δ )√

n
> tn since

2
√

log( 1
δ )√

n
is a positive term. Dropping

c2n
− 1

p+2 from t and plug
2
√

log( 1
δ )√

n
into the probability estimator 1− exp(−nt2

2 ), we obtain the conservative

high probability 1− δ. On the other hand, observing that

t2 =


c2n

− 1
p+2 +

2
√
log( 1δ )√
n




2

≤ 2

(
c22n

− 2
p+2 +

4 log(1δ )

n

)
≪ c


 1√

n
+

√
log( 1δ )

n




we make the bound tighter than uniform convergence.

3 Example 2.

Consider the parametric cases. Let Ht = {f : ∥f−f∗∥n ≤ t}, f∗(x) = ⟨x, β⟩, N(Ht, L2(Pn), ϵ) ≤ c4(1+
2t
ϵ )

p,
where p is the dimension. It is expected that the covering number of the localized set scales with the radius
t. Plug this upper bound to Dudley integral, we obtain obtain the upper bound for the Gaussian width

1√
n

∫ t

0

√
p

√
log(1 +

2t

ϵ
)dϵ =

1√
n
t

∫ 1

0

√
p

√
log(1 +

2

ϵ
)dϵ ≤ c5

√
pt√
n

where we use change of variable in the first equality. Again, by solving t2 =
2c5t

√
p√

n
, we obtain tn. We

choose t = c6

√
p+log( 1

δ )

n so that t ≥ tn, and we have

∥f̂ − f∥2n ≤ c7

(
p+ log( 1δ )

n

)
with probability 1− δ

2
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4 Example 3. (Non-parametric regression with random design)

Now, we study the non-parametric regression with random design. Let F be the class of function and is
convex. Suppose |Y | ≤ m, ∀f ∈ F , |f | ≤ m bounded. We use notations as follows

R(f) = E(f(X)− Y )2

Rn(f) =
1

n

n∑

i=1

(f(Xi)− Yi)
2

The least squares estimator in F , f̂ = argminf∈F
1

n

n∑

i=1

(Yi − f(Xi))
2

The goal is to bound R(f̂)− inff∈FR(f).

Remark 4. Here we do not assume that the model is Y = f∗(X) + ξ, with ξ independent with X (called
mispecified model), opposite to assuming that f∗

Bayes(X) = E, [Y |X = x], f∗
B ∈ F and ξ independent noise.

Previously, we used the trick Rn(f̂) ≤ Rn(f
∗). Here, we use the claim that

Rn(f)−Rn(f̂) ≥
1

n

n∑

i=1

(f(Xi)− f̂(Xi))
2

This claim is due the convex nature of F as can be demonstrated by Figure 1.

Figure 1: Visualization of the claim.

Recall the notation of 1
n

∑n
i=1(f(Xi) − f̂(Xi))

2 = Pn(f − f̂)2 and E[Y − f(X)]2 = P (Y − f)2. By
substituting the above inequality,

R(f)−R(f∗) ≤ P (f − Y )2 − P (f∗ − Y )2 + Pn(f
∗ − Y )2 − Pn(f̂ − Y )2 − Pn(f̂ − f∗)2

Write P (f − Y )2 = P (f − f∗ + f∗ − Y ) and Pn(f̂ − Y )2 = Pn(f̂ − f∗ + f∗ − Y )2 and expand them, the
above becomes

(P − Pn)(f − f∗)2 + 2(P − Pn)(f − f∗)(f∗ − Y )− Pn(f̂ − f∗)2 (*)

Let ξ = Y − f∗(X), we further write equation (*) as

3
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(*) = 2(Pn − P )ξ(f̂ − f∗) + P (f̂ − f∗)2 − 2Pn(f̂ − f∗)2

= 2(Pn − P )ξ(f̂ − f∗)︸ ︷︷ ︸
I

+
5

4
P (f̂ − f∗)2

︸ ︷︷ ︸
II

− 1

4
P (f̂ − f∗)2

︸ ︷︷ ︸
III

− 7

4
Pn(f̂ − f∗)2

︸ ︷︷ ︸
IV

− 1

4
Pn(f̂ − f∗)2

︸ ︷︷ ︸
V

Group I, III, V together and II, IV together and take sup, we have

E[R(f̂)−R(f∗)] ≤ E sup
f∈F

(
2(Pn − P )ξ − 1

4
P (f − f∗)− 1

4
Pn(f − f∗)2

)

︸ ︷︷ ︸
(I)

+ E sup
f∈F

(
5

4
P (f − f∗)2 − 7

4
Pn(f

∗ − f)2
)

︸ ︷︷ ︸
(II)

We first analyze (I). Let (X
′
i , Y

′
i ) be independent copies of (Xi, Yi)

n
i=1 and P

′
n be corresponding empirical

measure. Note that P = E′
P

′
n. By Jensen’s inequality

(I) ≤ E sup
f∈F

(
2(Pn − P

′
n)ξ(f − f∗)− 1

4
P

′
n(f − f∗)2 − 1

4
Pn(f − f∗)2

)

Applying symmetrization on

(Pn − P
′
n)ξ(f − f∗) =

1

n

n∑

i=1

(
ξi(f(Xi)− f∗(Xi))− ξ

′
(f(X

′
i)− f∗(X

′
i))
)

We obtain

(I) = E sup
f∈F

(
2

n

n∑

i=1

ϵi(ξi(f(Xi)− f∗(Xi))− ξ
′
i(f(X

′
i)− f∗(X

′
i)))−

1

4
P

′
n(f − f∗)2 − 1

4
Pn(f − f∗)2

)

≤ 2E(Xi,Yi),ϵi sup
f∈F

(
2

n

n∑

i=1

ϵiξi(f(Xi)− f∗(Xi))−
1

4
Pn(f − f∗)2

)
(**)

Remark 5. Here we can apply symmetrization safely because both terms in − 1
4P

′
n(f − f∗)2 − 1

4Pn(f − f∗)2

have the same negative sign.

In (**), the term 1
4Pn(f − f∗)2 can be bounded using Rademacher average with offset shown in the next

lecture. For the another term, given |ξ| = |Y − f∗(X)| ≤ 2m, the contraction inequality tells (repeating the
contraction proof), with Lipschitz constant 2m

(**) ≤ 2E sup
f∈F

(
2

n

n∑

i=1

(2m)ϵi(f(Xi)− f∗(Xi))−
1

4
Pn(f − f∗)2

)

4
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STAT210B Theoretical Statistics Lecture 23 - 04/09/2024

Lecture 23: Random Design Regression
Instructor: Nikita Zhivotovskiy Scriber: Anish Muthali Proofreader: Yanbo Feng

23.1 Random Design Regression
Recall the setup of random design regression from last lecture. Suppose the pair (𝑋,𝑌) ∼ 𝑃𝑋,𝑌 , where
𝑃𝑋,𝑌 is an unknown distribution. We observe 𝑛 IID copies of (𝑋,𝑌), i.e., we observe (𝑋𝑖 , 𝑌𝑖)𝑛𝑖=1 ∼IID (𝑋,𝑌).
We would like to estimate a function that maps 𝑋 to 𝑌, by searching over a convex class of functions ℱ .
Assume that |𝑌 | ≤ 𝑚 and | 𝑓 (𝑋)| ≤ 𝑚, ∀ 𝑓 ∈ ℱ . The least squares estimator is given by

𝑓 = argmin
𝑓 ∈ℱ

1
𝑛

𝑛∑
𝑖=1

(𝑌𝑖 − 𝑓 (𝑋𝑖))2 (36)

We would like to analyze 𝔼
[
𝑅( 𝑓 )

]
− inf 𝑓 ∈ℱ 𝑅( 𝑓 ), where 𝑅( 𝑓 ) B 𝔼

[
(𝑌 − 𝑓 (𝑋))2

]
.

Proposition 23.1. For the random design regression above, for any 𝛼, 𝛾 ≥ 0 such that 𝛼 < 𝛾, we have

𝔼
[
𝑅( 𝑓 )

]
− inf

𝑓 ∈ℱ
𝑅( 𝑓 ) ≤ 𝔼

[
𝐶𝑚

(
𝛼 + 1√

𝑛

∫ 𝛾

𝛼

√
log𝒩 (ℱ , 𝐿2(𝑃𝑛), 𝜀)d𝜀 +

𝑚 log𝒩 (ℱ , 𝐿2(𝑃𝑛), 𝛾)
𝑛

)]
(37)

where 𝐶 is an absolute constant.

Proof of Proposition 23.1. Define 𝑃𝑛( 𝑓 )2 B 1
𝑛

∑𝑛
𝑖=1( 𝑓 (𝑋𝑖))2 and 𝑃( 𝑓 )2 B 𝔼

[
𝑓 (𝑋)2

]
. From last lecture, we

were able to write

𝔼
[
𝑅( 𝑓 )

]
− inf

𝑓 ∈ℱ
𝑅( 𝑓 ) ≤ 𝔼

[
sup
𝑓 ∈ℱ

(
2(𝑃𝑛 − 𝑃)(𝜉( 𝑓 − 𝑓 ★)) − 1

4𝑃( 𝑓 − 𝑓 ★)2 − 1
4𝑃𝑛( 𝑓 − 𝑓 ★)2

)]
︸                                                                              ︷︷                                                                              ︸

Term (I)

(38)

+ 𝔼

[
sup
𝑓 ∈ℱ

(
5
4𝑃( 𝑓 − 𝑓 ★)2 − 7

4𝑃𝑛( 𝑓 − 𝑓 ★)2
)]

︸                                              ︷︷                                              ︸
Term (II)

(39)

We can upper bound Term (I) using symmetrization. Define (𝜀𝑖)𝑛𝑖=1 to be IID Rademacher random
variables. Hence, we upper bound Term (I) following the steps from last lecture:

2𝔼

[
sup
𝑓 ∈ℱ

(
1
𝑛

𝑛∑
𝑖=1

4𝑚𝜀𝑖( 𝑓 (𝑋𝑖) − 𝑓 ★(𝑋𝑖)) −
1
4𝑃𝑛( 𝑓 − 𝑓 ★)2

)]
(40)

= 8𝑚𝔼

[
sup
𝑓 ∈ℱ

(
1
𝑛

𝑛∑
𝑖=1

𝜀𝑖( 𝑓 (𝑋𝑖) − 𝑓 ★(𝑋𝑖)) −
1

16𝑚𝑃𝑛( 𝑓 − 𝑓 ★)2
)]

(41)

Term (II) can be simplified as

𝔼

[
sup
𝑓 ∈ℱ

(
5
4𝑃( 𝑓 − 𝑓 ★)2 − 7

4𝑃𝑛( 𝑓 − 𝑓 ★)2
)]

(42)
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=
5
4𝔼

[
sup
𝑓 ∈ℱ

(
𝑃( 𝑓 − 𝑓 ★)2 − 7

5𝑃𝑛( 𝑓 − 𝑓 ★)2
)]

(43)

=
5
4𝔼

[
sup
𝑓 ∈ℱ

((
1 + 1

10

)
𝑃( 𝑓 − 𝑓 ★)2 − 6

5𝑃𝑛( 𝑓 − 𝑓 ★)2 − 1
5𝑃𝑛( 𝑓 − 𝑓 ★)2 − 1

10𝑃( 𝑓 − 𝑓 ★)2
)]

(44)

We can bound eq. 44 by defining an IID copy of the initial data (𝑋′
𝑖
, 𝑌′

𝑖
)𝑛
𝑖=1 ∼IID (𝑋,𝑌). Define

𝑍 B (𝑋𝑖 , 𝑌𝑖)𝑛𝑖=1 and 𝑍′ B (𝑋′
𝑖
, 𝑌′

𝑖
)𝑛
𝑖=1. Using Jensen’s inequality, we obtain

5
4𝔼

[
sup
𝑓 ∈ℱ

((
1 + 1

10

)
𝑃( 𝑓 − 𝑓 ★)2 − 6

5𝑃𝑛( 𝑓 − 𝑓 ★)2 − 1
5𝑃𝑛( 𝑓 − 𝑓 ★)2 − 1

10𝑃( 𝑓 − 𝑓 ★)2
)]

≤ 5
4𝔼𝑍

[
𝔼𝑍′

[
sup
𝑓 ∈ℱ

(
11
10𝑃

′
𝑛( 𝑓 − 𝑓 ★)2 − 11

10𝑃𝑛( 𝑓 − 𝑓 ★)2 − 1
10𝑃𝑛( 𝑓 − 𝑓 ★)2 − 1

10𝑃
′
𝑛( 𝑓 − 𝑓 ★)2

)] ]
≤ 5

4𝔼𝑍

[
𝔼𝑍′

[
𝔼𝜀

[
sup
𝑓 ∈ℱ

(11
10

𝑛∑
𝑖=1

1
𝑛
𝜀𝑖

(
( 𝑓 (𝑋𝑖) − 𝑓 ★(𝑋𝑖))2 − ( 𝑓 (𝑋′

𝑖 ) − 𝑓 ★(𝑋′
𝑖 ))

2
)

− 1
10𝑃𝑛( 𝑓 − 𝑓 ★)2 − 1

10𝑃
′
𝑛( 𝑓 − 𝑓 ★)2

)] ] ]
(45)

≤ 10
4 𝔼𝑍,𝜀

[
sup
𝑓 ∈ℱ

(
11
10

𝑛∑
𝑖=1

1
𝑛
𝜀𝑖( 𝑓 (𝑋𝑖) − 𝑓 ★(𝑋𝑖))2 −

1
10𝑃𝑛( 𝑓 − 𝑓 ★)2

)]
(46)

where 𝑃′
𝑛( 𝑓 )2 B 1

𝑛

∑𝑛
𝑖=1( 𝑓 (𝑋′

𝑖
))2. We obtain eq. 45 using symmetrization. Notice that | 𝑓 (𝑋) − 𝑓 ★(𝑋)| ≤

2𝑚, so eq. 46 can be bounded as

10
4 𝔼

[
sup
𝑓 ∈ℱ

(
11
10

𝑛∑
𝑖=1

1
𝑛
𝜀𝑖( 𝑓 (𝑋𝑖) − 𝑓 ★(𝑋𝑖))2 −

1
10𝑃𝑛( 𝑓 − 𝑓 ★)2

)]
(47)

≤ 10
4 𝔼

[
sup
𝑓 ∈ℱ

(
11
10

𝑛∑
𝑖=1

1
𝑛
𝜀𝑖 · 4𝑚( 𝑓 (𝑋𝑖) − 𝑓 ★(𝑋𝑖)) −

1
10𝑃𝑛( 𝑓 − 𝑓 ★)2

)]
(48)

=
10
4 · 11

10 · 4𝑚𝔼

[
sup
𝑓 ∈ℱ

(
1
𝑛

𝑛∑
𝑖=1

𝜀𝑖( 𝑓 (𝑋𝑖) − 𝑓 ★(𝑋𝑖)) −
1

10 · 10
11 · 1

4𝑚𝑃𝑛( 𝑓 − 𝑓 ★)2
)]

(49)

Combining the bounds for terms (I) and (II), we have

𝔼
[
𝑅( 𝑓 )

]
− inf

𝑓 ∈ℱ
𝑅( 𝑓 ) ≤ 20𝑚𝔼

[
sup
𝑓 ∈ℱ

(
1
𝑛

𝑛∑
𝑖=1

𝜀𝑖( 𝑓 (𝑋𝑖) − 𝑓 ★(𝑋𝑖)) −
1

50𝑚𝑃𝑛( 𝑓 − 𝑓 ★)2
)]

(50)

To complete the rest of the proof, we require an additional proposition.
We leverage an additional fact to complete the proof above.
Proposition 23.2. Assume that some class of functions 𝒢 has a covering number 𝒩 (𝒢 , 𝐿2(𝑃𝑛), 𝛾) for some
𝛾 > 0, such that the zero function belongs to this cover. Then, for any 𝛼 ≥ 0,

𝔼𝜀

[
sup
𝑔∈𝒢

(
1
𝑛

𝑛∑
𝑖=1

𝜀𝑖𝑔(𝑋𝑖) − 𝑐′𝑔2(𝑋𝑖)
)]

≤ 𝐶

(
𝛼 + 1√

𝑛

∫ 𝛾

𝛼

√
log𝒩(𝒢 , 𝐿2(𝑃𝑛), 𝜀)d𝜀

)
(51)
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+
1
𝑐′ log𝒩(𝒢 , 𝐿2(𝑃𝑛), 𝛾)

𝑛
(52)

where 𝐶 is an absolute constant

Proof of Proposition 23.2. For any 𝑔 ∈ 𝒢, let 𝜋[𝑔] denote the closest element to 𝑔 in the covering net at
scale 𝛾. Hence, we have

𝔼𝜀

[
sup
𝑔∈𝒢

(
1
𝑛

𝑛∑
𝑖=1

𝜀𝑖𝑔(𝑋𝑖) − 𝑐′𝑔2(𝑋𝑖)
)]

≤ 𝔼𝜀

[
sup
𝑔∈𝒢

(
1
𝑛

𝑛∑
𝑖=1

𝜀𝑖(𝑔(𝑋𝑖) − 𝜋[𝑔](𝑋𝑖))
)]

︸                                            ︷︷                                            ︸
Term (I)

(53)

+ 𝔼𝜀

[
sup
𝑔∈𝒢

(
𝑛∑
𝑖=1

𝑐′

4 (𝜋[𝑔](𝑋𝑖))2 − 𝑐′𝑔2(𝑋𝑖)
)]

︸                                               ︷︷                                               ︸
Term (II)

(54)

+ 𝔼𝜀

[
sup
𝑔∈𝒢

(
1
𝑛

𝑛∑
𝑖=1

𝜀𝑖𝜋[𝑔](𝑋𝑖) −
𝑐′

4 (𝜋[𝑔](𝑋𝑖))2
)]

︸                                                     ︷︷                                                     ︸
Term (III)

(55)

First, we can approach term (II). If ∥𝑔∥𝐿2(𝑃𝑛) ≤ 𝛾, then 𝜋[𝑔] = ∅, the zero function. That is, among all
functions in the covering net, 𝑔 is closest to the zero function. Hence, in this case, term (II) is at most 0.
Otherwise, if ∥𝑔∥𝐿2(𝑃𝑛) > 𝛾, ∥𝑔 − 𝜋[𝑔]∥𝐿2(𝑃𝑛) ≤ 𝛾, so we can apply the triangle inequality to again show
that term (II) is at most 0.
Next, we can approach term (I) by repeating the Dudley integral proof, this time replacing the 𝐿2(𝑃𝑛)
diameter in the upper limit of the integral with 𝛾, since ∥𝑔 − 𝜋[𝑔]∥𝐿2(𝑃𝑛) ≤ 𝛾.
Lastly, we can approach term (III) using the MGF bound on Rademacher random variables. Define the
covering net at scale 𝛾 by 𝒩𝛾, and fix 𝜆 > 0. We have

𝔼𝜀

[
sup
ℎ∈𝒩𝛾

(
1
𝑛

𝑛∑
𝑖=1

𝜀𝑖ℎ(𝑋𝑖) −
𝑐′

4 ℎ
2(𝑋𝑖)

)]
≤ 1
𝑛

1
𝜆

log𝔼𝜀

[
exp

{
max
ℎ∈𝒩𝛾

𝜆

(
𝑛∑
𝑖=1

𝜀𝑖ℎ(𝑋𝑖) −
𝑐′

4 ℎ
2(𝑋𝑖)

)}]
(56)

≤ 1
𝑛

1
𝜆

log𝔼𝜀


∑
ℎ∈𝒩𝛾

exp

{
𝜆

(
𝑛∑
𝑖=1

𝜀𝑖ℎ(𝑋𝑖) −
𝑐′

4 ℎ
2(𝑋𝑖)

)} (57)

≤ 1
𝑛

1
𝜆

log
��𝒩𝛾

�� · max
ℎ∈𝒩𝛾

(
exp

{
𝜆2

2

𝑛∑
𝑖=1

ℎ2(𝑋𝑖) −
𝑐′𝜆
4

𝑛∑
𝑖=1

ℎ2(𝑋𝑖)
})

(58)

≤ 2
𝑛𝑐′

log
��𝒩𝛾

�� (59)

=
2
𝑛𝑐′

log𝒩(𝒢 , 𝐿2(𝑃𝑛), 𝛾) (60)

where in eq. 59 we set 𝜆 = 𝑐′
2 to make the argument of the exponent zero. Combining the bounds for

terms (I), (II), and (III) provide the desired result.

Now, we can resume the proof of the random design regression bound from before.
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Proof of Proposition 23.1 (continued). We resume with the previously determined bound.

𝔼
[
𝑅( 𝑓 )

]
− inf

𝑓 ∈ℱ
𝑅( 𝑓 ) ≤ 20𝑚𝔼

[
sup
𝑓 ∈ℱ

(
1
𝑛

𝑛∑
𝑖=1

𝜀𝑖( 𝑓 (𝑋𝑖) − 𝑓 ★(𝑋𝑖)) −
1

50𝑚𝑃𝑛( 𝑓 − 𝑓 ★)2
)]

(61)

= 20𝑚𝔼

[
sup
𝑓 ∈ℱ

(
1
𝑛

𝑛∑
𝑖=1

𝜀𝑖( 𝑓 (𝑋𝑖) − 𝑓 ★(𝑋𝑖)) −
1

50𝑚 · 1
𝑛

𝑛∑
𝑖=1

( 𝑓 (𝑋𝑖) − 𝑓 ★(𝑋𝑖))2
)]

(62)

= 20𝑚𝔼

[
sup
𝑓 ∈ℱ

(
1
𝑛

𝑛∑
𝑖=1

(
𝜀𝑖( 𝑓 (𝑋𝑖) − 𝑓 ★(𝑋𝑖)) −

1
50𝑚 ( 𝑓 (𝑋𝑖) − 𝑓 ★(𝑋𝑖))2

))]
(63)

We can use the result from Proposition 23.2 by setting 𝑔(𝑋) = 𝑓 (𝑋) − 𝑓 ★(𝑋) and 𝑐′ = 1
50𝑚 . Notice that

𝒩(ℱ \ { 𝑓 ★}, 𝐿2(𝑃𝑛), 𝜀) ≤ 𝒩(ℱ , 𝐿2(𝑃𝑛), 𝜀). Hence,

𝔼
[
𝑅( 𝑓 )

]
− inf

𝑓 ∈ℱ
𝑅( 𝑓 ) ≤ 𝔼𝑍

[
𝐶𝑚

(
𝛼 + 1√

𝑛

∫ 𝛾

𝛼

√
log𝒩(ℱ \ { 𝑓 ★}, 𝐿2(𝑃𝑛), 𝜀)d𝜀

+
𝑚 log𝒩(ℱ \ { 𝑓 ★}, 𝐿2(𝑃𝑛), 𝛾)

𝑛

)]
≤ 𝔼𝑍

[
𝐶𝑚

(
𝛼 + 1√

𝑛

∫ 𝛾

𝛼

√
log𝒩(ℱ , 𝐿2(𝑃𝑛), 𝜀)d𝜀 +

𝑚 log𝒩(ℱ , 𝐿2(𝑃𝑛), 𝛾)
𝑛

)]
as desired.

We can use this result in an example, Consider a non-parametric function class ℱ such that, for all 𝑃𝑛 ,
log𝒩(ℱ , 𝐿2(𝑃𝑛), 𝜀) ∼ 𝜀−𝑝 , where 𝑝 ∈ (0, 2). Further, assume WLOG that 𝑚 ≤ 1. Also, recall that∫ 𝛾

0

√
log𝒩(ℱ , 𝐿2(𝑃𝑛), 𝜀)d𝜀 ≤ 𝛾− 𝑝

2+1 (64)

To optimize over 𝛾, we can set the two terms of the bound to be equal, i.e.,

1√
𝑛
𝛾− 𝑝

2+1 =
𝛾−𝑝

𝑛
(65)

=⇒ 𝛾
𝑝
2+1 =

1√
𝑛

(66)

=⇒ 𝛾 = 𝑛
− 1
𝑝+2 (67)

Hence, if we set 𝛼 = 0, the final bound simplifies to

𝔼
[
𝑅( 𝑓 )

]
− inf

𝑓 ∈ℱ
𝑅( 𝑓 ) ≲ 𝑛−

2
𝑝+2 (68)

23.2 Online Learning
The next main topic we will cover is online learning. Many online learning algorithms involve some kind
of dynamic update step, such as stochastic gradient descent. We would like to devise bounds on the total
number of mistakes that our algorithm makes, despite these dynamic update steps.
As an example, consider a classification problem where we utilize online learning. Given a finite function
class ℱ of {0, 1} valued functions, let 𝑓 ★ ∈ ℱ be a target function. That is, you observe 𝑋𝑖 , and, shortly
after, 𝑓 ★(𝑋𝑖) will be revealed. In the coming lecture, we will show that there is a way to make at most
log2(|ℱ |) mistakes on sequences of any length.
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Lecture 24: Online Learning
Instructor: Nikita Zhivotovskiy Scribe: Zhiwei Xiao Proofreader: Zhiwei Xiao

Online Learning Background

Online (machine) learning refers to the process of continuously updating and improving the best predictor
(machine learning model) at each step as new data becomes available in a sequential order. It’s applied in
many areas including recommendation systems, natural language processing, neural networks, etc.

Online Learning Protocol/Example

Consider a classification problem, where F is an unknown finite class of {0, 1} classifiers (functions), and
f⋆ ∈ F is the target function. We also have a sequence of data points (x1, x2, ..., xn) with true labels. For
y1, a classifier f will give us the predicted label ŷ1, and then the nature will reveal the true label f⋆(x1).

The same process is repeated for i = 2, ..., n. The aim is for
n∑

i=1

Ind[ŷi ̸= f⋆(xi)] to be small.

1. Naive Strategy

We call this ”Follow the leader”. Let F1 = F , for i = 1, 2, ..., n, pick any f ∈ Fi, predict ŷi = f(xi), then check
the true label f⋆(xi) revealed by the nature. Then we update by setting Fi+1 = {f ∈ Fi : f(xi) = f⋆(xi)},
which means that we remove all functions that don’t agree with the data seen so far. This strategy makes
at most |F| mistakes.

2. Halving Algorithm

Let F1 = F , for i = 1, 2, ..., n, we predict ŷi as the majority vote of {f(xi) : f ∈ Fi}, then check the true
label f⋆(xi) revealed by the nature and do the same update as in the naive strategy. This strategy makes
at most log2 |F| mistakes. (Intuition is that if the majority is right, it’s right; if the majority is wrong, we’ll
drop at least half of the functions.)

More General Setup of Online Learning / Regret Definition

We have a loss function L(f(X), Y ) which is non-negative, and F which is a class of functions. We have

a sequence of predictors f̂1, f̂2, ..., f̂n such that f̂1 has seen no data on previous rounds, f̂2 has seen one
data point, etc. Notice that f̂i does not know yi|xi by definition. Hence, more and more information have

been seen and trained on as we move along the sequence. And we define the regret as
n∑

i=1

L(f̂i(xi), yi) −

inf
f∈F

n∑
i=1

L(f(xi), yi).

Proposition (Online to Batch Conversion)

Assume that L(f(X), Y ) is convex with respect to the first argument (definition of f̂ above) and that

(xi, yi)
n
i=1 is an i.i.d sample. Assume also that the sequential estimators f̂1, f̂2, ..., f̂n satisfy that the regret

1
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n∑
i=1

L(f̂i(xi), yi)− inf
f∈F

n∑
i=1

L(f(xi), yi) ≤ R(n) almost surely, where R(n) is a constant. Then we have that

E
(xi,yi)ni=1

E
(X,Y )∼PX,Y

L(
1

n

n∑

i=1

f̂i(X), Y )− inf
f∈F

EL(f(X), Y ) ≤ R(n)

n
.

Proof:

Define S = (xi, yi)
n
i=1. We know the regret satisfies

n∑
i=1

L(f̂i(xi), yi)− inf
f∈F

n∑
i=1

L(f(xi), yi) ≤ R(n) ♦ for any

sequence. And remember that f̂i does not know yi|xi by definition, and that the pair (xi, yi) is independent
of (x1, y1), ..., (xi−1, yi−1). Hence, we can take the expectation on the both sides of ♦, and we first analyze
its left-hand side after taking the expectation:

E
S

n∑

i=1

L(f̂i(xi), yi)− E
S
inf
f∈F

n∑

i=1

L(f(xi), yi) ≥
n∑

i=1

E
S
R(f̂i)− inf

f∈F
nR(f) ≥ n

(
E
S
R(

1

n

n∑

i=1

f̂i)− inf
f∈F

R(f)

)
,

where the risk function R(f) = E(X,Y )∼PX,Y
[L(f(X), Y )], we used Jensen’s inequality and inf’s concavity in

the first ≥, and used first argument and the convexity in the second ≥. We finish the proof by dividing both
sides by n.

Exponential Weights (Hedge Algorithm)

Consider F = {fθ : θ ∈ Θ} - a family of functions parameterized by Θ ⊆ Rd. The prior distribution π(θ) over
Θ does not depend on any data. η > 0 is the fixed learning rate. After seeing i data points (x1, y1), ..., (xi, yi),
denote

ρ̂i(θ) =

exp

(
−η

i∑
j=1

L(fθ(xj), yj)

)
π(θ)

Eθ∼π exp

(
−η

i∑
j=1

L(fθ(xj), yj)

) .

And denote gθ(zi) = L(fθ(xi), yi) for simplicity. See that we can work with

ρ̂0(θ) = π(θ), ρ̂i(θ) =
exp(−ηgθ(zi)) · ρ̂i−1(θ)

Eθ∼ρ̂i−1 exp(−ηgθ(zi))
.

The claim is that − 1
η logEθ∼π exp(−η

n∑
i=1

gθ(zi)) = − 1
η

n∑
i=1

logEθ∼ρ̂i−1 exp(−ηgθ(zi)), where we denote the

left hand side as H(n) and the right hand side as the so-called ”mix-loss”.
See that

H(n)−H(n− 1) = −1

η
log



Eθ∼π exp

(
−ηgθ(zn)− η

n−1∑
i=1

gθ(zi)

)

Eθ∼π exp(−η
n−1∑
i=1

gθ(zi))




= −1

η
log

(
E

θ∼ρ̂n−1

exp(−ηgθ(zn))

)
.

2
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The idea is that we can relate the mix-loss with the true loss of our prediction. We can build f̂1, ..., f̂n such
that L(f̂i(xi), yi) ≤ − 1

η log
(
Eθ∼ρ̂i−1 exp(−ηL(fθ(xi), yi))

)
. Then by our claim before, we have that

n∑

i=1

L(f̂i(xi), yi) ≤ −1

η

n∑

i=1

log

(
E

θ∼ρ̂i−1

exp (−ηL(fθ(xi), yi))

)

= −1

η
log

(
E

θ∼π
exp(−η

n∑

i=1

L(fθ(xi), yi))

)
.

Ways to Interpret the Logarithmic Loss

1: F =
{
∀f ∈ F :

∫
f(x)dx = 1, f(x) ≥ 0

}
is a family of densities in R.

If X ∼ f(X), EX − log(f(x)) =
∫
− log(f(x))f(x)dx : entropy.

2: X follows a distribution according to f(X).

E
X

[
− log(f̂(x))− (− log(f(x)))

]
= E

X
log(

f(x)

f̂(x)
) =

∫
log(

f(x)

f̂(x)
)f(x)dx = KL(f ||f̂).

3: Cross-Entropy Loss.

3
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Lecture 25: Prediction with Logarithmic Loss
Instructor: Nikita Zhivotovskiy Scriber: Zach Rewolinski Proofreader: Reece Huff

25.1 Reminder: Why We Use Logarithmic Loss
The following neat properties encourage us to use logarithmic loss.

1. Let ℱ = { 𝑓𝜃 : 𝜃 ∈ Θ} be a family of densities. If
∫
𝑓𝜃(𝑥)𝑑𝑥 = 1 with ℒ𝜃(𝑥) ≥ 0, then

𝔼𝑥∼ 𝑓𝜃[− log( 𝑓𝜃(𝑥))] is the entropy.

2. 𝔼𝑥∼ 𝑓𝜃[− log(𝑔(𝑥)) − (− log( 𝑓𝜃(𝑥)))] = 𝐾𝐿( 𝑓𝜃 | |𝑔)

3. Consider a classification task, where 𝑦 ∈ {0, 1} and we predict the probability of a ‘success’ 𝑝̂ ∈ (0, 1).
Note that −(𝑦 log(𝑝̂) + (1 − 𝑦) log(1 − 𝑝̂)) is equivalent to the cross-entropy loss.

4. Consider data points 𝑧1, . . . , 𝑧𝑛 and density 𝑓𝜃. The maximum likelihood procedure
log

(∏𝑛
𝑖=1 𝑓𝜃(𝑧𝑖)

)
=

∑𝑛
𝑖=1 log( 𝑓𝜃(𝑧𝑖)). Maximizing this quantity over 𝜃 ∈ Θ is equivalent to minimiz-

ing −∑𝑛
𝑖=1 log( 𝑓𝜃(𝑧𝑖)) over 𝜃 ∈ Θ.

25.2 Density Estimation

Let us focus on the density estimation problem with data 𝑧1, . . . , 𝑧𝑛 . We want to predict 𝑓𝑖 such that
ℓ ( 𝑓𝑖(𝑧𝑖)) ≤ − 1

𝜂 log
(
𝔼𝜃∼𝜌̂𝑖−1 exp(−𝜂ℓ ( 𝑓𝜃(𝑧𝑖)))

)
Claim 25.1. If ℓ is logarithmic loss, we choose 𝜂 = 1 and 𝑓𝑖 = 𝔼𝜃∼𝜌̂𝑖−1 𝑓𝜃(𝑧𝑖).

Proof of Claim 25.1. Then − log
(
𝔼𝜃∼𝜌̂𝑖−1 exp(−𝜂ℓ ( 𝑓𝜃(𝑧𝑖)))

)
= − log

(
𝔼𝜃∼𝜌̂𝑖−1 𝑓𝜃(𝑧𝑖)

)
.

From the formula for sum of mixed losses (previous lecture) where 𝜋 is a prior, we have that

𝑛∑
𝑖=1

− log
(
𝔼𝜃∼𝜌̂𝑖−1 𝑓𝜃(𝑧𝑖)

)
=

𝑛∑
𝑖=1

− log
(
𝔼𝜃∼𝜌̂𝑖−1 exp

(
−(− log( 𝑓𝜃(𝑧𝑖)))

) )
= − log

(
𝔼𝜃∼𝜋 exp

(
−

𝑛∑
𝑖=1

(− log( 𝑓𝜃(𝑧𝑖)))
))
. (69)

We want to find an upper bound on this quantity. This is when we apply the Donsker-Varadhan formula,
which tells us that

− log𝔼𝜃∼𝜋 exp(ℎ(𝜃)) = sup
𝜌

(𝔼 [ℎ(𝜃)] − 𝐾𝐿(𝜌| |𝜋)).

Thus, (69) above is less than or equal to

− log𝔼𝜃∼𝜋 exp

(
−

𝑛∑
𝑖=1

(− log( 𝑓𝜃(𝑧𝑖)))
)
≤ inf

𝜌

(
−

𝑛∑
𝑖=1

log( 𝑓𝜃(𝑧𝑖)) + 𝐾𝐿(𝜌| |𝜋)
)
. (70)
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Example 1
Let Θ = { 𝑓𝑖 : 𝑖 ∈ [𝑚]} be a finite family of distributions with |Θ | = 𝑚. Let 𝜋 be a uniform prior on Θ. Let
𝜌 be the distribution centered on 𝑓 ∗, where

𝑓 ∗ = argmin
𝑗∈[𝑚]

{
−

𝑛∑
𝑖=1

log
(
𝑓𝑗(𝑧𝑖)

)}
. (71)

Plugging (70) into (71) gives

−
𝑛∑
𝑖=1

log
(
𝔼𝑗∼𝜌̂𝑖−1 𝑓𝑗(𝑧𝑖)

)
−

(
−

𝑛∑
𝑖=1

log( 𝑓 ∗(𝑧𝑖))
)
≤ log(𝑚).

What is the exponential weights prediction?

𝜌̂𝑖(𝑗) =
exp

(
−

(
−∑𝑖

𝑘=1 log
(
𝑓𝑗(𝑧𝑖)

) )) 1
𝑚∑𝑚

𝑗=1 exp
(
−

(
−∑𝑖

𝑘=1 log
(
𝑓𝑗(𝑧𝑖)

) )) 1
𝑚

=

∏𝑖
𝑘=1 𝑓𝑗(𝑧𝑘)∑𝑚

𝑗=1
∏𝑖

𝑘=1 𝑓𝑗(𝑧𝑘)
.

Thus,

𝔼𝑗∼𝜌̂𝑖−1 𝑓𝑗(𝑧𝑖) =
𝑚∑
𝑗=1

𝑓𝑗(𝑧𝑖) ·
∏𝑖−1

𝑘=1 𝑓𝑗(𝑧𝑘)∑𝑚
𝑗=1

∏𝑖−1
𝑘=1 𝑓𝑗(𝑧𝑘)

.

Example 2
Let ℱ = { 𝑓1, ..., 𝑓𝑚} be densities, and assume that 𝑧1, ..., 𝑧𝑛 are sampled from 𝑓 ∗ ∈ ℱ .

Claim 25.2. ∃ 𝑓 , an estimator of 𝑓 ∗ based on 𝑧1, . . . , 𝑧𝑛 such that 𝔼𝑧1 ,...,𝑧𝑛𝐾𝐿( 𝑓 ∗ | | 𝑓 ) ≤
log𝑚
𝑛 .

Proof of Claim 25.2. Indeed, recall from “Online to Batch" that we choose the progressive mixture

𝑓 (𝑧) = 1
𝑛

𝑛∑
𝑖=1

𝔼𝑗∼𝜌̂𝑖−1 𝑓𝑗(𝑧).

25.3 Working with Infinite Θ (Yang-Barron Construction)
Let ℱ be a collection of densities. We then have that

𝒩(ℱ , 𝐾𝐿, 𝜀) = min{𝑁 ∈ ℕ : ∃𝑞1, . . . , 𝑞𝑁 such that for all 𝜃 ∈ Θ, ∃𝑖 ∈ [𝑁] such that 𝐾𝐿( 𝑓𝜃 , 𝑞𝑖) ≤ 𝜀2}.

We note that this definition is special, since the covering number with the KL divergence distance is
defined with 𝜀2.
Idea: Fix 𝛾 > 0 and let 𝑁𝜀 be the net corresponding to 𝒩(ℱ , 𝐾𝐿, 𝜀).
Note: 𝑓 is just a progressive mixture on 𝑞1, . . . , 𝑞 |𝑁𝜀 | with the uniform prior on this set.

Proposition 25.3. Asume 𝑧1, . . . , 𝑧𝑛 ∼ 𝑓 ∗, with 𝑓 ∗ ∈ ℱ . Then there exists a 𝑓 which satisfies

𝔼𝑧1 ,...,𝑧𝑛𝐾𝐿( 𝑓 ∗ | | 𝑓 ) ≤ inf
𝜀>0

{
𝜀2 +

log𝒩(ℱ , 𝐾𝐿, 𝜀)
𝑛

}
.
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Proof of Proposition 25.3. Fix 𝜀 > 0. We have that

𝔼
𝑧1 ,...,𝑧𝑛

[𝐾𝐿( 𝑓 ∗ | | 𝑓 )] = 𝔼
𝑧1 ,...,𝑧𝑛

[
𝔼
𝑧∼ 𝑓 ∗

log

(
𝑓 ∗(𝑧)
𝑓 (𝑧)

)]
. (72)

Let 𝑞∗ be a density in the net such that 𝐾𝐿( 𝑓 ∗ | |𝑞∗) ≤ 𝜀2. Then we have that (72) is equivalent to

𝔼
𝑧1 ,...,𝑧𝑛

[
𝔼
𝑧∼ 𝑓 ∗

[
log

(
𝑓 ∗(𝑧)
𝑞∗(𝑧)

)
+ log

(
𝑞∗(𝑧)
𝑓 (𝑧)

)]]
≤ 𝜀2 + 𝔼

𝑧1 ,...,𝑧𝑛

[
𝔼
𝑧∼ 𝑓 ∗

[
− log

(
𝑓 (𝑧)

)
− (− log(𝑞∗(𝑧))

] ]
. (73)

We will use the regret to bound the right-hand side of (73). Note that the weights on 𝑓𝑖 only depend on
𝑧1, . . . , 𝑧𝑖−1 (in other words, 𝑝̂𝑖−1). By convexity, we know that

𝔼
𝑧1 ,...,𝑧𝑛

[
𝔼
𝑧∼ 𝑓 ∗

[
− 1
𝑛

𝑛∑
𝑖=1

log
(
𝑓𝑖(𝑧)

)
− (− log(𝑞∗(𝑧))

] ]
=

1
𝑛

𝔼
𝑧1 ,...,𝑧𝑛

[
𝔼
𝑧∼ 𝑓 ∗

[
−

𝑛∑
𝑖=1

log
(
𝑓𝑖(𝑧𝑖)

)
− (− log(𝑞∗(𝑧𝑖))

] ]
≤

log𝒩(ℱ , 𝐾𝐿, 𝜀)
𝑛

.

Example 3

Let ℱ = {𝑁(𝜃, 𝐼𝑑) : 𝜃 ∈ Θ}, where Θ = 𝐵𝑑2 . We then observe 𝑧1, . . . , 𝑧𝑛
𝑖𝑖𝑑∼ 𝑁(𝜃∗, 𝐼𝑑), with 𝜃∗ ∈ Θ. We

want 𝑓 such that 𝔼
𝑧1 ,...,𝑧𝑛

𝐾𝐿(𝑁(𝜃∗, 𝐼𝑑)| | 𝑓 ) is small. Observe that

𝐾𝐿
(
𝑁(𝜃1, 𝐼𝑑)| |𝑁(𝜃2, 𝐼𝑑)

)
=

1
2 | |𝜃1 − 𝜃2 | |22,

thus giving us that
𝒩(ℱ , 𝐾𝐿, 𝜀) ≤ (𝑐/𝜀)𝑑

by a volumetric argument. From the proposition above, the progressive mixture 𝑓 gives

𝔼
𝑧1 ,...,𝑧𝑛

𝐾𝐿(𝑁(𝜃∗, 𝐼𝑑)| | 𝑓 ) ≤ inf
𝜀>0

{
𝜀2 +

𝑑 log(𝑐/𝜀)
𝑛

}
≤
𝑐𝑑 log 𝑛

𝑛
.
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STAT210B Theoretical Statistics Lecture 25 - 04/18/2024

Lecture 25: Exponential Weights Estimator for Bounded Losses
Instructor: Nikita Zhivotovskiy Scriber: Yanbo Feng

1 Exponential Weights Estimator for Bounded Losses

In this lecture we will discuss exponential weights estimator under bounded loss. Bounded losses are common
in classification. But we should note that the log loss isn’t bounded. And the log loss is usually preferred
over bounded losses due to its convexity.

Theorem 1. Assuming 0 ≤ ℓ(fθ(x), y) ≤ m. Considering the mix loss, we have:

n∑

i=1

E
θ∼ρ̂i−1

ℓ(fθ(xi), yi)) ≤
nm2η

8
+ inf

γ
( E
θ∼γ

n∑

i=1

ℓ(fθ(xi), yi) +
KL(γ||π)

η
).

Proof. Since
(
−ηℓ(fθ(X), Y )− E

θ∼ρ̂i−1

− ηℓ(fθ(X), Y )

)
∈ [−mη + E

θ∼ρ̂i−1

ηℓ(fθ(X), Y ), E
θ∼ρ̂i−1

ηℓ(fθ(X), Y )].

By Hoeffding’s Inequality, we have:

E
θ∼ρ̂i−1

exp(−ηℓ(fθ(xi), yi)) ≤ exp(−η E
θ∼ρ̂i−1

ℓ(fθ(xi), yi)) +
(ηm)2

8
).

Applying (− 1
η log)(·) to both side we have:

−1

η
log( E

θ∼ρ̂i−1

exp(−ηℓ(fθ(xi), yi))) ≥ E
θ∼ρ̂i−1

ℓ(fθ(xi), yi))−
ηm2

8
.

Summing them up, we get:

n∑

i=1

−1

η
log( E

θ∼ρ̂i−1

exp(−ηℓ(fθ(xi), yi))) ≥
n∑

i=1

E
θ∼ρ̂i−1

ℓ(fθ(xi), yi))−
nηm2

8
.

Using the formula for the sum of mis losses:

n∑

i=1

E
θ∼ρ̂i−1

ℓ(fθ(xi), yi)) ≤
nηm2

8
− 1

η
log(

n∑

i=1

E
θ∼ρ̂i−1

exp(−ηℓ(fθ(xi), yi))).

By Donsker-Varadhan Variational Formula, we have:

n∑

i=1

E
θ∼ρ̂i−1

ℓ(fθ(xi), yi)) ≤
nηm2

8
− 1

η
log(

n∑

i=1

E
θ∼π

exp(−ηℓ(fθ(xi), yi)))

≤ nm2η

8
+ inf

γ
( E
θ∼γ

n∑

i=1

ℓ(fθ(xi), yi) +
KL(γ||π)

η
).

1
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2 Example 1: Binary Classification

Now show an example for how exponential weights estimator used binary. classification.
Suppose F = {f1 = 1, f2 = 0} :

Fact 2. Suppose F = {f1 = 1, f2 = 0}. Then the deterministic strategy can’t guaratee regret ≪ O(n).

Proof. If choosing a deterministic strategy. Then the regret will be

n∑

i=1

1ŷi ̸=yi −min
f∈F

n∑

i=1

1f ̸=yi .

Consider the worst case. The first term could be n since yi can be always opposite to our prediction. And
the second one is less than n

2 , thus the regret ≥ n
2 .

Fact 3. Suppose F = {f1 = 1, f2 = 0}. Exponential weights estimator can guaratee regret ≪ O(n).

Proof. We use indicator loss here, so m = 1. Let π be the uniform distribution on F (π(f1) = π(f2) =
1
2 ).

Let γ pick the best estimator in F . Then we have:

KL(γ||π) = − log(
1

2
) = log 2.

Plugging in Theorem 1, we have:

n∑

i=1

E
θ∼ρ̂i−1

1(fθ(xi)i) ≤
nη

8
+

log 2

η
+min

f∈F

n∑

i=1

1(f(xi) ̸=yi).

And

log 2

η
=

nη

8
⇒

η =

√
8 log 2

n
.

So,
n∑

i=1

E
θ∼ρ̂i−1

1(fθ(xi) ̸=yi) −min
f∈F

n∑

i=1

1(f(xi) ̸=yi) ≤
√

n log(2)

2
.

Remark 4. If F = {f1, f2 · · · , fk}, we still let π be the uniform distribution on F . Then KL(γ||π) = log(k).

So similarly, we can deduce
∑n

i=1 E
θ∼ρ̂i−1

1(fθ(xi) ̸=yi) −minf∈F
∑n

i=1 1(f(xi )̸=yi) ≤
√

n log(k)
2 .

3 Logistic Regression

Definition 5. (Sigmoid function) σ(z) = 1
1+exp(−z) .

Definition 6. (Loss function and predictor functional class) In this example, we choose F = {σ (⟨x, θ⟩) :
θ ∈ Rd} as predictor functional class. And let ℓ(fθ(x), y) = − log(σ(y⟨x, θ⟩)).
Remark 7. It is noted that when the ⟨x, θ⟩ approximate the true value y, the prediction y⟨x, θ⟩ made by the
model tends to be closer to y2. Conversely, when the parameters ⟨x, θ⟩ are far from the true value y, the
prediction y⟨x, θ⟩ diverges towards −y2. Additionally, the term − log(σ(·)) is decreasing, implying that as the
model predictions approach the actual values, the overall loss decreases. This reduction in loss is desirable
as it indicates that the predictions are becoming more accurate.

2
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Now, using exponential weights predictor, we want to bound

−
n∑

i=1

E
θ∼ρ̂i−1

log(σ(yi⟨xi, θ⟩)− inf
θ∈Rd

(−
n∑

i=1

log(σ(yi⟨xi, θ⟩)).

Assumption 8. Let θ∗ = arg infθ∈Rd(−
∑n

i=1 log(σ(yi⟨xi, θ⟩)). In this example, we assume ∥θ∗∥2 ≤ b,
where b is a constant.

Lemma 9. Let σ̃(z) = − log( 1
1+exp(−z) ), then σ̃(z) is convex, σ̃′′(z) ≤ 1

4 .

Proposition 10.

−
n∑

i=1

log( E
θ∼ρ̂i−1

σ(yi⟨xi, θ⟩) ≤ −
n∑

i=1

log(σ(yi⟨xi, θ
∗⟩)− log( E

θ∼π
exp(

1

8
(θ − θ∗)T (−

n∑

i=1

y2i xix
T
i )(θ − θ∗))).

Proof. Since σ̃ is convex, by Taylor’s expansion, we have:

−
n∑

i=1

log(σ(yi⟨xi, θ⟩) ≤ −
n∑

i=1

log(σ(yi⟨xi, θ
∗⟩) + 0 +

1

2!
· 1
4
(θ − θ∗)T (

n∑

i=1

y2i xix
T
i )(θ − θ∗).

n∑

i=1

log(σ(yi⟨xi, θ⟩) ≥
n∑

i=1

log(σ(yi⟨xi, θ
∗⟩) + 0 +

1

2!
· 1
4
(θ − θ∗)T (−

n∑

i=1

y2i xix
T
i )(θ − θ∗).

The first derivative is 0 since the function is convex and θ∗ is the minimizer. The second derivative is less
than 1

4 , which has been stated in above lemma.
So we have:

−
n∑

i=1

log( E
θ∼ρ̂i−1

σ(yi⟨xi, θ⟩) = − log( E
θ∼π

exp(
n∑

i=1

log(σ(yi⟨xi, θ⟩))))

≤ − log( E
θ∼π

exp

(
n∑

i=1

log(σ(yi⟨xi, θ
∗⟩) + 0 +

1

2!
· 1
4
(θ − θ∗)T (−

n∑

i=1

y2i xix
T
i )(θ − θ∗)

)
)

= −
n∑

i=1

log(σ(yi⟨x, θ∗⟩)− log E
θ∼π

exp(
1

8
(θ − θ∗)T (−

n∑

i=1

y2i xix
T
i )(θ − θ∗))

= −
n∑

i=1

log(σ(yi⟨x, θ∗⟩)− log E
θ∼π

exp(
1

8
(θ − θ∗)T (−

n∑

i=1

y2i xix
T
i )(θ − θ∗)).

Now, our problem is how to bound − log( E
θ∼π

exp((θ − θ∗)T (−∑n
i=1 y

2
i xix

T
i )(θ − θ∗))) in Proposition 9.

Lemma 11. If Q(θ) = θTAθ + bθ + c, A is positive definite, then

∫
exp (−Q(θ))dθ = exp(− inf

θ∈Rd
(Q(θ)) · π

d
2√

det(A)
.

Remark 12. This lemma offers a tool to deal with the expectation of exponential quadratic term. The proof
comes from multivariate Gaussian distribution density. I skip it here.

Applying Lemma 11 we can give a cleaner expression to Proposition 10.

3
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Proposition 13. Let π = N(0, 1
2 (aπ1)

−1Id), then

−
n∑

i=1

E
θ∼ρ̂i−1

log(σ(yi⟨xi, θ⟩) ≤ −
n∑

i=1

log(σ(yi⟨xi, θ
∗⟩) + ab2π +

1

2
log(det(A))− d

2
log(π)− d

2
log(a),

where A = 1
8

∑n
i=1 y

2
i xix

T
i + aπId.

Proof. By proposition 9, we have

−
n∑

i=1

E
θ∼ρ̂i−1

log(σ(yi⟨xi, θ⟩) ≤ −
n∑

i=1

log(σ(yi⟨xi, θ
∗⟩)− log( E

θ∼π
exp(

1

8
(θ − θ∗)T (−

n∑

i=1

y2i xix
T
i )(θ − θ∗))).

Let Σ = ( 12aπ)
−1Id, then det(Σ) = (2aπ)−d.

So the density function π(θ) = 1√
(2π1)d det(Σ)

exp(− θTΣ−1θ
2 ) = a

d
2 exp(−aπ ∥θ∥22).

Let Q(θ) = 1
8 (θ − θ∗)T (

∑n
i=1 y

2
i xix

T
i )(θ − θ∗) + aπ ∥θ∥22, we first transform it into the form described in

Lemma 10.

Q(θ) =
1

8
(θ − θ∗)T (

n∑

i=1

y2i xix
T
i )(θ − θ∗) + aπ ∥θ∥22

= (θ − θ∗)T (
1

8

n∑

i=1

y2i xix
T
i + aπId)(θ − θ∗) + (θ∗)T (aπId)(θ∗)

≥ (θ∗)T (aπId)(θ∗).

Let A = 1
8

∑n
i=1 y

2
i xix

T
i + aπId, we have:

log( E
θ∼π

exp(
1

8
(θ − θ∗)T (−

n∑

i=1

y2i xix
T
i )(θ − θ∗))) = log(

∫
exp(

1

8
(θ − θ∗)T (−

n∑

i=1

y2i xix
T
i )(θ − θ∗))a

d
2 exp(−aπ1 ∥θ∥22) · dθ)

= log

(
a

d
2

∫
exp (−Q(θ))dθ

)

= log

(
exp(− inf

θ∈Rd
Q(θ)) · π

d
2√

det(A)

)
+

d

2
log(a).

We know infθ∈Rd Q(θ) = aπ ∥θ∗∥22 ≤ ab2π. So

log

(
exp(− inf

θ∈Rd
Q(θ)) · π

d
2√

det(A)

)
+

d

2
log(a) = − inf

θ∈Rd
Q(θ) + log(π

d
2 )− log(

√
det(A)) +

d

2
log(a)

≥ −ab2π − 1

2
log(det(A)) +

d

2
log(π) +

d

2
log(a).

So

−
n∑

i=1

E
θ∼ρ̂i−1

log(σ(yi⟨xi, θ⟩) ≤ −
n∑

i=1

log(σ(yi⟨xi, θ
∗⟩)− log( E

θ∼π
exp(

1

8
(θ − θ∗)T (−

n∑

i=1

y2i xix
T
i )(θ − θ∗)))

≤ −
n∑

i=1

log(σ(yi⟨xi, θ
∗⟩) + ab2π +

1

2
log(det(A))− d

2
log(π)− d

2
log(a).
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STAT210B Theoretical Statistics Lecture 27 - 04/23/2024

Lecture 27: Logistic Regression, Exponential-Concavity
Instructor: Nikita Zhivotovskiy Scriber: Michael Xiao Proofreader: Dylan Webb

In the last lecture, we analyzed the logistic regression model. Recall the setup: We have xt P Rd, with
}xt}2 ď r, and yt P t´1, 1u. We further assume the predictor function class of the form σpxx, θyq, where the
sigmoid function σpzq “ 1

1`expp´zq . Lastly, we assume that the MLE solution θ˚ is bounded: }θ˚}2 ď b. To

produce the estimated coefficient, we define the loss function lpfθpxq, yq “ ´ logpσpy xx, θyqq.

1 Bounds on total loss in logistic regression

Following lecture 26, we want to further develop the bound of the total log loss in logistic regression.

Proposition 1. Under the logistic regression setting,

´
nÿ

i“1

logEθ„ρ̂i´1
σpyi xxi, θyq ď ´

nÿ

i“1

log σpyi xxi, θ
˚yq ` d ` d

2
log

ˆ
1 ` nb2r2

8d2

˙

Proof of Proposition 1. From lecture 26, we showed that

´
nÿ

i“1

logEθ„ρ̂i´1σpyi xxi, θyq ď ´
nÿ

i“1

log σpyi xxi, θ
˚yq

` inf
θPRd

˜
aπ}θ}22 ` 1

8
pθ ´ θ˚qJ

nÿ

i“1

xix
J
i pθ ´ θ˚q

¸
(1)

` 1

2
log det

˜
1

8

nÿ

i“1

xix
J
i ` aπId

¸
´ d

2
logpaq ´ d

2
logpπq (2)

First notice that p1q ď aπ}θ˚}22 ď aπb2. To bound (2), we employ the manipulation ´d
2 logpaπq “

´ 1
2 log detpaπIdq. Therefore,

p2q “ 1

2
log

ˆ
detp 1

8

řn
i“1 xix

J
i ` aπIdq

detpaπIdq
˙

“ 1

2
log

dź

j“1

1
8λj ` aπ

aπ

“ 1

2

dÿ

j“1

log
1
8λj ` aπ

aπ

where λ1, . . . , λd are the eigenvalues of the sample covariance matrix, 1
8

řn
i“1 xix

J
i P Rdˆd. To proceed, we

introduce the Gram matrix in Rnˆn, whose pi, jq-th element is xxi, xjy. The useful fact here is that, up to
zero eigenvalues, the spectrum of the sample covariance matrix is the same as that of the Gram matrix.
That is

dÿ

j“1

λj “ TrpGram matrixq “
nÿ

j“1

xxj , xjy “
nÿ

j“1

}xj}22 ď nr2

1
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With this fact, we have

p2q “ 1

2

dÿ

j“1

log
1
8λj ` aπ

aπ
ď 1

2
d log

ˆ
1 ` nr2

8daπ

˙

Combining the above bounds, we conclude

´
nÿ

i“1

logEθ„ρ̂i´1
σpyi xxi, θyq ď ´

nÿ

i“1

log σpyi xxi, θ
˚yq ` aπb2 ` 1

2
d log

ˆ
1 ` nr2

8daπ

˙

“ ´
nÿ

i“1

log σpyi xxi, θ
˚yq ` d ` d

2
log

ˆ
1 ` nb2r2

8d2

˙

The second line follows from choosing a “ d
πb2 .

2 Square loss and its exponential-concavity

By construction of the loss function in logistic regression, it is somewhat natural to consider a log-exponential
type bound for the loss. Namely, we would like to produce a bound in the forms of

ℓpf̂ipxiq, yiq ď ´1

η
logEθ„ρ̂i´1 exp p´ηℓpfθpxiq, yiqq (3)

If we assume that

ℓpEθ„ρ̂i´1fθpxiq, yiq “ ´1

η
log exp

`´ηℓpEθ„ρ̂i´1fθpxiq, yiq
˘ ď ´1

η
logEθ„ρ̂i´1 exp p´ηℓpfθpxiq, yiqq

and hence let f̂ “ Eθ„ρ̂i´1
fθ, we have the equivalence

p3q ô Eθ„ρ̂i´1
exp p´ηℓpfθpxiq, yiqq ď exp

`´ηℓpEθ„ρ̂i´1
fθpxiq, yiq

˘
(4)

This gives us a framework to analyze the loss function with the following definition:

Definition 2. A loss function ℓ is exponentially-concave with respect to η ą 0 if (4) holds for all i. From
another perspective, if we define γ as a distribution over θ, ℓ is exponentially-concave w.r.t. η if (4) holds
for all such distributions γ.

The function logp¨q is naturally exponentially-concave with η “ 1. The following proposition demonstrates
that the squared loss is also exponentially-concave.

Proposition 3. Define the quadratic loss ℓpfθpxq, yq “ pfθpxq ´ yq2. Assuming |y| ď m and |fθpxq| ď m,
then the quadratic loss is 1

8m2 -exponentially-concave.

Proof. The main idea is that if for any y such that |y| ď m, the function fypzq “ expp´ηpz´yq2q is concave,
we have the desired result by Jensen’s inequality. To verify this, we take the derivatives of f :

Bfypzq
Bz “ ´2ηpz ´ yq exp `´ηpz ´ yq2˘

B2fypzq
Bz2 “ exp

`´ηpz ´ yq2˘
looooooooomooooooooon

p˚q

`´2η ` p2ηpz ´ yqq2˘
loooooooooooomoooooooooooon

p˚˚q

Notice that we always have p˚q ě 0. And p˚˚q ă 0 if 2ηpz ´ yq2 ď 1, with pz ´ yq2 ď 4m2. So we can
choose η “ 1

8m2 and the result follows.

2
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We now show an application of exponential concavity in the context of model selection. Define the class
of functions F “ tf1, . . . , fMu as our candidate models. Assume that |y| ď m and |f | ď m. We want to
bound the quadratic loss of the optimal model. That is, we would like

nÿ

i“1

pyi ´ ŷiq2 ď min
fPF

nÿ

i“1

pfpxiq ´ yiq2 ` small term

This is made possible by the exponential-concavity of the quadratic loss. Define the parameter space Θ “
tθ1, . . . , θMu, and let π be the uniform prior on Θ. If we take ŷi “ Eθ„ρ̂i´1

fθpxiq and η “ 1
8m2 , then by the

Donsker-Varadhan formula, we have

´1

η
logEθ„π exp

˜
´η

nÿ

i“1

pyi ´ fθpxiqq2
¸

ď min
fPF

nÿ

i“1

pyi ´ fpxiqq2 ` 8m2 logpMq

This allows us to conclude about the risk:

Corollary 4. If pxi, yiq are i.i.d. samples, and |y| ď m, |f | ď m, then

Epx,yqR
˜
1

n

nÿ

i“1

Eθ„ρ̂i´1
fθ

¸
ď min

fPF Rpfq ` 8m2 logpMq
n

The rough idea of the proof relies on the observation

nÿ

i“1

´1

η
logEθ„ρ̂i´1

expp´ηlpfθpxiq, yiqq “ ´1

η
logEθ„π expp´η

nÿ

i“1

lpfθpxiq, yiqq

The RHS of which we can bound by the Donsker-Varadhan formula or direct computation.
Lastly, we turn to linear regression. Consider the setup: |yi| ď m, }xi}2 ď r, }θ˚} ď b, where θ˚ “

argminθPRd

řn
i“1pyi ´ xθ, xiyq2. Our goal is to make a sequence of predictions ŷ1, . . . , ŷn such that

nÿ

i“1

pyi ´ ŷiq2 ď
nÿ

i“1

pyi ´ xθ˚, xiyq2 ` small term

Before next lecture, we provide a bit motivation for the forthcoming method. If we select the distribution

ρ̂i´1 „ exp

˜
´η

i´1ÿ

j“1

pyi ´ xxj , θyq2
¸

¨ π

where πpθq „ expp´ηλ}θ}2q, then ρ̂i´1 is Gaussian with its mean exactly equal to θ̂λ, the ridge regression
prediction.

3
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STAT210B Theoretical Statistics Lecture 28 - 04/25/2024

Lecture 28: Sequential Linear Regression
Instructor: Nikita Zhivotovskiy Scriber: Zora Tung Proofreader: Daniel Etaat

1 Sequential Linear Regression

Given a deterministic sequence of pairs (yi, xi)
n
i=1, xi ∈ Rd, and yi ∈ R, we define

θ⋆ = argmin
θ∈Rd

n∑

i=1

(yi − ⟨θ, xi⟩)2 .

Further assume that, ∥xi∥ ≤ r, |yi| ≤ m, and ∥θ⋆∥2 ≤ b, for some fixed constants m, r, b ∈ R. Our aim is to
create a sequence ŷ1, ..., ŷn, where ŷi depends only on the data seen before the ith round, such that

n∑

i=1

(ŷi − yi)
2 −

n∑

i=1

(yi − ⟨xi, θ
⋆⟩)2 ,

i.e. such that the total regret is small. We also define the clip function:

clipm (x) = min {m,max {−m,x}} =

{
x |x| ≤ m

m · sign(x) otherwise
.

Theorem 1 (Vovk-Azoury-Warmuth). In the sequential regression setup set ŷi = clipm

(〈
θ̂i−1, xi

〉)
,

where

θ̂i−1 = argmin
θ∈Rd

i−1∑

j=1

(yj − ⟨xj , θ⟩)2 + λ ∥θ∥22

is the ridge regression predictor. Then there is a choice of λ such that

n∑

i=1

(yi − ŷi)
2 ≤

n∑

i=1

(yi − ⟨xi, θ
⋆⟩)2 +m2

(
d+ 4d log

(
1 +

nr2b2

d2m2

))
.

Remark 2. As homework, we derived a bound that scales as m2 + r2b2. In general, this is less favorable

than the m2 log
(

r2b2n
d2m2

)
bound in the theorem above.

The reason we require clipping for this estimator is to force exp-concavity of the squared loss. Recall
from the previous lecture that the squared loss is 1

8m2 -exp-concave if |y| ≤ m and |fθ(x)| ≤ m. However, in
our setup |fθ(x)| = |⟨x, θ⟩| ≤ rb.

Lemma 3. Let y ∈ [−m,m] and let Z ∼ N
(
a, σ2

)
. Then if η = 1

8m2 ,

(y − clipm (a))
2 ≤ −1

η
log

(
E

Z∼N (a,σ2)

[
exp

(
−η (Z − y)

2
)])

.

Proof. Let’s compute the RHS. It equals,

−1

η
log




1√
2πσ

∫ ∞

−∞
exp


−η (z − y)

2 − (z − a)
2

2σ2︸ ︷︷ ︸
Gaussian pdf


 dz


 (1)

1
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Recall that if Q (θ) = θ⊤Aθ + bθ + c is a quadratic form, where A is a positive definite matrix, then

∫

Rd

exp (−Q (θ)) dθ = exp

(
− inf

θ∈Rd
Q (θ)

)
π

d
2√

det (A)
. (2)

In this case A = η + 1
2σ2 so (1) becomes,

−1

η
log

( √
π√

2πσ

1√
η + 1/2σ2

exp

(
− inf

z

(
η (z − y)

2
+

(z − a)
2

2σ2

)))
(3)

Solving for the inf by setting the derivative to zero, we have

2η (z − y) +
2 (z − a)

2σ2
= 0

z

(
η +

1

2σ2

)
= ηy +

a

2σ2

z =
ηy + a

2σ2

η + 1
2σ2

z =
2σ2ηy + a

2σ2η + 1
.

Plugging this back into the inf we have that,

inf
z

(
η (z − y)

2
+

(z − a)
2

2σ2

)
= η

(
2σ2ηy + a

2σ2η + 1
− y

)2

+
1

2σ2

(
2σ2ηy + a

2σ2η + 1
− a

)2

= η

(
2σ2ηy + a− 2σ2ηy − y

2σ2η + 1

)2

+
1

2σ2

(
2σ2ηy + a− 2σ2ηa− a

2σ2η + 1

)2

= η

(
y − a

2σ2η + 1

)2

+ 2σ2η2
(

y − a

2σ2η + 1

)2

= η
(
2σ2η + 1

)( y − a

2σ2η + 1

)2

=
η (y − a)

2

2σ2η + 1
.

Finally plugging this into (3) we get,

−1

η
log

(
1√

2σ2n+ 1
exp

(
−η (y − a)

2

2σ2η + 1

))
=

1

2η
log
(
2σ2η + 1

)
+

(y − a)
2

2σ2η + 1

We will now compare (y−clipm(a))2 with 1
2η log

(
2σ2η + 1

)
+ (y−a)2

2σ2η+1 . We start by assuming that a ∈ [−m,m]
and we will show that,

(y − a)2 ≤ 1

2η
log
(
2σ2η + 1

)
+

(y − a)
2

2σ2η + 1

This will immediately imply the desired result for (y − clipm(a))2 since allowing larger values of a will only

increase the RHS of the inequality while leaving the LHS unchanged. Factoring out the (y − a)
2
terms, we

have

(y − a)
2

(
1− 1

1 + 2σ2η

)
≤ 1

2η
log
(
2σ2η + 1

)

2
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and by our assumptions, y − a ∈ [−2m, 2m] =⇒ (y − a)
2 ∈

[
0, 4m2

]
and η = 1

8m2 . Then we can
reparameterize by w = 2σ2η and it is enough to show that,

(
1− 1

1 + w

)
≤ log (1 + w) .

This is true analytically, see https://www.desmos.com/calculator/f5eyqdz2ze.

Proof of Theorem 1.

Proof. We would like to use the exponential weights algorithm with the Gaussian prior:

π(θ) = (aη)
d
2 exp

(
−aηπ ∥θ∥22

)

where a is a tuning parameter. Observe that the weights take on the form,

ρ̂i−1 ∝ exp


−η

i−1∑

j=1

(yj − ⟨xj , θ⟩)2 − aηπ∥θ∥22




By construction, ρ̂i−1 is multi-variate Gaussian since ρ̂i−1 ∝ exp (−Q (θ)). Since the Gaussian density is
maximized at its mean, the mean of ρ̂i−1 must be,

θ̂i−1 = argmin
θ∈Rd




i−1∑

j=1

(yj − ⟨xj , θ⟩)2 + aπ︸︷︷︸
=:λ

∥θ∥22




Then by recalling (2) we must have that,

ρ̂i−1 = c exp
(
Q(θ̂i−1)−Q (θ)

)
.

where c is a normalizing constant. Now, by our lemma we only need to show that our prediction is the clipm
of a Gaussian mean. Observe that,

E
θ∼ρ̂i−1

[fθ (xi)] = E
θ∼ρ̂i−1

⟨θ, xi⟩ = ⟨θ̂i−1, xi⟩

Concretely, we are training a ridge regressor on the first i− 1 points and using it to predict the label for xi.
Moreover,

⟨θ, xi⟩ ∼ N
(〈

θ̂i−1, xi

〉
, σ2

i

)

Together with our lemma this implies that,

(
yi − clipm

(
⟨xi, θ̂i−1⟩

))2
≤ −1

η
log

(
E

θ∼ρ̂i−1

[
exp

(
−η (yi − ⟨xi, θ⟩)2

)])

Summing both sides we get,

n∑

i=1

(
yi − clipm

(
⟨xi, θ̂i−1⟩

))2
≤ −1

η
log

(
E

θ∼π

[
exp

(
−η

n∑

i=1

(yi − ⟨xi, θ⟩)2
)])

= −1

η
log

(∫

Rd

exp

(
−η

n∑

i=1

(yi − ⟨xi, θ⟩)2 − aη ∥θ∥22

)
(aη)

d
2 dθ

)
.

3
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which is the now familiar integral of a exponentiated quadratic form. Once again recalling (2) and noting
that infθ∈Rd Q (θ) ≤ Q′ (θ⋆) we can bound the integral above by,

n∑

i=1

(yi − ⟨xi, θ
⋆⟩)2 − 1

η
log
(
(aη)

d
2

)
− 1

η
log
(
π

d
2

)
+ λ ∥θ⋆∥22 +

1

2η
log

(
det

((
n∑

i=1

xix
⊤
i + λId

)
η

))

Repeating the the computations for our analysis of logistic regression and fixing η = 1
8m2 and λ = m2d

b2 gives
us,

n∑

i=1

(yi − ŷi)
2 ≤

n∑

i=1

(yi − ⟨xi, θ
⋆⟩)2 +m2

(
d+ 4d log

(
1 +

nr2

dλ

))
.

Therefore, since

m2

(
d+ 4d log

(
1 +

n2r2

dλ

))
= m2

(
d+ 4d log

(
1 +

nr2b2

d2m2

))
,

this completes the proof.

Remark 4. The same regret bound holds the estimator ŷi = ⟨θ̂′i−1, xi⟩ where

θ̂′i−1 = argmin
θ∈Rd

i−1∑

j=1

(yj − ⟨xj , θ⟩)2 + λ ∥θ∥22 + ⟨xi, θ⟩2 ,

essentially adds a point with label 0 to the training data.

4
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STAT210B Theoretical Statistics February 12th, 2024

Homework # 1: Concentration Inequalities
Reece D. Huff

Regrades
When regrading, I only attach problems in which I did not receive 100%. If the mistake is minor, I
highlight my changes in purple. If the mistake is major, I highlight the entire problem in purple. I
provide the regrade justification in the gray box below the problem statement.

Notation
Let c and C represent a small and large constant, respectively (e.g., c = 10−5 and C = 105).

Problem 0
Familiarize yourself with the proof of the result showing the equivalent definitions for
sub-exponential and sub-Gaussian random variables.
Note: This exercise is not checked and does not have to be typed, though we expect you are
familiar with the derivations.

Recall the definition of ∥ · ∥𝜓2

∥𝑋∥𝜓2 = inf
𝑡

{
𝑡 > 0 : 𝔼

[
exp

{(
𝑋2

𝑡2

)}]
≤ 2

}
and its properties

Property 1 ∥ · ∥𝜓2 is a norm. Let 𝑋,𝑌,𝜆 ∈ ℝ, then

∥𝜆𝑋∥𝜓2 = |𝜆| ∥𝑋∥𝜓2

∥𝑋 + 𝑌∥𝜓2 ≤ ∥𝑋∥𝜓2 + ∥𝑌∥𝜓2

∥𝑋∥𝜓2 = 0 ⇔ 𝑋 = 0 (a.s.)

Property 2 (a.) 𝑍 ∼ 𝒩(0, 1) =⇒ ∥𝑍∥𝜓2 ≤ C

(b.) 𝑍 ∼ 𝒩(0, 𝜎2) =⇒ ∥𝑍∥𝜓2 ≤ 𝜎C

Property 3 If 𝑋1, ..., 𝑋𝑛 are independent, sub-Gaussian random variables, then




 𝑛∑
𝑖=1

𝑋𝑖






2

𝜓2

≤ C
𝑛∑
𝑖=1

∥𝑋𝑖 ∥2
𝜓2

1



Problem 1 (∥ · ∥𝜓2 is a norm)

Prove that the sub-Gaussian norm ∥ · ∥𝜓2 indeed satisfies the properties of a norm. In
particular, show that it satisfies the triangle inequality and that ∥𝑋∥𝜓2 = 0 if and only if 𝑋 = 0
almost surely.

Recall the definition of ∥ · ∥𝜓2

∥𝑋∥𝜓2 := inf
𝑡

{
𝑡 > 0 : 𝔼

[
𝜓2

(
|𝑋 |
𝑡

)]
≤ 1

}
where 𝜓2(𝑋) = e𝑋2 − 1.
To begin, we prove the triangle inequality

∥𝑋 + 𝑌∥𝜓2 ≤ ∥𝑋∥𝜓2 + ∥𝑌∥𝜓2 .

Proof. We define 𝜓2(𝑋) = e𝑋2 − 1 and consider

𝜓2

(
|𝑋 + 𝑌 |
𝑎 + 𝑏

)
≤ 𝜓2

(
|𝑋 | + |𝑌 |
𝑎 + 𝑏

)
= 𝜓2

(
𝑎 |𝑋 |

𝑎(𝑎 + 𝑏) +
𝑏 |𝑌 |

𝑏(𝑎 + 𝑏)

)
≤ 𝑎

𝑎 + 𝑏𝜓2

(
|𝑋 |
𝑎

)
+ 𝑏

𝑎 + 𝑏𝜓2

(
|𝑌 |
𝑏

)
by convexity of 𝜓2(𝑋) (i.e., 𝑓 ((1 − 𝑡)𝑥 + 𝑡𝑦) ≤ (1 − 𝑡) 𝑓 (𝑥) + 𝑡 𝑓 (𝑦) for all 𝑥, 𝑦, and 𝑡 ∈ [0, 1]). Now, we set
𝑎 = ∥𝑋∥𝜓2 and 𝑏 = ∥𝑌∥𝜓2 and take the expectation of both sides

𝔼

[
𝜓2

(
|𝑋 + 𝑌 |

∥𝑋∥𝜓2 + ∥𝑌∥𝜓2

)]
≤

∥𝑋∥𝜓2

∥𝑋∥𝜓2 + ∥𝑌∥𝜓2

𝔼

[
𝜓2

(
|𝑋 |

∥𝑋∥𝜓2

)]
+

∥𝑌∥𝜓2

∥𝑋∥𝜓2 + ∥𝑌∥𝜓2

𝔼

[
𝜓2

(
|𝑌 |

∥𝑌∥𝜓2

)]
and take the inf of both sides

inf

{
𝔼

[
𝜓2

(
|𝑋 + 𝑌 |

∥𝑋∥𝜓2 + ∥𝑌∥𝜓2

)]}
≤

∥𝑋∥𝜓2

∥𝑋∥𝜓2 + ∥𝑌∥𝜓2

inf

{
𝔼

[
𝜓2

(
|𝑋 |

∥𝑋∥𝜓2

)]}
+

∥𝑌∥𝜓2

∥𝑋∥𝜓2 + ∥𝑌∥𝜓2

inf

{
𝔼

[
𝜓2

(
|𝑌 |

∥𝑌∥𝜓2

)]}
∥𝑋 + 𝑌∥𝜓2 ≤

∥𝑋∥𝜓2

∥𝑋∥𝜓2 + ∥𝑌∥𝜓2

∥𝑋∥𝜓2 +
∥𝑌∥𝜓2

∥𝑋∥𝜓2 + ∥𝑌∥𝜓2

∥𝑌∥𝜓2

=
∥𝑋∥2

𝜓2
+ ∥𝑌∥2

𝜓2

∥𝑋∥𝜓2 + ∥𝑌∥𝜓2

≤
∥𝑋∥2

𝜓2
+ 2 ∥𝑋∥𝜓2 ∥𝑌∥𝜓2 + ∥𝑌∥2

𝜓2

∥𝑋∥𝜓2 + ∥𝑌∥𝜓2

=
(∥𝑋∥𝜓2 + ∥𝑌∥𝜓2)2

∥𝑋∥𝜓2 + ∥𝑌∥𝜓2

= ∥𝑋∥𝜓2 + ∥𝑌∥𝜓2 .

Thus we arrive at the desired result

∥𝑋 + 𝑌∥𝜓2 ≤ ∥𝑋∥𝜓2 + ∥𝑌∥𝜓2 .
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Next, we will prove that ∥𝑋∥𝜓2 = 0 if and only if 𝑋 = 0 almost surely.

Proof. Starting with the definition of ∥ · ∥𝜓2

∥𝑋∥𝜓2 = inf
𝑡

{
𝑡 > 0 : 𝔼

[
exp

{(
𝑋2

𝑡2

)}]
≤ 2

}
.

Let 𝑌 = exp
{(

𝑋2

𝑡2

)}
, and let us assume that 𝔼[𝑌] = 0 and Pr[𝑌 > 0] = 𝑘 > 0. Then, we have

0 = 𝔼 [𝑌] ≥ Pr (𝑌 > 0)𝔼 [𝑌 |𝑌 > 0] = 𝑘 𝔼 [𝑌 |𝑌 > 0] > 0.

Finally, we show that ∥𝜆𝑋∥𝜓2 = |𝜆| ∥𝑋∥𝜓2 .

Proof. This proof follows directly from the properties of inf, e.g., inf{|𝛾 |𝑥} = |𝛾 | inf{𝑥} for 𝛾 ∈ ℝ.

∥𝜆𝑋∥𝜓2 = inf
𝑡

{
𝑡 > 0 : 𝔼

[
exp

{(
𝜆2𝑋2

𝑡2

)}]
≤ 2

}
Let 𝑘 = 𝑡

|𝜆| , then

∥𝜆𝑋∥𝜓2 = inf
𝑡

{
|𝜆|𝑘 > 0 : 𝔼

[
exp

{(
𝑋2

𝑘2

)}]
≤ 2

}
= |𝜆| inf

𝑡

{
𝑘 > 0 : 𝔼

[
exp

{(
𝑋2

𝑘2

)}]
≤ 2

}
Thus we achieve the desired result,

∥𝜆𝑋∥𝜓2 = |𝜆| ∥𝑋∥𝜓2 .

3



Problem 2 (Moments are sharper than MGF)
Show that moment bounds for tail probabilities are always sharper than Chernoff-method
bounds. Specifically, let 𝑋 be a non-negative random variable and let 𝑡 > 0. The best
moment bound for the tail probability Pr(𝑋 ≥ 𝑡) is inf𝑞≥0 𝑡

−𝑞𝔼𝑋𝑞 . The best Chernoff bound
is inf𝜆>0 𝔼 exp(𝜆(𝑋 − 𝑡)). Prove that

inf
𝑞≥0

𝔼𝑋𝑞

𝑡𝑞
≤ inf

𝜆>0

𝔼 exp(𝜆𝑋)
exp(𝜆𝑡) .

Hint: Consider two positive summable sequences {𝑎𝑖}∞𝑖=1 and {𝑏𝑖}∞𝑖=1. Suppose 𝑐 ≤ 𝑎𝑖
𝑏𝑖

for

𝑖 ∈ ℕ. Then 𝑐 ≤
∑∞
𝑖=1 𝑎𝑖∑∞
𝑖=1 𝑏𝑖

. Moreover, if 𝑎𝑖
𝑏𝑖
≠

𝑎 𝑗
𝑏 𝑗

for some 𝑖, 𝑗, then 𝑐 <
∑∞
𝑖=1 𝑎𝑖∑∞
𝑖=1 𝑏𝑖

. Proving this might
be helpful.

Recall that the moment bounds for tail probability are defined as

Pr(𝑋 ≥ 𝑡) ≤ inf
𝑞≥0

𝔼𝑋𝑞

𝑡𝑞
(moment bound)

and the Chernoff-method bounds are defined as

Pr(𝑋 ≥ 𝑡) ≤ inf
𝜆>0

𝔼 exp(𝜆𝑋)
exp(𝜆𝑡) . (Chernoff)

In order to prove that

inf
𝑞≥0

𝔼𝑋𝑞

𝑡𝑞
≤ inf

𝜆>0

𝔼 exp(𝜆𝑋)
exp(𝜆𝑡) ,

we first establish the following lemma.

Lemma HW1.P2.1. Consider two positive summable sequences {𝑎𝑖}∞𝑖=0 and {𝑏𝑖}∞𝑖=0. Suppose 𝑐 ≤ 𝑎𝑖
𝑏𝑖

for all 𝑖 ∈ ℕ.
Then

𝑐 ≤
∑∞
𝑖=0 𝑎𝑖∑∞
𝑖=0 𝑏𝑖

. (74)

Proof. By assumption 𝑐𝑏𝑖 ≤ 𝑎𝑖 for all 𝑖 ∈ ℕ. Summing both sides from 1 to ∞ results in Equation (74), i.e.,

∞∑
𝑖=0

𝑐𝑏𝑖 ≤
∞∑
𝑖=0

𝑎𝑖 =⇒ 𝑐 ≤
∑∞
𝑖=0 𝑎𝑖∑∞
𝑖=0 𝑏𝑖

.

Now we may proceed with proving the following theorem.

Theorem HW1.P2.2 ([PN95]). For a non-negative random variable 𝑋 and for all 𝑡 > 0,

inf
𝑞≥0

𝔼𝑋𝑞

𝑡𝑞
≤ inf

𝜆>0

𝔼 exp(𝜆𝑋)
exp(𝜆𝑡) .

4



Proof. To begin, recall the Taylor series expansion of the exponential function (i.e., Maclaurin series)

exp(𝑘𝑥) =
∞∑
𝑖=0

𝑘 𝑖𝑥 𝑖

𝑖! .

Taking a Taylor series expansion w.r.t. to 𝜆 of the objective function of the Chernoff-method bound
results in

𝔼 exp(𝜆𝑋)
exp(𝜆𝑡) =

∞∑
𝑖=0

𝜆𝑖𝔼𝑋 𝑖

𝑖!

/ ∞∑
𝑖=0

𝜆𝑖𝑡 𝑖

𝑖!

Let 𝑎𝑖 =
∑∞
𝑖=0

𝜆𝑖𝔼𝑋 𝑖

𝑖! and let 𝑏𝑖 =
∑∞
𝑖=0

𝜆𝑖 𝑡 𝑖

𝑖! , then we have

𝔼 exp(𝜆𝑋)
exp(𝜆𝑡) =

∑∞
𝑖=0 𝑎𝑖∑∞
𝑖=0 𝑏𝑖

.

We note that

𝑎𝑖

𝑏𝑖
=

𝜆𝑖𝔼𝑋 𝑖

𝑖!
𝑖!

𝜆𝑖𝑡 𝑖
=
𝔼𝑋 𝑖

𝑡 𝑖
≥ inf

𝑞≥0

𝔼𝑋𝑞

𝑡𝑞
∀𝑖 ∈ ℕ.

We can then set 𝑐 to inf𝑞≥0
𝔼𝑋𝑞

𝑡𝑞 and leverage Lemma HW1.P2.1 such that

𝑐 = inf
𝑞≥0

𝔼𝑋𝑞

𝑡𝑞
≤

𝔼 exp(𝜆𝑋)
exp(𝜆𝑡) =

∑∞
𝑖=0 𝑎𝑖∑∞
𝑖=0 𝑏𝑖

Note that the above inequality holds for all 𝜆 > 0 including the 𝜆 that minimizes 𝔼 exp(𝜆(𝑋 − 𝑡)). Thus,
we have

inf
𝑞≥0

𝔼𝑋𝑞

𝑡𝑞
≤ inf

𝜆>0

𝔼 exp(𝜆𝑋)
exp(𝜆𝑡)

and achieve the desired result of the proof.
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Problem 3 (Hoeffding’s lemma with the correct constant)
Let 𝑋 be a zero-mean random variable within the interval [𝑎, 𝑏]. Then, for any 𝜆 ∈ ℝ,

𝔼 exp(𝜆𝑋) ≤ exp 𝜆2(𝑏 − 𝑎)2
8 .

Hint: Define 𝐿𝑋(𝜆) = log
(
𝔼 exp(𝜆𝑋)

)
. Use the Taylor expansion of 𝐿𝑋 with Lagrange’s error

bound. Then, create a random variable 𝑌𝜆 ∈ [𝑎, 𝑏] whose variance equals 𝐿′′
𝑋
(𝜆). Use the

boundedness of 𝑌𝜆 and the upper bound on the variance of any bounded random variable to
control 𝐿′′

𝑋
(𝜆).

In order to prove that

𝔼 exp(𝜆𝑋) ≤ exp 𝜆2(𝑏 − 𝑎)2
8 .

we will leverage the two following lemmas.

Lemma HW1.P3.3 (Taylor’s theorem). Suppose that ℐ ⊆ ℝ is an closed interval and that 𝑓 : ℐ → ℝ. For
𝑎 ∈ ℐ and ℎ ∈ ℝ such that 𝑎 + ℎ ∈ ℐ, there exists some 𝜃 ∈ (0, 1) such that

𝑓 (𝑎 + ℎ) = 𝑓 (𝑎) + ℎ 𝑓 ′(𝑎) + ℎ2

2 𝑓 ′′(𝑎 + 𝜃ℎ).

Lemma HW1.P3.4 (Maximum variance). Let 𝑍 represent a random variable 𝑍 ∈ [𝑎, 𝑏]. Then Var[𝑍] is upper
bounded by

Var [𝑍] ≤ (𝑏 − 𝑎)2
4

Now we may proceed with proving the following theorem.

Theorem HW1.P3.5. Let 𝑋 be a zero-mean random variable within the interval [𝑎, 𝑏]. Then, for any 𝜆 ∈ ℝ,

𝔼 exp(𝜆𝑋) ≤ exp 𝜆2(𝑏 − 𝑎)2
8 .

Proof. To begin, let us define

𝐿𝑋(𝜆) = log
(
𝔼 exp(𝜆𝑋)

)
.

To begin, let us calculate the derivatives of 𝐿𝑋(𝜆). The first derivative of 𝐿𝑋(𝜆) with respect to 𝜆 is

𝐿′𝑋(𝜆) =
𝔼𝑋 exp(𝜆𝑋)
𝔼 exp(𝜆𝑋)

and the second derivative is

𝐿′′𝑋(𝜆) =
d

d𝜆
𝔼𝑋 exp(𝜆𝑋)
𝔼 exp(𝜆𝑋) =

𝔼[exp(𝜆𝑋)]𝔼[𝑋2 exp(𝜆𝑋)] − 𝔼[𝑋 exp(𝜆𝑋)]𝔼[𝑋 exp(𝜆𝑋)](
𝔼 exp(𝜆𝑋)

)2

=
𝔼[exp(𝜆𝑋)]𝔼[𝑋2 exp(𝜆𝑋)] − 𝔼[𝑋 exp(𝜆𝑋)]2(

𝔼 exp(𝜆𝑋)
)2

6



𝐿′′𝑋(𝜆) =
𝔼

[
𝑋2 exp(𝜆𝑋)

]
𝔼 exp(𝜆𝑋) −

(
𝔼

[
𝑋 exp(𝜆𝑋)

]
𝔼 exp(𝜆𝑋)

)2

We now define a random variable 𝑌𝜆 such that Var[𝑌𝜆] = 𝐿′′
𝑋
(𝜆), i.e.,

𝑌𝜆 :=
𝑋 exp(𝜆𝑋)
𝔼 exp(𝜆𝑋) and 𝑌2

𝜆 :=
𝑋2 exp(𝜆𝑋)
𝔼 exp(𝜆𝑋) =⇒ Var [𝑌𝜆] = 𝐿′′𝑋(𝜆).

Note that 𝑌𝜆 is in the interval [𝑎, 𝑏]

Pr(𝑌𝜆 ∈ [𝑎, 𝑏]) = 𝔼
[
𝟙𝑌𝜆∈[𝑎,𝑏]

]
=
𝔼

[
𝟙𝑋∈[𝑎,𝑏] exp(𝜆𝑋)

]
𝔼 exp(𝜆𝑋) = 1.

and therefore we may use Lemma HW1.P3.4 to bound 𝐿′′
𝑋
(𝜆)

Var [𝑌𝜆] ≤
(𝑏 − 𝑎)2

4 =⇒ 𝐿′′𝑋(𝜆) ≤
(𝑏 − 𝑎)2

4 .

We have by Lemma HW1.P3.3 with 𝑓 = 𝐿𝑋 , 𝑎 = 0, ℎ = 𝜆, there is a 𝜃 ∈ (0, 1) such that

𝐿𝑋(𝜆) = 𝐿𝑋(0) + 𝜆𝐿′𝑋(0) +
𝜆2

2 𝐿
′′
𝑋(𝜃𝜆)

= log(1) + 𝜆
𝔼𝑋

1 + 𝜆2

2 𝐿
′′
𝑋(𝜃𝜆) ≤

𝜆2(𝑏 − 𝑎)2
8

since 𝐿′′
𝑋
(𝜆) ≤ (𝑏−𝑎)2

4 for all 𝜆. Thus, we conclude that

𝐿𝑋(𝜆) = log
(
𝔼 exp(𝜆𝑋)

)
≤ 𝜆2(𝑏 − 𝑎)2

8

𝔼 exp(𝜆𝑋) ≤ exp 𝜆2(𝑏 − 𝑎)2
8 .
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Problem 4 (Binomial concentration with sharp constants)
In this problem, we aim to obtain sharper bounds for Chernoff bounds than those derived from
Hoeffding and Bernstein inequalities for the binomial distribution. First, for two probability
distributions on 𝑘 elements 𝑃 = (𝑝1, 𝑝2, ..., 𝑝𝑘) and 𝑄 = (𝑞1, 𝑞2, ..., 𝑞𝑘) (i.e., 𝑝𝑖 , 𝑞𝑖 ∈ [0, 1] for
all 𝑖 ∈ [𝑘] and

∑𝑘
𝑖=1 𝑝𝑖 =

∑𝑘
𝑖=1 𝑞𝑖 = 1), define the Kullback-Leibler divergence as follows (log is

the logarithm with base 𝑒):

KL(𝑃, 𝑄) =
𝑘∑
𝑖=1

𝑝𝑖 log
𝑝𝑖

𝑞𝑖
.

Consider 𝑋 to be a binomial random variable with parameters 𝑛 and 𝑝 ∈ [0, 1]. Prove the
following:

1. For any 𝑡 ∈ [0, 1 − 𝑝], it holds that

Pr(𝑋 ≥ 𝔼𝑋 + 𝑡𝑛) ≤ exp(−𝑛KL((𝑝 + 𝑡 , 1 − 𝑝 − 𝑡), (𝑝, 1 − 𝑝))),

and for any 𝑡 ∈ [0, 𝑝],

Pr(𝑋 ≤ 𝔼𝑋 − 𝑡𝑛) ≤ exp(−𝑛KL((𝑝 − 𝑡 , 1 − 𝑝 + 𝑡), (𝑝, 1 − 𝑝))),

2. For any 𝛿 ≥ 0, we have

Pr(𝑋 ≥ (1 + 𝛿)𝔼𝑋) ≤
(

𝑒𝛿

(1 + 𝛿)1+𝛿

)𝔼𝑋
,

and for 𝛿 ∈ (0, 1),

Pr(𝑋 ≤ (1 − 𝛿)𝔼𝑋) ≤
(

𝑒−𝛿

(1 − 𝛿)1−𝛿

)𝔼𝑋
.

Demonstrate that the bounds can be further simplified for the same values of 𝛿. That is,
show that(

𝑒𝛿

(1 + 𝛿)1+𝛿

)𝔼𝑋
≤ exp

(
−𝛿2𝔼𝑋

2 + 𝛿

)
, and

(
𝑒−𝛿

(1 − 𝛿)1−𝛿

)𝔼𝑋
≤ exp

(
−𝛿2𝔼𝑋

2

)
.

These inequalities, when 𝛿 is a small but fixed constant, are often referred to as the
multiplicative Chernoff bounds, as they compare the random variable to multiple times its
expectation.

Hint: Apply Chernoff’s method and a precise computation of the MGF for Bernoulli random
variables. In 2.), simplify the formulas in 1.) by combining the exact computation for the KL
divergence with the inequality (1 − 𝑥) ≤ exp(−𝑥) for 𝑥 ≥ 0. For the last inequalities, it may be
useful to first show that 𝛿

2+𝛿 ≤ log(1 + 𝛿) for any 𝛿 ≥ 0 and that −𝛿 + 𝛿2/2 ≤ (1 − 𝛿) log(1 − 𝛿)
for 𝛿 ∈ (0, 1).

Recall the Chernoff’s method

Pr(𝑋 ≥ 𝑘) ≤ inf
𝜆>0

𝔼 exp(𝜆𝑋)
exp(𝜆𝑘) ,
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various properties of the Bernoulli random variables

𝔼𝑋 = 𝑝 and Var [𝑋] = 𝑝𝑞 = 𝑝(1 − 𝑝) and MGFBer(𝜆) = 𝔼 exp(𝜆𝑋) = 𝑞 + 𝑝𝑒𝜆 = 1 − 𝑝 + 𝑝𝑒𝜆 ,

and various properties of random variables following the binomial distribution

𝔼𝑋 = 𝑛𝑝, Var [𝑋] = 𝑛𝑝𝑞 = 𝑛𝑝(1 − 𝑝)
MGFbin(𝜆) = 𝔼 exp(𝜆𝑋) = (𝑞 + 𝑝𝑒𝜆)𝑛 = (1 − 𝑝 + 𝑝𝑒𝜆)𝑛 ,

𝜕

𝜕𝜆
MGFbin(𝜆) = 𝑛𝑝𝑒𝜆(𝑞 + 𝑝𝑒𝜆)𝑛−1 = 𝑛𝑝𝑒𝜆(1 − 𝑝 + 𝑝𝑒𝜆)𝑛−1

where
(𝑛
𝑘

)
= 𝑛!

𝑘!(𝑛−𝑘)! .

Theorem HW1.P4.6. For any 𝑡 ∈ [0, 1 − 𝑝], it holds that

Pr(𝑋 ≥ 𝔼𝑋 + 𝑡𝑛) ≤ exp(−𝑛KL((𝑝 + 𝑡 , 1 − 𝑝 − 𝑡), (𝑝, 1 − 𝑝))).

Proof. We begin by utilizing Chernoff’s method with 𝑘 = 𝔼𝑋 + 𝑡𝑛. Note that the mean of the binomial
distribution is 𝑛𝑝, so 𝑘 = 𝑛𝑝 + 𝑛𝑡 = 𝑛(𝑝 + 𝑡). Additionally, we utilize the MGFbin to arrive at

Pr(𝑋 ≥ 𝔼𝑋 + 𝑡𝑛) ≤ inf
𝜆>0

𝔼 exp(𝜆𝑋)
exp(𝜆𝑛(𝑝 + 𝑡)) = inf

𝜆>0

(1 − 𝑝 + 𝑝𝑒𝜆)𝑛
exp(𝜆𝑛(𝑝 + 𝑡))

for 𝑡 ∈ [0, 1 − 𝑝]. Next, we aim to solve for 𝜆★ that minimizes the objective function. That is,

𝜆★ := arginf
𝜆>0

(1 − 𝑝 + 𝑝𝑒𝜆)𝑛
exp(𝜆𝑛(𝑝 + 𝑡))

Therefore, we calculate the partial derivative of the objective with respect to 𝜆,

𝜕

𝜕𝜆

{ (1 − 𝑝 + 𝑝𝑒𝜆)𝑛
exp(𝜆𝑛(𝑝 + 𝑡))

}
=

(1 − 𝑝 + 𝑝𝑒𝜆)𝑛𝑛(𝑝 + 𝑡) exp(𝜆𝑛(𝑝 + 𝑡)) − 𝑛𝑝𝑒𝜆(1 − 𝑝 + 𝑝𝑒𝜆)𝑛−1 exp(𝜆𝑛(𝑝 + 𝑡))(
exp(𝜆𝑛(𝑝 + 𝑡))

)2

=
𝑛(𝑝 + 𝑡)(1 − 𝑝 + 𝑝𝑒𝜆)𝑛 − 𝑛𝑝𝑒𝜆(1 − 𝑝 + 𝑝𝑒𝜆)𝑛−1

exp(𝜆𝑛(𝑝 + 𝑡))

and set the resulting partial derivative to 0 to solve for 𝜆★

𝑛(𝑝 + 𝑡)(1 − 𝑝 + 𝑝𝑒𝜆)𝑛 = 𝑛𝑝𝑒𝜆(1 − 𝑝 + 𝑝𝑒𝜆)𝑛−1

(𝑝 + 𝑡)(1 − 𝑝 + 𝑝𝑒𝜆)𝑛 = 𝑝𝑒𝜆(1 − 𝑝 + 𝑝𝑒𝜆)𝑛−1

𝑝𝑒𝜆

𝑝 + 𝑡 =
(1 − 𝑝 + 𝑝𝑒𝜆)𝑛

(1 − 𝑝 + 𝑝𝑒𝜆)𝑛−1

𝑝𝑒𝜆

𝑝 + 𝑡 = (1 − 𝑝 + 𝑝𝑒𝜆)𝑛−(𝑛−1)

𝑝𝑒𝜆

𝑝 + 𝑡 = 1 − 𝑝 + 𝑝𝑒𝜆

𝑝𝑒𝜆 = (𝑝 + 𝑡)(1 − 𝑝 + 𝑝𝑒𝜆)
𝑝𝑒𝜆 = (𝑝 + 𝑡)(1 − 𝑝) + 𝑝(𝑝 + 𝑡)𝑒𝜆
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𝑝𝑒𝜆 − 𝑝(𝑝 + 𝑡)𝑒𝜆 = (𝑝 + 𝑡)(1 − 𝑝)
[𝑝 − 𝑝(𝑝 + 𝑡)]𝑒𝜆 = (𝑝 + 𝑡)(1 − 𝑝)

𝑒𝜆
★
=

(𝑝 + 𝑡)(1 − 𝑝)
𝑝(1 − 𝑝 − 𝑡) =

𝑡 + 𝑝 − 𝑝2 − 𝑝𝑡
𝑝 − 𝑝2 − 𝑝𝑡 =

𝑡

𝑝(1 − 𝑝 − 𝑡) + 1

𝜆★ = log
( (𝑝 + 𝑡)(1 − 𝑝)
𝑝(1 − 𝑝 − 𝑡)

)
Substituting 𝜆★ back into the objective function results in

inf
𝜆>0

𝔼 exp(𝜆𝑋)
exp(𝜆𝑛(𝑝 + 𝑡)) =

(1 − 𝑝 + 𝑝𝑒𝜆)𝑛
exp(𝜆𝑛(𝑝 + 𝑡))

����
𝜆=𝜆★

=

(
1 − 𝑝 + 𝑝𝑒𝜆★

)𝑛/
exp

(
𝜆★𝑛(𝑝 + 𝑡)

)
=

(
1 − 𝑝 + 𝑝

[
𝑡

𝑝(1 − 𝑝 − 𝑡) + 1
] )𝑛/

exp
(
𝑛(𝑝 + 𝑡) log

( (𝑝 + 𝑡)(1 − 𝑝)
𝑝(1 − 𝑝 − 𝑡)

))
=

(
1 + 𝑡

1 − 𝑝 − 𝑡

)𝑛/ ( (𝑝 + 𝑡)(1 − 𝑝)
𝑝(1 − 𝑝 − 𝑡)

)𝑛(𝑝+𝑡)
=

(
1 − 𝑝 − 𝑡 + 𝑡

1 − 𝑝 − 𝑡

)𝑛
×

(
(𝑝 + 𝑡)(1 − 𝑝)

)−𝑛(𝑝+𝑡)
×

(
𝑝(1 − 𝑝 − 𝑡)

)𝑛(𝑝+𝑡)
=

(
1 − 𝑝

1 − 𝑝 − 𝑡

)𝑛
× (𝑝 + 𝑡)−𝑛(𝑝+𝑡) × (1 − 𝑝)−𝑛(𝑝+𝑡) × 𝑝𝑛(𝑝+𝑡) × (1 − 𝑝 − 𝑡)𝑛(𝑝+𝑡)

= (1 − 𝑝)𝑛 × (1 − 𝑝 − 𝑡)−𝑛 × (𝑝 + 𝑡)−𝑛(𝑝+𝑡) × (1 − 𝑝)−𝑛(𝑝+𝑡) × 𝑝𝑛(𝑝+𝑡) × (1 − 𝑝 − 𝑡)𝑛(𝑝+𝑡)

= (1 − 𝑝)𝑛−𝑛(𝑝+𝑡) × (1 − 𝑝 − 𝑡)−𝑛+𝑛(𝑝+𝑡) × (𝑝 + 𝑡)−𝑛(𝑝+𝑡) × 𝑝𝑛(𝑝+𝑡)

= (1 − 𝑝)𝑛(1−𝑝−𝑡) × (1 − 𝑝 − 𝑡)−𝑛(1−𝑝−𝑡) × (𝑝 + 𝑡)−𝑛(𝑝+𝑡) × 𝑝𝑛(𝑝+𝑡)

=

(
1 − 𝑝

1 − 𝑝 − 𝑡

)𝑛(1−𝑝−𝑡)
×

(
𝑝

𝑝 + 𝑡

)𝑛(𝑝+𝑡)
=

(
1 − 𝑝 − 𝑡

1 − 𝑝

)−𝑛(1−𝑝−𝑡) (
𝑝 + 𝑡
𝑝

)−𝑛(𝑝+𝑡)
Taking the exp log

= exp
[
−𝑛(𝑝 + 𝑡) log

(
𝑝 + 𝑡
𝑝

)
− 𝑛(1 − 𝑝 − 𝑡) log

(
1 − 𝑝 − 𝑡

1 − 𝑝

)]
= exp

[
−𝑛

[
(𝑝 + 𝑡) log

(
𝑝 + 𝑡
𝑝

)
+ (1 − 𝑝 − 𝑡) log

(
1 − 𝑝 − 𝑡

1 − 𝑝

)] ]
inf
𝜆>0

𝔼 exp(𝜆𝑋)
exp(𝜆𝑛(𝑝 + 𝑡)) = exp

(
− 𝑛KL((𝑝 + 𝑡 , 1 − 𝑝 − 𝑡), (𝑝, 1 − 𝑝))

)
.

Thus, we have arrived at the desired result,

Pr(𝑋 ≥ 𝔼𝑋 + 𝑡𝑛) ≤ inf
𝜆>0

𝔼 exp(𝜆𝑋)
exp(𝜆𝑛(𝑝 + 𝑡)) = exp

(
− 𝑛KL((𝑝 + 𝑡 , 1 − 𝑝 − 𝑡), (𝑝, 1 − 𝑝))

)
for 𝑡 ∈ [0, 1 − 𝑝].
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Recall the Chernoff’s method for the left tail

Pr(𝑋 ≤ 𝑘) ≤ inf
𝜆<0

𝔼 exp(𝜆𝑋)
exp(𝜆𝑘) .

Theorem HW1.P4.7. For any 𝑡 ∈ [0, 𝑝], it holds that

Pr(𝑋 ≤ 𝔼𝑋 − 𝑡𝑛) ≤ exp(−𝑛KL((𝑝 − 𝑡 , 1 − 𝑝 + 𝑡), (𝑝, 1 − 𝑝))).

Proof. We begin our proof by utilizing Chernoff’s method with 𝑘 = 𝔼𝑋 − 𝑡𝑛. Note that the mean of the
binomial distribution is 𝑛𝑝, so 𝑘 = 𝑛𝑝 − 𝑛𝑡 = 𝑛(𝑝 − 𝑡). Additionally, we utilize the MGFbin to arrive at

Pr(𝑋 ≥ 𝔼𝑋 + 𝑡𝑛) ≤ inf
𝜆<0

𝔼 exp(𝜆𝑋)
exp(𝜆𝑛(𝑝 − 𝑡)) = inf

𝜆<0

(1 − 𝑝 + 𝑝𝑒𝜆)𝑛
exp(𝜆𝑛(𝑝 − 𝑡))

for 𝑡 ∈ [0, 𝑝]. Next, we aim to solve for 𝜆★ that minimizes the objective function. That is,

𝜆★ := arginf
𝜆<0

(1 − 𝑝 + 𝑝𝑒𝜆)𝑛
exp(𝜆𝑛(𝑝 − 𝑡))

Therefore, we calculate the partial derivative of the objective with respect to 𝜆,

𝜕

𝜕𝜆

{ (1 − 𝑝 + 𝑝𝑒𝜆)𝑛
exp(𝜆𝑛(𝑝 − 𝑡))

}
=

(1 − 𝑝 + 𝑝𝑒𝜆)𝑛𝑛(𝑝 − 𝑡) exp(𝜆𝑛(𝑝 − 𝑡)) − 𝑛𝑝𝑒𝜆(1 − 𝑝 + 𝑝𝑒𝜆)𝑛−1 exp(𝜆𝑛(𝑝 − 𝑡))(
exp(𝜆𝑛(𝑝 − 𝑡))

)2

=
𝑛(𝑝 − 𝑡)(1 − 𝑝 + 𝑝𝑒𝜆)𝑛 − 𝑛𝑝𝑒𝜆(1 − 𝑝 + 𝑝𝑒𝜆)𝑛−1

exp(𝜆𝑛(𝑝 − 𝑡))

and set the resulting partial derivative to 0 to solve for 𝜆★

𝑛(𝑝 − 𝑡)(1 − 𝑝 + 𝑝𝑒𝜆)𝑛 = 𝑛𝑝𝑒𝜆(1 − 𝑝 + 𝑝𝑒𝜆)𝑛−1

...

𝑒𝜆
★
=

(𝑝 − 𝑡)(1 − 𝑝)
𝑝(1 − 𝑝 + 𝑡) =

−𝑡 + 𝑝 − 𝑝2 + 𝑝𝑡
𝑝 − 𝑝2 + 𝑝𝑡 =

−𝑡
𝑝(1 − 𝑝 + 𝑡) + 1

𝜆★ = log
( (𝑝 − 𝑡)(1 − 𝑝)
𝑝(1 − 𝑝 + 𝑡)

)
Substituting 𝜆★ back into the objective function results in

inf
𝜆<0

𝔼 exp(𝜆𝑋)
exp(𝜆𝑛(𝑝 − 𝑡)) =

(1 − 𝑝 + 𝑝𝑒𝜆)𝑛
exp(𝜆𝑛(𝑝 − 𝑡))

����
𝜆=𝜆★

=

(
1 − 𝑝 + 𝑝𝑒𝜆★

)𝑛/
exp

(
𝜆★𝑛(𝑝 − 𝑡)

)
=

(
1 − 𝑝 + 𝑝

[
−𝑡

𝑝(1 − 𝑝 + 𝑡) + 1
] )𝑛/

exp
(
𝑛(𝑝 − 𝑡) log

( (𝑝 − 𝑡)(1 − 𝑝)
𝑝(1 − 𝑝 + 𝑡)

))
...

=

(
1 − 𝑝 + 𝑡

1 − 𝑝

)−𝑛(1−𝑝+𝑡) (
𝑝 − 𝑡
𝑝

)−𝑛(𝑝−𝑡)
11



Taking the exp log

= exp
[
−𝑛

[
(𝑝 − 𝑡) log

(
𝑝 − 𝑡
𝑝

)
+ (1 − 𝑝 + 𝑡) log

(
1 − 𝑝 + 𝑡

1 − 𝑝

)] ]
inf
𝜆<0

𝔼 exp(𝜆𝑋)
exp(𝜆𝑛(𝑝 − 𝑡)) = exp

(
− 𝑛KL((𝑝 − 𝑡 , 1 − 𝑝 + 𝑡), (𝑝, 1 − 𝑝))

)
.

Thus, we have arrived at the desired result,

Pr(𝑋 ≤ 𝔼𝑋 − 𝑡𝑛) ≤ inf
𝜆<0

𝔼 exp(𝜆𝑋)
exp(𝜆𝑛(𝑝 − 𝑡)) = exp

(
− 𝑛KL((𝑝 − 𝑡 , 1 − 𝑝 + 𝑡), (𝑝, 1 − 𝑝))

)
for 𝑡 ∈ [0, 𝑝].
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Theorem HW1.P4.8. For any 𝛿 ≥ 0, we have

Pr(𝑋 ≥ (1 + 𝛿)𝔼𝑋) ≤
(

𝑒𝛿

(1 + 𝛿)1+𝛿

)𝔼𝑋
.

Proof. Recall our earlier result,

Pr(𝑋 ≥ 𝔼𝑋 + 𝑡𝑛) ≤ inf
𝜆>0

𝔼 exp(𝜆𝑋)
exp(𝜆𝑛(𝑝 + 𝑡)) = exp

(
− 𝑛KL((𝑝 + 𝑡 , 1 − 𝑝 − 𝑡), (𝑝, 1 − 𝑝))

)
= exp

[
−𝑛

[
(𝑝 + 𝑡) log

(
𝑝 + 𝑡
𝑝

)
+ (1 − 𝑝 − 𝑡) log

(
1 − 𝑝 − 𝑡

1 − 𝑝

)] ]
for 𝑡 ∈ [0, 1 − 𝑝]. Note that

𝔼𝑋 + 𝑡𝑛 = 𝑛𝑝 + 𝑛𝑡 = (1 + 𝑡/𝑝)𝑛𝑝 = (1 + 𝑡/𝑝)𝔼𝑋

therefore we can set 𝛿 = 𝑡/𝑝. In other words, 𝑡 = 𝛿𝑝 and we have

Pr(𝑋 ≥ (1 + 𝛿)𝔼𝑋) ≤ exp
[
−𝑛

[
(𝑝 + 𝛿𝑝) log

(
𝑝 + 𝛿𝑝

𝑝

)
+ (1 − 𝑝 − 𝛿𝑝) log

(
1 − 𝑝 − 𝛿𝑝

1 − 𝑝

)] ]
= (1 + 𝛿)−𝑛(𝑝+𝛿𝑝) ×

(
1 − 𝑝

1 − 𝑝 − 𝛿𝑝

)𝑛(1−𝑝−𝛿𝑝)
=

1
(1 + 𝛿)(1+𝛿)𝑛𝑝

×
(

1 − 𝑝 − 𝛿𝑝 + 𝛿𝑝

1 − 𝑝 − 𝛿𝑝

)𝑛(1−𝑝−𝛿𝑝)
=

1
(1 + 𝛿)(1+𝛿)𝑛𝑝

×
(
1 + 𝛿𝑝

1 − 𝑝 − 𝛿𝑝

)𝑛(1−𝑝−𝛿𝑝)
≤ 1

(1 + 𝛿)(1+𝛿)𝑛𝑝
×

(
exp

(
𝛿𝑝

1 − 𝑝 − 𝛿𝑝

))𝑛(1−𝑝−𝛿𝑝)
=

1
(1 + 𝛿)(1+𝛿)𝑛𝑝

× exp(𝑛𝛿𝑝)

Pr(𝑋 ≥ (1 + 𝛿)𝔼𝑋) ≤
(

𝑒𝛿

(1 + 𝛿)1+𝛿

)𝔼𝑋
.
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Theorem HW1.P4.9. For 𝛿 ∈ (0, 1),

Pr(𝑋 ≤ (1 − 𝛿)𝔼𝑋) ≤
(

𝑒−𝛿

(1 − 𝛿)1−𝛿

)𝔼𝑋
.

Proof. Recall our previous result

inf
𝜆<0

𝔼 exp(𝜆𝑋)
exp(𝜆𝑛(𝑝 − 𝑡)) = exp

(
− 𝑛KL((𝑝 − 𝑡 , 1 − 𝑝 + 𝑡), (𝑝, 1 − 𝑝))

)
= exp

[
−𝑛

[
(𝑝 − 𝑡) log

(
𝑝 − 𝑡
𝑝

)
+ (1 − 𝑝 + 𝑡) log

(
1 − 𝑝 + 𝑡

1 − 𝑝

)] ]
Thus, we have arrived at the desired result,

Pr(𝑋 ≤ 𝔼𝑋 − 𝑡𝑛) ≤ inf
𝜆<0

𝔼 exp(𝜆𝑋)
exp(𝜆𝑛(𝑝 − 𝑡)) = exp

(
− 𝑛KL((𝑝 − 𝑡 , 1 − 𝑝 + 𝑡), (𝑝, 1 − 𝑝))

)
for 𝑡 ∈ [0, 𝑝]. Note that

𝔼𝑋 − 𝑡𝑛 = 𝑛𝑝 − 𝑛𝑡 = (1 − 𝑡/𝑝)𝑛𝑝 = (1 − 𝑡/𝑝)𝔼𝑋
therefore we can set 𝛿 = 𝑡/𝑝. In other words, 𝑡 = 𝛿𝑝 and we have

Pr(𝑋 ≤ (1 − 𝛿)𝔼𝑋) ≤ exp
[
−𝑛

[
(𝑝 − 𝛿𝑝) log

(
𝑝 − 𝛿𝑝

𝑝

)
+ (1 − 𝑝 + 𝛿𝑝) log

(
1 − 𝑝 + 𝛿𝑝

1 − 𝑝

)] ]
= (1 − 𝛿)−𝑛(𝑝−𝛿𝑝) ×

(
1 − 𝑝

1 − 𝑝 + 𝛿𝑝

)𝑛(1−𝑝+𝛿𝑝)
=

1
(1 − 𝛿)(1−𝛿)𝑛𝑝

×
(

1 − 𝑝 + 𝛿𝑝 − 𝛿𝑝

1 − 𝑝 + 𝛿𝑝

)𝑛(1−𝑝+𝛿𝑝)
=

1
(1 − 𝛿)(1−𝛿)𝑛𝑝

×
(
1 − −𝛿𝑝

1 − 𝑝 + 𝛿𝑝

)𝑛(1−𝑝+𝛿𝑝)
≤ 1

(1 − 𝛿)(1−𝛿)𝑛𝑝
×

(
exp

( −𝛿𝑝
1 − 𝑝 + 𝛿𝑝

))𝑛(1−𝑝+𝛿𝑝)
=

1
(1 − 𝛿)(1−𝛿)𝑛𝑝

× exp(−𝑛𝛿𝑝)

Pr(𝑋 ≤ (1 − 𝛿)𝔼𝑋) ≤
(

𝑒−𝛿

(1 − 𝛿)1−𝛿

)𝔼𝑋
.
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In order to prove that for any 𝛿 ≥ 0, we have(
𝑒𝛿

(1 + 𝛿)1+𝛿

)𝔼𝑋
≤ exp

(
−𝛿2𝔼𝑋

2 + 𝛿

)
we must first prove the following Lemma.

Lemma HW1.P4.10. For any 𝛿 ≥ 0,
2𝛿

2 + 𝛿
≤ log(1 + 𝛿).

Proof. Starting with

𝑓 (𝛿) := log(1 + 𝛿) − 2𝛿
2 + 𝛿

𝑓 ′(𝛿) = 1
1 + 𝛿

− 2(2 + 𝛿) − 2𝛿
(2 + 𝛿)2 =

1
1 + 𝛿

− 4
(2 + 𝛿)2 =

(2 + 𝛿)2 − 4(1 + 𝛿)
(1 + 𝛿)(2 + 𝛿)2 =

𝛿2

(1 + 𝛿)(2 + 𝛿)2

We see that 𝑓 ′(𝛿) ≥ 0, meaning that 𝑓 (𝜆) is strictly increasing for all 𝛿 ≥ 0. Taken with 𝑓 (0) = 0, we can
conclude that 𝑓 (𝜆) ≥ 0 for all 𝛿 ≥ 0. Thus,

𝑓 (𝛿) = log(1 + 𝛿) − 2𝛿
2 + 𝛿

≥ 0 =⇒ 2𝛿
2 + 𝛿

≤ log(1 + 𝛿) ∀𝛿 ≥ 0.

proving our lemma.

Now we can proceed to the main Theorem.

Theorem HW1.P4.11. For any 𝛿 ≥ 0, we have(
𝑒𝛿

(1 + 𝛿)1+𝛿

)𝔼𝑋
≤ exp

(
−𝛿2𝔼𝑋

2 + 𝛿

)
.

Proof. Starting with (
𝑒𝛿

(1 + 𝛿)1+𝛿

)𝔼𝑋
= exp

(
𝔼𝑋 log

(
𝑒𝛿

(1 + 𝛿)1+𝛿

))
= exp

[
𝔼𝑋

[
𝛿 − (1 + 𝛿) log(1 + 𝛿)

] ]
=

exp[𝔼𝑋𝛿]
exp

[
𝔼𝑋(1 + 𝛿) log(1 + 𝛿)

]
Note that exp

(
−𝑘 log(1 + 𝛿)

)
≤ exp(−𝑘𝛿/(2 + 𝛿))

≤ exp
[
𝔼𝑋

[
𝛿 − (1 + 𝛿) 𝛿

2 + 𝛿

] ]
Focusing on term 𝛿 − (1 + 𝛿) 2𝛿

2+𝛿 ,

𝛿 − (1 + 𝛿) 2𝛿
2 + 𝛿

= 𝛿 − 2𝛿2 + 2𝛿
2 + 𝛿

=
𝛿(2 + 𝛿) − 2𝛿2 − 2𝛿

2 + 𝛿
=

−𝛿2

2 + 𝛿

Thus we arrive at the desired result:(
𝑒𝛿

(1 + 𝛿)1+𝛿

)𝔼𝑋
≤ exp

(
−𝛿2𝔼𝑋

2 + 𝛿

)
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In order to prove that for 𝛿 ∈ (0, 1), we have(
𝑒−𝛿

(1 − 𝛿)1−𝛿

)𝔼𝑋
≤ exp

(
−𝛿2𝔼𝑋

2

)
.

we must first prove the following Lemma.

Lemma HW1.P4.12. For 𝛿 ∈ (0, 1),

−𝛿 + 𝛿2/2 ≤ (1 − 𝛿) log(1 − 𝛿).

Proof. Starting with

𝑓 (𝛿) := (1 − 𝛿) log(1 − 𝛿) + 𝛿 − 𝛿2

2
𝑓 ′(𝛿) = −1 log(1 − 𝛿) + (1 − 𝛿) −1

1 − 𝛿
+ 1 − 𝛿 = − log(1 − 𝛿) − 𝛿

We note that 𝑓 ′(𝛿) ≥ 0, meaning that 𝑓 (𝜆) is strictly increasing for all 𝛿 ∈ (0, 1). Taken with 𝑓 (0) = 0, we
can conclude that 𝑓 (𝜆) ≥ 0 for all 𝛿 ∈ (0, 1). Thus,

𝑓 (𝛿) = (1 − 𝛿) log(1 − 𝛿) + 𝛿 − 𝛿2

2 ≥ 0 =⇒ −𝛿 + 𝛿2/2 ≤ (1 − 𝛿) log(1 − 𝛿) ∀𝛿 ∈ (0, 1).

proving our lemma.

Now we can proceed to the main Theorem.

Theorem HW1.P4.13. For 𝛿 ∈ (0, 1), we have(
𝑒−𝛿

(1 − 𝛿)1−𝛿

)𝔼𝑋
≤ exp

(
−𝛿2𝔼𝑋

2

)
.

Proof. Starting with (
𝑒−𝛿

(1 − 𝛿)1−𝛿

)𝔼𝑋
= exp

(
𝔼𝑋 log

(
𝑒−𝛿

(1 − 𝛿)1−𝛿

))
= exp

[
𝔼𝑋

[
−𝛿 − (1 − 𝛿) log(1 − 𝛿)

] ]
Note that −(1 − 𝛿) log(1 + 𝛿)) ≤ 𝛿 − 𝛿2/2

≤ exp
[
𝔼𝑋

[
−𝛿 + 𝛿 − 𝛿2/2

] ]
Thus we arrive at the desired result:(

𝑒−𝛿

(1 − 𝛿)1−𝛿

)𝔼𝑋
≤ exp

(
−𝛿2𝔼𝑋

2

)
.
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Problem 5 (Sample mean of heavy-tailed random variables)
Assume that 𝑋 is a random variable for which 𝔼|𝑋 − 𝔼𝑋 |1+𝜖 ≤ 𝜎, where 𝜖 ∈ (0, 1). Note that
we do not assume the existence of the variance for this random variable. Let 𝑋1, ..., 𝑋𝑛 be
independent copies of 𝑋. Show that for any 𝛿 ∈ (0, 1), with probability at least 1 − 𝛿,

1
𝑛

𝑛∑
𝑖=1

𝑋𝑖 ≤ 𝔼𝑋 +
(

3𝜎
𝛿𝑛𝜖

) 1
1+𝜖
.

In your proof, a constant different from 3 might emerge.
Hint: Utilize the following decomposition. For any 𝑎, 𝑡 ≥ 0,

Pr

(
1
𝑛

𝑛∑
𝑖=1

𝑋𝑖 − 𝔼𝑋 ≥ 𝑡

)
≤ Pr

(
∃𝑖 ∈ [𝑛] : |𝑋𝑖 − 𝔼𝑋 | > 𝑎

)
+ Pr

(
1
𝑛

𝑛∑
𝑖=1

(𝑋𝑖 − 𝔼𝑋)𝟙|𝑋𝑖−𝔼𝑋 |≤𝑎 ≥ 𝑡

)
.

Apply the union bound to analyze the first term and Chebyshev’s inequality for the second
term.

Regrade justification: The original solution was incorrect because I made the incorrect assumption
that 𝔼

[∑(|𝑋𝑖 − 𝔼 [𝑋] |)1+𝜖
]
≤ ∑(𝔼

[
|𝑋𝑖 − 𝔼 [𝑋] |1+𝜖

]
). This led to an incorrect bound for the first

term in the decomposition. The solution that follows is a corrected version of the original solution.

Proof. To begin, we apply the decomposition provided in the hint. For any 𝑎, 𝑡 ≥ 0, we have

Pr

(
1
𝑛

𝑛∑
𝑖=1

𝑋𝑖 − 𝔼𝑋 ≥ 𝑡

)
≤ Pr (∃𝑖 ∈ [𝑛] : |𝑋𝑖 − 𝔼𝑋 | > 𝑎)︸                               ︷︷                               ︸

Term 1

+Pr

(
1
𝑛

𝑛∑
𝑖=1

(𝑋𝑖 − 𝔼𝑋)𝟙|𝑋𝑖−𝔼𝑋 |≤𝑎 ≥ 𝑡

)
︸                                        ︷︷                                        ︸

Term 2

.

We begin by analyzing Term 1. Applying the union bound, we have

Pr (∃𝑖 ∈ [𝑛] : |𝑋𝑖 − 𝔼𝑋 | > 𝑎) ≤
𝑛∑
𝑖=1

Pr (|𝑋𝑖 − 𝔼𝑋 | > 𝑎).

We will bound this probability by using a more general form of Chebyshev’s inequality, i.e.,

Pr(|𝑋 − 𝔼𝑋 | ≥ 𝑡) = Pr(|𝑋 − 𝔼𝑋 |𝑝 ≥ 𝑡𝑝) ≤ 𝔼|𝑋 − 𝔼𝑋 |𝑝
𝑡𝑝

which holds for any 𝑡 > 0 and 𝑝 > 0. We apply this inequality with 𝑝 = 1 + 𝜖 and 𝑡 = 𝑎 to get

𝑛∑
𝑖=1

Pr (|𝑋𝑖 − 𝔼𝑋 | > 𝑎) ≤
𝑛∑
𝑖=1

𝔼|𝑋𝑖 − 𝔼𝑋 |1+𝜖
𝑎1+𝜖 ≤ 𝑛𝜎

𝑎1+𝜖 . (75)
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Next, we analyze Term 2. First, we note that for any independent and identically distributed random
variables 𝐴1, 𝐴2, . . . , 𝐴𝑛 , we have4,

𝔼


(

1
𝑛

𝑛∑
𝑖=1

𝐴𝑖

)2 ≤
𝔼

[
𝐴2

1
]

𝑛
+ 𝔼 [𝐴1]2 .

Then we define the random variables 𝑌𝑖 = (𝑋𝑖 − 𝔼𝑋) and apply the above inequality to get

𝔼


(

1
𝑛

𝑛∑
𝑖=1

𝑌𝑖𝟙|𝑌𝑖 |≤𝑎

)2 ≤
𝔼

[
(𝑌1𝟙|𝑌1 |≤𝑎)2

]
𝑛︸             ︷︷             ︸

Term A

+𝔼
[
𝑌1𝟙|𝑌1 |≤𝑎

]2︸          ︷︷          ︸
Term B

We will analyze Term A and Term B separately. Starting with the numerator of Term A, we have

𝔼
[
(𝑌1𝟙|𝑌1 |≤𝑎)2

]
= 𝔼

[
(𝑌1𝟙|𝑌1 |≤𝑎)1+𝜖+1−𝜖] = 𝔼

[
(𝑌1𝟙|𝑌1 |≤𝑎)1+𝜖(𝑌1𝟙|𝑌1 |≤𝑎)1−𝜖

]
.

Since (𝑌1𝟙|𝑌1 |≤𝑎)1+𝜖 ≤
��𝑌1𝟙|𝑌1 |≤𝑎

��1+𝜖 and 𝑌1𝟙|𝑌1 |≤𝑎 is bounded by 𝑎, we have that

𝔼
[
(𝑌1𝟙|𝑌1 |≤𝑎)2

]
≤ 𝔼

[��𝑌1𝟙|𝑌1 |≤𝑎
��1+𝜖𝑎1−𝜖

]
= 𝑎1−𝜖𝔼

[��𝑌1𝟙|𝑌1 |≤𝑎
��1+𝜖] ≤ 𝜎𝑎1−𝜖

implying that Term A is bounded by 𝜎𝑎1−𝜖
𝑛 . Next, we analyze Term B. To begin we note that

𝔼 [𝑌1] = 𝔼
[
𝑌1𝟙|𝑌1 |≤𝑎

]
+ 𝔼

[
𝑌1𝟙|𝑌1 |>𝑎

]
= 0 =⇒ 𝔼

[
𝑌1𝟙|𝑌1 |≤𝑎

]
= −𝔼

[
𝑌1𝟙|𝑌1 |>𝑎

]
.

Thus, Term B may be written as

𝔼
[
𝑌1𝟙|𝑌1 |≤𝑎

]2
= 𝔼

[
𝑌1𝟙|𝑌1 |>𝑎

]2
.

Bounding this term is more complicated and require Hölder’s inequality. We have

𝔼
[
𝑌1𝟙|𝑌1 |>𝑎

]2 ≤ 𝔼
[��𝑌1𝟙|𝑌1 |>𝑎

��]2 ≤ 𝔼
[
|𝑌1 |𝑝

]2/𝑝
𝔼

[��𝟙|𝑌1 |>𝑎
��𝑞]2/𝑞

.

By setting 𝑝 = 𝜖+1/1 and 𝑞 = 𝜖+1/𝜖, we have

𝔼
[
𝑌1𝟙|𝑌1 |>𝑎

]2 ≤ 𝔼
[
|𝑌1 |1+𝜖

] 2
1+𝜖

𝔼
[
𝟙|𝑌1 |>𝑎

] 2𝜖
𝜖+1 ≤ 𝜎

2
1+𝜖 Pr (|𝑌1 | > 𝑎)

2𝜖
𝜖+1 .

By Equation (75), we have that Pr (|𝑌1 | > 𝑎) ≤ 𝜎
𝑎1+𝜖 . Thus, we have that

𝔼
[
𝑌1𝟙|𝑌1 |≤𝑎

]2 ≤ 𝜎
2

1+𝜖
( 𝜎

𝑎1+𝜖

) 2𝜖
𝜖+1

=
𝜎

2
1+𝜖 𝜎

2𝜖
1+𝜖

𝑎2𝜖 =
𝜎2

𝑎2𝜖 .

4Proof. Let 𝐴1 , 𝐴2 , . . . , 𝐴𝑛 be iid random variables. Then

𝔼


(

1
𝑛

𝑛∑
𝑖=1

𝐴𝑖

)2 =
1
𝑛2 𝔼


𝑛∑
𝑖=1

𝐴2
𝑖
+

∑
𝑖≠𝑗

𝐴𝑖𝐴𝑗

 =
1
𝑛2

(
𝑛𝔼

[
𝐴2

1

]
+ 𝑛(𝑛 − 1)𝔼 [𝐴1𝐴2]

)
.

Since 𝐴𝑖 ’s are iid, we have that 𝔼 [𝐴1𝐴2] = 𝔼 [𝐴1]𝔼 [𝐴2] = 𝔼 [𝐴1]2. Thus, we have that

𝔼


(

1
𝑛

𝑛∑
𝑖=1

𝐴𝑖

)2 =
1
𝑛2

(
𝑛𝔼

[
𝐴2

1

]
+ 𝑛(𝑛 − 1)𝔼 [𝐴1]2

)
≤

𝔼
[
𝐴2

1

]
𝑛

+ 𝔼 [𝐴1]2 .
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Combining the bounds for Term A and Term B, we have

𝔼


(

1
𝑛

𝑛∑
𝑖=1

𝑌𝑖𝟙|𝑌𝑖 |≤𝑎

)2 ≤ 𝜎𝑎1−𝜖

𝑛
+ 𝜎2

𝑎2𝜖 .

Thus the overall bound is

Pr

(
1
𝑛

𝑛∑
𝑖=1

𝑋𝑖 − 𝔼𝑋 ≥ 𝑡

)
≤ 𝑛𝜎

𝑎1+𝜖 + 𝜎𝑎1−𝜖

𝑛
+ 𝜎2

𝑎2𝜖

for any 𝑎, 𝑡 ≥ 0. We will now choose 𝑎 = 𝑛𝑡, which gives

Pr

(
1
𝑛

𝑛∑
𝑖=1

𝑋𝑖 − 𝔼𝑋 ≥ 𝑡

)
≤ 𝑛𝜎

(𝑛𝑡)1+𝜖
+ 𝜎(𝑛𝑡)1−𝜖

𝑛
+ 𝜎2

(𝑛𝑡)2𝜖 =
𝜎

𝑛𝜖𝑡1+𝜖
+ 𝜎

𝑛𝜖𝑡1+𝜖
+

( 𝜎

𝑛𝜖𝑡1+𝜖

)2
.

In the case when 𝜎/𝑛𝜖𝑡1+𝜖 ≤ 1, the bound is no more than 3𝜎/𝑛𝜖𝑡1+𝜖. In the case when 𝜎/𝑛𝜖𝑡1+𝜖 > 1, the bound
is no more than 3𝜎/𝑛𝜖𝑡1+𝜖. Thus, we have that

Pr

(
1
𝑛

𝑛∑
𝑖=1

𝑋𝑖 − 𝔼𝑋 ≥ 𝑡

)
≤ 3𝜎
𝑛𝜖𝑡1+𝜖

.

Setting the right-hand side to 𝛿 and solving for 𝑡, we have

𝑡 =

(
3𝜎
𝛿𝑛𝜖

) 1
1+𝜖

This implies that with probability at least 1 − 𝛿, we have

1
𝑛

𝑛∑
𝑖=1

𝑋𝑖 ≤ 𝔼𝑋 +
(

3𝜎
𝛿𝑛𝜖

) 1
1+𝜖

as desired.
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Problem 6 (Maximum degree of a random graph)
Consider 𝐺 = (𝑉, 𝐸), a random graph with 𝑛 vertices. The graph is constructed such that
for each pair of distinct vertices, an edge is added with probability 1

2 , with all pairs sampled
independently (this is commonly denoted by 𝐺 ∼ 𝒢(𝑛, 1

2)). Recall that the degree of a
vertex 𝑣, 𝑑(𝑣), is the number of neighbors of 𝑣, and the maximum degree of the graph 𝐺 is
max𝑣∈𝑉 𝑑(𝑣). Use the concentration inequalities to derive both the high-probability upper
bound on max𝑣∈𝑉 𝑑(𝑣) and the upper bound on 𝔼max𝑣∈𝑉 𝑑(𝑣).

To begin, we recall a few things about the degree distribution of a random graph. Let 𝐺 ∼ 𝒢(𝑛, 𝑝)
represent a random graph with 𝑛 vertices and with edges added with probability 𝑝. We denote 𝑣 as a
vertex with a degree 𝑑(𝑣). The distribution of degree of the vertices then has a binomial distribution of
degrees 𝑘:

𝒫𝒢(𝑛,𝑝) = Pr(𝑑(𝑣) = 𝑘) =
(
𝑛 − 1
𝑘

)
𝑝𝑘(1 − 𝑝)𝑛−1−𝑘 .

The expected degree in the random graph is then

𝔼 [𝑑(𝑣)] = (𝑛 − 1)𝑝.

In our case, we consider 𝑝 = 1
2 , simplifying the above expressions to

𝒫𝐺(𝑘) = 𝒫𝒢(𝑛,1/2) =

(
𝑛 − 1
𝑘

) (
1
2

) 𝑘 (1
2

)𝑛−1−𝑘
=

(
1
2

)𝑛−1 ( (𝑛 − 1)!
𝑘!(𝑛 − 1 − 𝑘)!

)
and 𝔼 [𝑑(𝑣)] = 𝑛 − 1

2 .

Our goal is to show

Pr
(
max
𝑣∈𝑉

𝑑(𝑣) ≥ 𝑡

)
≤ 𝛿.

In order to do so, we will utilize Hoeffding’s inequality with 𝑋𝑖 = 𝑑(𝑣) ∈ [0, 𝑛 − 1] and 𝜇𝑖 = 𝑛−1/2 for all
𝑖 ∈ [𝑛]. Then we have that

Pr

(∑
𝑣∈𝑉

(
𝑑(𝑣) − 𝑛 − 1

2

)
≥ 𝑡

)
≤ exp

(
− 2𝑡2∑𝑛

𝑖=1(𝑛 − 1)2
)

Pr
(
𝑛max

𝑣∈𝑉
𝑑(𝑣) − 𝑛(𝑛 − 1)

2 ≥ 𝑡

)
≤ exp

(
− 2𝑡2

𝑛(𝑛 − 1)2
)

︸                  ︷︷                  ︸
𝛿

.

Solving for 𝑡 in terms of 𝛿 results in

log(𝛿) = − 2𝑡2

𝑛(𝑛 − 1)2 =⇒ 𝑡 =

√
− log(𝛿)𝑛(𝑛 − 1)2

2 =⇒ 𝑡 = (𝑛 − 1)
√

log(1/𝛿)𝑛
2 .

Then we have that with probability at least 1 − 𝛿,

max
𝑣∈𝑉

𝑑(𝑣) ≤ 𝔼 [𝑑(𝑣)]
(
1 +

√
2 log(1/𝛿)

𝑛

)
.
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Problem 7 (Uniform distribution on the ball is sub-Gaussian)
Let 𝑋 be a random vector uniformly distributed on the unit Euclidean ball in ℝ𝑑 centered at
the origin. Show that for any 𝑣 ∈ 𝑆𝑑−1,

∥⟨𝑋, 𝑣⟩∥𝜓2 ≤ C ∥⟨𝑋, 𝑣⟩∥𝐿2 ,

where 𝐶 ≥ 0 is some absolute constant.
Hint: Recall that ∥𝑌∥𝐿𝑝 = (𝔼|𝑌 |𝑝)1/𝑝 , where 𝑝 ≥ 1. To control ∥⟨𝑋, 𝑣⟩∥𝐿2 , compute the
covariance matrix of𝑋. Consider 𝑍 ∼ 𝒩(0, 𝐼𝑑) and𝑈 , a uniform random variable independent
of 𝑍 on [0, 1]. Utilize the fact that 𝑈1/𝑑 · 𝑍/∥𝑍∥2 is uniformly distributed in the unit ball
(prove this) and that ∥𝑍∥2 concentrates strongly around its expectation.

We begin by proving the following lemma.

Lemma HW1.P6.14. Let 𝑍 ∼ 𝒩(0, 𝐼𝑑) and𝑈 , a uniform random variable independent of 𝑍 on [0, 1]. Then (i.)
𝑈1/𝑑 · 𝑍/∥𝑍∥2 is uniformly distributed in the unit ball and (ii.) ∥𝑍∥2 concentrates strongly around its expectation.

Proof of (i.) in Lemma HW1.P6.14. We begin by showing that 𝑈1/𝑑 · 𝑍/∥𝑍∥2 is uniformly distributed in
the unit ball, ℬ1. A random vector 𝑌 ∈ ℝ𝑑 is uniformly distributed in the unit ball if its cumulative
distribution function (CDF) is equal to 𝑟𝑛 where 𝑟 ∈ [0, 1] is the radius of the ball. To see this, consider
the volume of the 𝑑-dimensional ball with radius 𝑟,

𝑉𝑑(𝑟) =
𝜋𝑑/2

Γ( 𝑑2 + 1)
𝑟𝑑

where Γ is Euler’s gamma function. Then probability that a random vector 𝑌 is in the ball is

Pr(𝑌 ∈ ℬ1) = Pr(∥𝑌∥2 ≤ 𝑟) = 𝐹𝑌(𝑟) =
𝑉𝑑(𝑟)
𝑉1(𝑟)

=
𝜋𝑑/2

Γ( 𝑑2 + 1)
𝑟𝑑

𝜋𝑑/2/Γ( 𝑑2+1)
= 𝑟𝑑 for all 𝑟 ∈ [0, 1].

We define 𝑌 as a random vector equal to𝑈1/𝑑 · 𝑍/∥𝑍∥2. Then, the ℓ2-norm of 𝑌 is

∥𝑌∥2 =




𝑈1/𝑑 · 𝑍/∥𝑍∥2





2
=
𝑈1/𝑑

∥𝑍∥2
∥𝑍∥2 = 𝑈1/𝑑 .

Thus, the CDF of 𝑌 is equal to

𝐹𝑌(𝑟) = Pr(∥𝑌∥2 ≤ 𝑟) = Pr
(
𝑈1/𝑑 ≤ 𝑟

)
= Pr

(
𝑈 ≤ 𝑟𝑑

)
= 𝐹𝑈(𝑟𝑑) =

𝑟𝑑 − 0
1 − 0 = 𝑟𝑑

and we achieve the desired result that 𝑌 = 𝑈1/𝑑 · 𝑍/∥𝑍∥2 is uniformly distributed in the unit ball, ℬ1.

Proof of (ii.) in Lemma HW1.P6.14. We now prove the later statement. Let 𝑍 be a random vector in ℝ𝑑

with independent components 𝑍𝑖 ∼ 𝒩(0, 1) for all 𝑖 ∈ [𝑑]. Then we have

𝔼∥𝑍∥2
2 = 𝔼

𝑑∑
𝑖=1

𝑍2
𝑖 =

𝑑∑
𝑖=1

𝔼𝑍2
𝑖 =

𝑑∑
𝑖=1

Var(𝑍𝑖) = 𝑑.

Thus the expected length of 𝑍 is 𝔼∥𝑍∥2 =
√
𝑑. Additionally, recall in Lecture 6 that we prove that for a

random vector 𝑍 ∈ ℝ𝑑 with independent coordinates 𝑍𝑖 such that 𝔼[𝑍𝑖] = 0 and 𝔼[𝑍2
𝑖
] = 1 for all 𝑖 ∈ [𝑑],

Pr
(���� ∥𝑍∥2√

𝑑
− 1

���� ≥ 𝑡

)
≤ 2 exp

(
−c𝑑𝑡

2

𝐾4

)
where 𝐾 = max

𝑖∈[𝑑]
∥𝑍𝑖 ∥𝜓2 ≥ 1.
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Changing variables to 𝛿 = 𝑡
√
𝑑, we obtain the desired tail

Pr
(���∥𝑍∥2 −

√
𝑑
��� ≥ 𝛿

)
≤ 2 exp

(
−c𝛿2

𝐾4

)
≤ 2 exp

(
−c𝛿2

)
for all 𝛿 ≥ 0.

Hence, we have that with probability at least 1 − 𝛿���∥𝑍∥2 − 𝔼∥𝑍∥2

��� ≤ 2 exp
(
−c𝛿2

)
.

and we can conclude that ∥𝑍∥2 concentrates strongly around its expectation.

Now we proceed by proving the following theorem.

Theorem HW1.P6.15. Let 𝑋 be a random vector uniformly distributed on the unit Euclidean ball in ℝ𝑑 centered
at the origin. Then for any 𝑣 ∈ 𝑆𝑑−1,

∥⟨𝑋, 𝑣⟩∥𝜓2 ≤ C ∥⟨𝑋, 𝑣⟩∥𝐿2 ,

where C ≥ 0 is some absolute constant.

Proof. Let 𝑋 = 𝑈1/𝑑 · 𝑍/∥𝑍∥2 where 𝑍 ∼ 𝒩(0, 𝐼𝑑) and𝑈 , a uniform random variable independent of 𝑍 is
on [0, 1]. We begin by calculating the covariance matrix of 𝑋.

𝔼𝑋𝑋𝑋
⊤ = 𝔼

𝑈

[
𝔼
𝑍

[
𝑈2/𝑑

∥𝑍∥2
2
𝑍𝑍⊤

] ]
≈ 1
𝑑
𝔼
𝑈

[
𝑈2/𝑑

]
𝔼
𝑍

[
𝑍𝑍⊤]

=
1
𝑑

(
𝑢(2/𝑑)+1

(2/𝑑) + 1

) ����1
0
𝐼𝑑 =

(
1
𝑑

) (
𝑑

𝑑 + 2

)
𝐼𝑑 =

(
1

𝑑 + 2

)
𝐼𝑑 .

Next, we calculate the 𝐿2 norm of ⟨𝑋, 𝑣⟩, To begin note that

∥⟨𝑋, 𝑣⟩∥𝐿2 = (𝔼
[
| ⟨𝑋, 𝑣⟩ |2

]
)1/2 = (𝔼

[
(𝑋⊤𝑣)2

]
)1/2 = (𝔼

[
𝑣⊤𝑋𝑋⊤𝑣

]
)1/2 = (𝑣⊤ 𝔼

[
𝑋𝑋⊤]︸     ︷︷     ︸

Cov(𝑋,𝑋)

𝑣)1/2.

Thus, the 𝐿2 norm of ⟨𝑋, 𝑣⟩ is simply,

∥⟨𝑋, 𝑣⟩∥𝐿2 =
1√
𝑑 + 2

.

We now recall our definition of a random sub-Gaussian vector from class, where we let 𝑋 be a
𝑑-dimensional random vector with 𝔼𝑋 = 0.
Definition HW1.P6.16. 𝑋 is sub-Gaussian if for all 𝑣 ∈ 𝑆𝑑−1, ∥⟨𝑣, 𝑥⟩∥𝜓2 ≤ 𝐶

√
𝑣𝑇Σ𝑣.

In our case,
√
𝑣𝑇Σ𝑣 is precisely equal to the 𝐿2 norm of ⟨𝑋, 𝑣⟩. Finally, we proceed by calculating the

∥ · ∥𝜓2 of ⟨𝑋, 𝑣⟩. We have that

∥⟨𝑋, 𝑣⟩∥𝜓2 = ∥𝑋⊤𝑣∥𝜓2 = inf
{
𝑡 > 0 : 𝔼

[
exp

(
𝑣⊤𝑋𝑋⊤𝑣

𝑡2

)]
≤ 2

}
(By Jensen’s inequality) = inf

{
𝑡 > 0 : exp

(
𝔼

[
𝑣⊤𝑋𝑋⊤𝑣

𝑡2

] )
≤ 2

}
= inf

{
𝑡 > 0 : exp

(
1

(𝑑 + 2)𝑡2

)
≤ 2

}
= inf

{
𝑡 > 0 : 1

(𝑑 + 2)𝑡2 ≤ log(2)
}
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∥⟨𝑋, 𝑣⟩∥𝜓2 = inf

{
𝑡 > 0 : 1√

(𝑑 + 2) log(2)
≤ 𝑡

}
Thus, we will pick the 𝑡 the minimizes the objective while still being at least as large as 1√

(𝑑+2) log(2)
.

Therefore,

∥⟨𝑋, 𝑣⟩∥𝜓2 =
1√

(𝑑 + 2) log(2)
=

1√
log(2)

∥⟨𝑋, 𝑣⟩∥𝐿2 =⇒ ∥⟨𝑋, 𝑣⟩∥𝜓2 ≤ C ∥⟨𝑋, 𝑣⟩∥𝐿2 .
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Problem 8 (Non-asymptotic analysis of fixed design linear regression)
Consider a fixed design linear regression model. Let 𝑥1, ..., 𝑥𝑛 be fixed design vectors in ℝ𝑑.
Assume the response variables 𝑌1, ..., 𝑌𝑛 are independent, with 𝑌𝑖 − 𝔼𝑌𝑖 being sub-Gaussian
with parameter 𝜎 for all 𝑖 ∈ [𝑛]. That is, for all 𝜆 and 𝑖 ∈ [𝑛],

𝔼 exp(𝜆(𝑌𝑖 − 𝔼𝑌𝑖)) ≤ exp
(
𝜆2𝜎2

2

)
.

We are interested in a high-probability (with respect to the realization of 𝑌1, ..., 𝑌𝑛) upper
bound on the excess risk (which measures the statistical performance of some proposed
estimator compared to the population best estimator):

ℰ(𝛽) = 𝔼

[
1
𝑛

𝑛∑
𝑖=1

(𝑥⊤𝑖 𝛽 − 𝑌𝑖)2
]
− inf

𝛽∈ℝ𝑑
𝔼

[
1
𝑛

𝑛∑
𝑖=1

(𝑥⊤𝑖 𝛽 − 𝑌𝑖)2
]
.

Let 𝛽̂ be the ordinary least squares estimator in ℝ𝑑. Show that, with probability at least 1 − 𝛿,

ℰ(𝛽̂) ≤
𝜎2

(
𝑑 + 2

√
2𝑑 log(1/𝛿) + 2 log(1/𝛿)

)
𝑛

.

What conclusions can be drawn about 𝔼ℰ(𝛽)?
Hint: Assume without loss of generality that the sample covariance matrix is invertible. Then,
simplify the expression for the excess risk and apply one of the concentration inequalities
discussed in the lectures.

Let us rewrite the excess risk in matrix form. Let 𝑋 ∈ ℝ𝑛×𝑑 be a matrix with 𝑥⊤
𝑖

as its rows. Additionally,
let 𝛽★ represent the optimal 𝛽 ∈ ℝ𝑑. Then, we have

ℰ(𝛽) = 𝔼

[
1
𝑛

𝑛∑
𝑖=1

(𝑥⊤𝑖 𝛽 − 𝑌𝑖)2
]
− inf

𝛽∈ℝ𝑑
𝔼

[
1
𝑛

𝑛∑
𝑖=1

(𝑥⊤𝑖 𝛽 − 𝑌𝑖)2
]
=

1
𝑛
𝔼

[
∥𝑋𝛽 − 𝑌∥2

2 − ∥𝑋𝛽★ − 𝑌∥2
2
]
.

Recall that the ordinary least squares solution 𝛽̂ is (𝑋⊤𝑋)−1𝑋⊤𝑌. Note that the optimal solution is in
expectation, i.e., 𝔼 [𝑌 − 𝑋𝛽★] = 0. Then we have

ℰ(𝛽̂) = 1
𝑛
𝔼

[
∥𝑋 𝛽̂ − 𝑌∥2

2 − ∥𝑋𝛽★ − 𝑌∥2
2
]
=

1
𝑛
𝔼

∥ 𝑋(𝑋⊤𝑋)−1𝑋⊤︸           ︷︷           ︸
𝑃

𝑌 − 𝑌∥2
2 − ∥𝑋𝛽★ − 𝑌∥2

2


We note that 𝑃 = 𝑋(𝑋⊤𝑋)−1𝑋⊤ is a symmetric, projection matrix such that 𝑃⊤ = 𝑃 and 𝑃2 = 𝑃,

𝑃⊤ = (𝑋(𝑋⊤𝑋)−1𝑋⊤)⊤ = 𝑋(𝑋⊤𝑋)−1𝑋⊤ = 𝑃 and

𝑃2 = (𝑋(𝑋⊤𝑋)−1𝑋⊤)(𝑋(𝑋⊤𝑋)−1𝑋⊤) = (𝑋(𝑋⊤𝑋)−1𝑋⊤) = 𝑃.
We also observe that 𝑃𝑋𝛽 = 𝑋𝛽,

(𝑋(𝑋⊤𝑋)−1𝑋⊤)𝑋𝛽 = 𝑋𝛽.

Then we have

ℰ(𝛽̂) = 1
𝑛
𝔼

[
∥𝑃𝑌 − 𝑌∥2

2 − ∥𝑃𝑋𝛽★ − 𝑌∥2
2
]

24



=
1
𝑛
𝔼

[
𝑌⊤𝑃⊤𝑃𝑌 + 𝑌⊤𝑌 − 2𝑌⊤𝑃⊤𝑌 −

(
𝛽★⊤𝑋⊤𝑃⊤𝑃𝑋𝛽★ + 𝑌⊤𝑌 − 2𝛽★⊤𝑋⊤𝑃⊤𝑌

) ]
=

1
𝑛
𝔼

[
𝑌⊤𝑃⊤𝑃𝑌 − 2𝑌⊤𝑃⊤𝑌 − 𝛽★⊤𝑋⊤𝑃⊤𝑃𝑋𝛽★ + 2𝛽★⊤𝑋⊤𝑃⊤𝑌

) ]
=

1
𝑛
𝔼

[
𝑌⊤𝑃𝑌 + 𝔼 [𝑌]⊤ 𝑃𝔼 [𝑌] − 2𝔼 [𝑌]⊤ 𝑃𝑌

]
ℰ(𝛽̂) = 1

𝑛
𝔼

[
∥𝑃(𝑌 − 𝔼𝑌)∥2

2
]
.

Additionally, we introduce 𝑍 = 𝑌 − 𝔼𝑌 and 𝑃 = 𝑃/
√
𝑛. The excess risk then becomes

ℰ(𝛽̂) = 𝔼
[
∥𝑃𝑍∥2

2

]
Recall the following proposition which we proved in class.

Proposition HW1.P7.17. Let 𝑋 be a 𝑑-dimensional sub-Gaussian random vector such that for all 𝜆 ∈ ℝ,
𝑣 ∈ 𝑆𝑑−1,

𝔼[exp(𝜆⟨𝑣, 𝑋⟩)] ≤ exp
(
𝜆2𝑣𝑇Σ𝑣

2

)
.

where Σ = 𝔼𝑋𝑋⊤. Then, for all 𝛿 ∈ (0, 1) we have

Pr
(
∥𝑋∥ ≥

√
Tr(Σ) +

√
2𝜆max(Σ) log(1/𝛿)

)
≤ 𝛿.

Remark HW1.P7.18. Note that squaring both sides of the inequality in Proposition HW1.P7.17 results in

Pr

(
∥𝑋∥2

2 ≥
(√

Tr(Σ) +
√

2𝜆max(Σ) log(1/𝛿)
)2

)
≤ 𝛿

Pr
(
∥𝑋∥2

2 ≥ Tr(Σ) + 2
√

Tr(Σ)
√

2𝜆max(Σ) log(1/𝛿) + 2𝜆max(Σ) log(1/𝛿)
)
≤ 𝛿.

Then by Proposition HW1.P7.17 with 𝑋 = 𝑃𝑍 and Σ = 𝔼𝑍⊤𝑃⊤𝑃𝑍, we have that

Pr
(
∥𝑃𝑍∥2

2 < Tr(Σ) + 2
√

Tr(Σ)
√

2𝜆max(Σ) log(1/𝛿) + 2𝜆max(Σ) log(1/𝛿)
)
> 1 − 𝛿.

Let us analyze Tr(Σ) and 𝜆max(Σ). We note that

Σ = 𝔼𝑃𝑍𝑍⊤𝑃⊤ = 𝑃𝔼
[
𝑍𝑍⊤]

𝑃⊤,

and then since each entry in 𝑍 is independent (e.g., 𝑍𝑖 = 𝑌𝑖 −𝔼𝑌𝑖), 𝔼 [𝑍𝑍⊤] ⪯ 𝜎2𝐼𝑛 by the sub-Gaussianity
of 𝑌𝑖 . Then we have Σ ⪯ 𝜎2𝑃𝐼𝑛𝑃

⊤ = 𝜎2𝑃/𝑛 and since 𝑃 is a projection matrix, Tr(𝑃) = rank(𝑋) ≤ 𝑑 and
𝜆max = 1. Thus we are left with

Pr

(
∥𝑃𝑍∥2

2 ≤
𝑑 + 2

√
𝑑
√

2(1) log(1/𝛿) + 2(1) log(1/𝛿)
𝑛

)
> 1 − 𝛿

which implies that with probability at least 1 − 𝛿,

ℰ(𝛽̂) ≤
𝑑 + 2

√
2𝑑 log(1/𝛿) + 2 log(1/𝛿)

𝑛
.

25



STAT210B Theoretical Statistics March 6th, 2024

Homework # 2: Bounds for Random Matrices
Reece D. Huff

Regrades
When regrading, I only attach problems in which I did not receive 100%. If the mistake is minor, I
highlight my changes in purple. If the mistake is major, I highlight the entire problem in purple. I
provide the regrade justification in the gray box below the problem statement.

Notation
Let c and C represent a small and large positive constant, respectively (e.g., c = 10−5 and C = 105). Unless
otherwise specified, we use the notation [𝑛] to represent the set of integers {1, ..., 𝑛}. Given we matrix
𝐴 ∈ ℝ𝑚×𝑛 , we use ∥𝐴∥ to denote the operator norm,

| |𝐴| |op = sup
𝑣∈𝑆𝑛−1

| |𝐴𝑣 | |2 = sup
𝑢∈𝑆𝑚−1 ,𝑣∈𝑆𝑛−1

𝑢⊺𝐴𝑣 = 𝜆max(𝐴).

Problem 1 (Covering the unit cube in ℓ∞)
Consider the cube [−1, 1]𝑑 in ℝ𝑑, equipped with the distance

𝜌(𝜃, 𝜃′) = ∥𝜃 − 𝜃′∥∞ = max
𝑖∈[𝑑]

|𝜃𝑖 − 𝜃′
𝑖 |.

Show that the covering numbers of this set at scale 𝜀 are bounded by
(
1 + 1

𝜀

)𝑑.
Theorem HW2.P1.

Consider the cube [−1, 1]𝑑 in ℝ𝑑, equipped with the distance

𝜌(𝜃, 𝜃′) = ∥𝜃 − 𝜃′∥∞ = max
𝑖∈[𝑑]

|𝜃𝑖 − 𝜃′
𝑖 |.

Then the 𝜀-covering number is upper-bounded by,

𝒩
(
[−1, 1]𝑑 , 𝜌, 𝜀

)
≤

(
1 + 1

𝜀

)𝑑
.

Proof. To begin we consider dividing each coordinate 𝜃𝑖 for all 𝑖 ∈ [𝑑] into 𝑀 := ⌊1/𝜀⌋ 5 + 1 sub-intervals.
We define the centers of these sub-intervals as 𝜃(𝑗)

𝑖
= −1 + 2(𝑗 − 1)𝜀 for all 𝑖 ∈ [𝑑] and 𝑗 ∈ [𝑀] and note

5For a scalar 𝛼 ∈ ℝ, we use ⌊𝛼⌋ to represent the “floor” or the greatest integer less than or equal to 𝛼.
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that the length of each sub-interval is at most 2𝜀. It then follows that for any 𝜃𝑖 ∈ [0, 1], there exists some
𝑗 ∈ [𝑀] such that

���𝜃(𝑗)
𝑖

− 𝜃𝑖
��� ≤ 𝜀 for all 𝑖 ∈ [𝑑], which implies that

𝒫 ([−1, 1], 𝜌, 2𝜀) ≤𝒩 ([−1, 1], 𝜌, 𝜀) ≤ 1 + 1
𝜀

for all coordinates implying that

𝒩
(
[−1, 1]𝑑 , 𝜌, 𝜀

)
≤

(
1 + 1

𝜀

)𝑑
.

Problem 2 (Sample covariance of bounded distributions)
Assume that 𝑋1, . . . , 𝑋𝑛 are independent zero mean random vectors in ℝ𝑑 with covariance
matrix Σ such that ∥𝑋𝑖 ∥ ≤ 𝑟 almost surely. Show that there is an absolute constant 𝑐 > 0 such
that, with probability at least 1 − 𝛿,




 1

𝑛

𝑛∑
𝑖=1

𝑋𝑖𝑋
𝑇
𝑖 − Σ






 ≤ 𝑐

(√
𝑟2∥Σ∥(log(𝑑) + log(1/𝛿))

𝑛
+
𝑟2(log(𝑑) + log(1/𝛿))

𝑛

)
.

Hint: You might need the following computation. Recall that the variance of a symmetric
random matrix 𝐴 is given by Var(𝐴) = 𝔼𝐴2 − (𝔼𝐴)2. Show that Var(𝐴) ⪰ 0.

Theorem HW2.P1.

Let 𝑋1, . . . , 𝑋𝑛 be independent zero mean random vectors in ℝ𝑑 with covariance matrix Σ such
that ∥𝑋𝑖 ∥ ≤ 𝑟 almost surely. Then we have that with probability at least 1 − 𝛿,




 1

𝑛

𝑛∑
𝑖=1

𝑋𝑖𝑋
𝑇
𝑖 − Σ






 ≤ c

(√
𝑟2∥Σ∥(log(𝑑) + log(1/𝛿))

𝑛
+
𝑟2(log(𝑑) + log(1/𝛿))

𝑛

)
where c > 0 is an absolute constant.

Regrade justification: Tiny issue with bounding the operator norm with the triangle inequality.
My original solution was correct, just a tad loose.

Proof. To begin we show that the variance of a symmetric random matrix 𝐴 is positive semi-definite.
Given a symmetric random matrix 𝐴 ∈ ℝ𝑑×𝑑, we note that

Var(𝐴) = 𝔼 [𝐴 − 𝔼𝐴]2 = 𝔼
[
𝐴2] − 2𝔼 [𝐴𝔼𝐴] + 𝔼

[
(𝔼𝐴)2

]
= 𝔼𝐴2 − (𝔼𝐴)2.

It that follows that for any 𝑣 in the unit sphere 𝑆𝑑−1,

𝑣⊤Var(𝐴)𝑣 = 𝑣⊤
(
𝔼𝐴2 − (𝔼𝐴)2

)
𝑣 = 𝑣⊤𝔼𝐴2𝑣 − 𝑣⊤(𝔼𝐴)2𝑣 = 𝔼 ∥𝐴𝑣∥2

2 − ∥𝔼𝐴𝑣∥2
2 .

By Jensen’s inequality (i.e., 𝜑(𝔼 [𝑋]) ≤ 𝔼 [𝜑(𝑋)]), we have that 𝔼 ∥𝐴𝑣∥2
2 ≥ ∥𝔼𝐴𝑣∥2

2 and thus

𝑣⊤Var(𝐴)𝑣 ≥ 0 for all 𝑣 ∈ 𝑆𝑑−1 implying that Var(𝐴) ⪰ 0.

We will leverage the Matrix Bernstein’s inequality to complete this proof (Theorem HW2.P1.1).
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Theorem HW2.P1.1 (Bernstein bound for random matrices [Wai19]). Let {𝑄𝑖}𝑛𝑖=1 be a sequence of independent,
zero-mean, symmetric random 𝑑 × 𝑑-matrices that satisfy ∥𝑄𝑖 ∥op ≤ 𝐾 almost surely for all 𝑖. Then, for every
𝑡 ≥ 0, we have

Pr

(




 1
𝑛

𝑛∑
𝑖=1

𝑄𝑖






 ≥ 𝑡

)
≤ 2𝑑 exp

(
− 𝑛𝑡2

2(𝜎2 + 𝐾𝑡)

)
≤ 2𝑑 exp

(
−min

{
𝑛𝑡2

2𝜎2 ,
𝑛𝑡

2𝐾

})
.

where 𝜎2 = 1
𝑛



∑𝑛
𝑖=1 𝔼𝑄

2
𝑖



 is the norm of the matrix variance of the sum.
We use Theorem HW2.P1.1 with 𝑄𝑖 = 𝑋𝑖𝑋

⊤
𝑖
− Σ. First we show that 𝑄𝑖 is in fact zero-mean

𝔼 [𝑄𝑖] = 𝔼
[
𝑋𝑖𝑋

⊤
𝑖 − Σ

]
= 𝔼

[
𝑋𝑖𝑋

⊤
𝑖

]
− Σ = 0 for all 𝑖 ∈ [𝑛].

with variance

𝔼
[
𝑄2
𝑖

]
= 𝔼

[
(𝑋𝑖𝑋⊤

𝑖 − Σ)2
]
= 𝔼

[
𝑋𝑖𝑋

⊤
𝑖 𝑋𝑖𝑋

⊤
𝑖 + ΣΣ − 2Σ𝑋𝑖𝑋⊤

𝑖

]
= 𝔼

[
∥𝑋𝑖 ∥2

2𝑋𝑖𝑋
⊤
𝑖

]
− ΣΣ ⪯ ∥𝑋𝑖 ∥2

2𝔼
[
𝑋𝑖𝑋

⊤
𝑖

]
𝔼

[
𝑄2
𝑖

]
⪯ 𝑟2Σ.

Next we calculate the norm of the matrix variance of the sum

𝜎2 =
1
𝑛






 𝑛∑
𝑖=1

𝔼𝑄2
𝑖






 ≤ 1
𝑛

𝑛∑
𝑖=1



𝔼𝑄2
𝑖



 ≤ 1
𝑛

𝑛∑
𝑖=1



𝑟2Σ


 ≤ 𝑟2 ∥Σ∥ .

Finally we note that

∥𝑋𝑋⊤∥op = ∥𝑋∥2
2 which follows from the def. ∥𝑋𝑋⊤∥op = sup

𝑣∈𝑆𝑑−1

𝑣⊤𝑋𝑋⊤𝑣 = sup
𝑣∈𝑆𝑑−1

(𝑋⊤𝑣)2.

Clearly, 𝑋⊤𝑣 is maximized when 𝑣 points in the same direction as 𝑋. Then we have 𝑣★ = 𝑋/∥𝑋∥2

∥𝑋𝑋⊤∥op =
𝑋⊤

∥𝑋∥2
𝑋𝑋⊤ 𝑋

∥𝑋∥2
=

(∥𝑋∥2
2

∥𝑋∥2

) (∥𝑋∥2
2

∥𝑋∥2

)
= ∥𝑋∥2

2

This implies that

∥𝑄𝑖 ∥op = ∥𝑋𝑖𝑋⊤
𝑖 − Σ∥op ≤ ∥𝑋𝑖𝑋⊤

𝑖 ∥op + ∥Σ∥op≤ 2𝑟2 for all 𝑖 ∈ [𝑛]

as


𝑋𝑖𝑋⊤

𝑖




op = ∥𝑋𝑖 ∥2

2 ≤ 𝑟2.
Then, we use Theorem HW2.P1.1 to solve for 𝑡 in terms of 𝛿 for the two different regimes

𝛿 = 2𝑑 exp
(
−𝑛𝑡

2

2𝜎2

)
=⇒ log

(
𝛿

2𝑑

)
= −𝑛𝑡

2

2𝜎2 =⇒ 𝑡 =

√
2𝜎2

𝑛
log

(
2𝑑
𝛿

)
𝛿 = 2𝑑 exp

(
− 𝑛𝑡2𝐾

)
=⇒ log

(
𝛿

2𝑑

)
= − 𝑛𝑡2𝐾 =⇒ 𝑡 =

2𝐾
𝑛

log
(

2𝑑
𝛿

)
Taken together this implies that with at least probability 1 − 𝛿




 1

𝑛

𝑛∑
𝑖=1

𝑄𝑖







op

≤

√
2𝜎2

𝑛
log

(
2𝑑
𝛿

)
+ 2𝐾
𝑛

log
(

2𝑑
𝛿

)
≤

√
2𝑟2 ∥Σ∥

𝑛
log

(
2𝑑
𝛿

)
+ 4𝑟2

𝑛
log

(
2𝑑
𝛿

)
which implies the desired result that with at least probability 1 − 𝛿




 1

𝑛

𝑛∑
𝑖=1

𝑋𝑖𝑋
𝑇
𝑖 − Σ






 ≤ c

(√
𝑟2∥Σ∥(log(𝑑) + log(1/𝛿))

𝑛
+
𝑟2(log(𝑑) + log(1/𝛿))

𝑛

)
.

where c > 0 is an absolute constant.
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Problem 3 (Norm of sub-exponential random vectors)
Let 𝑋 be a zero-mean random vector in ℝ𝑑 with covariance Σ, which satisfies that for all
𝑣 ∈ 𝑆𝑑−1,

∥⟨𝑋, 𝑣⟩∥𝜓1 ≤ c∥⟨𝑋, 𝑣⟩∥𝐿2 ,

where c > 0 is an absolute constant.

1. Show that there is an absolute constant C > 0 such that for all 𝛿 ∈ (0, 1/2), with
probability at least 1 − 𝛿,

∥𝑋∥ ≤ C
(√

Tr(Σ) log(1/𝛿) + log(1/𝛿)
√
𝜆max(Σ)

)
.

2. Compare your result with what one can get if the 𝜀-net argument is applied together
with the union bound to upper bound the norm of ∥𝑋∥.

Hint: Adapt the analysis of the sub-Gaussian sample covariance matrix.

Recall the following Lemmas and Facts we proved in class:

Lemma HW2.P2.2. Fix some probability density 𝜋 on Θ, and let 𝑓 (𝑋, 𝜃) be a function with 𝑋 being a random
variable and 𝜃 ∈ Θ ⊆ ℝ𝑑. Then, with probability at least 1 − 𝛿, it holds that for any probability density 𝜌 on Θ for
which 𝐾𝐿(𝜌∥𝜋) < ∞,

𝔼𝜃∼𝜌 𝑓 (𝑋, 𝜃) ≤ 𝔼𝜃∼𝜌 log𝔼𝑋 𝑒
𝑓 (𝑋,𝜃) + 𝐾𝐿(𝜌∥𝜋) + log(1/𝛿). (76)

Fact HW2.P2.3. If 𝑌 ∼ 𝒩𝑑(𝜇, 𝜎2𝐼𝑑) and 𝐴 ∈ ℝ𝑑×𝑑 then 𝔼 [𝑌⊤𝐴𝑌] = 𝜎2 Tr𝐴 + 𝜇⊤𝐴𝜇.

Fact HW2.P2.4. If 𝜌,𝜋 are the densities of 𝒩𝑑(𝑣, 𝐼𝑑/𝛽),𝒩𝑑(0, 𝐼𝑑/𝛽), respectively, and ∥𝑣∥2 = 1, then 𝐾𝐿(𝜌∥𝜋) =
𝛽/2.

Fact HW2.P2.5. If 𝑥 ∈ ℝ𝑑 and Σ ∈ ℝ𝑑×𝑑 is symmetric and positive semidefinite then sup𝑣∈𝑆𝑑−1 ⟨𝑥, 𝑣⟩ = ∥𝑥∥2
and sup𝑣∈𝑆𝑑−1 𝑣⊤Σ𝑣 = 𝜆max(Σ).

Fact HW2.P2.6. The function 𝑓 (𝑥) = 𝑎𝑥 + 𝑏
𝑥 for 𝑎, 𝑏, 𝑥 > 0 is minimized at 𝑥∗ =

√
𝑏/𝑎 and has 𝑓 (𝑥∗) = 2

√
𝑎𝑏.

Fact HW2.P2.7. If 𝑋 is a random vector with 𝔼 [𝑋𝑋⊤] = Σ then, for any 𝑣 ∈ ℝ𝑛 , ∥⟨𝑋, 𝑣⟩∥2
𝐿2

= 𝑣⊤Σ𝑣.

Finally, beyond the Lemmas and Facts we proved in class, we will also need the following inequality for
sub-exponential random vectors.

Lemma HW2.P2.8 (Zero mean sub-exponential inequality). Let 𝑍 be a zero-mean sub-exponential random
variable. Then, we have that

𝔼
[
exp(𝜆𝑋)

]
≤ exp

(
C2 ∥𝑍∥2

𝜓1
𝜆2

)
for all 𝜆 ≤ 1

C ∥𝑍∥𝜓1

,

where C > 0 is an absolute constant.

Proof. Proving this inequality is a standard application of the sub-exponential properties.
By Proposition 2.7.1 Property (d.) in [Ver18, Vershynin’s High-dimensional probability], we have that for
any sub-exponential random variable 𝑍, we have that

𝔼 exp(|𝑍 |/𝐾4) ≤ 2
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where 𝐾4 > 0 is an absolute constant.
By Proposition 2.7.1 Property (e.) in [Ver18, Vershynin’s High-dimensional probability], we have that for
a zero-mean (𝔼𝑍 = 0) sub-exponential random variable 𝑍, we have that

𝔼 exp(𝜆𝑍) ≤ exp
(
𝐾2

5𝜆
2
)

for all 𝜆 such that |𝜆| ≤ 1
𝐾5

where 𝐾5 > 0 is an absolute constant.
In the properties in Proposition 2.7.1 in [Ver18, Vershynin’s High-dimensional probability], there exists
an absolute constant C such that property 𝑖 implies property 𝑗 with parameter 𝐾 𝑗 ≤ C𝐾𝑖 for any two
properties.
We set 𝐾4 = ∥𝑍∥𝜓1 and 𝐾5 = C𝐾4 to get the desired result, i.e.,

𝔼 exp(𝜆𝑍) ≤ exp
(
C2 ∥𝑍∥2

𝜓1
𝜆2

)
for all 𝜆 ≤ 1

C ∥𝑍∥𝜓1

.

Now we are ready to prove the following theorem.
Theorem HW2.P2.1a

Show that there is an absolute constant C > 0 such that for all 𝛿 ∈ (0, 1/2), with probability at least
1 − 𝛿,

∥𝑋∥2 ≤ C
(√

Tr(Σ) log(1/𝛿) + log(1/𝛿)
√
𝜆max(Σ)

)
.

Proof. To begin, we use Lemma HW2.P2.2 with 𝑓 (𝑋, 𝜃) = 𝜂 ⟨𝑋, 𝜃⟩ and 𝜌 and 𝜋 being the densities of
𝒩𝑑(𝑣,Σ/𝛽) and 𝒩𝑑(0,Σ/𝛽), respectively, where 𝑣 ∈ 𝑆𝑑−1 and 𝛽 > 0 is a parameter to be chosen later. We
have that

𝔼𝜃∼𝜌[𝜂 ⟨𝑋, 𝜃⟩]︸            ︷︷            ︸
Term 1

≤ 𝔼𝜃∼𝜌 log𝔼𝑋 𝑒
𝜂⟨𝑋,𝜃⟩︸                 ︷︷                 ︸

Term 2

+𝐾𝐿(𝜌∥𝜋)︸    ︷︷    ︸
Term 3

+ log(1/𝛿).

We will bound each term separately. Starting with Term 1, we have

𝔼𝜃∼𝜌[𝜂 ⟨𝑋, 𝜃⟩] = 𝜂𝔼𝜃∼𝜌[⟨𝑋, 𝜃⟩] = 𝜂
〈
𝑋,𝔼𝜃∼𝜌[𝜃]

〉
= 𝜂 ⟨𝑋, 𝑣⟩ .

For Term 2, we leverage Lemma HW2.P2.8 with the sub-exponential random variable 𝑍 = ⟨𝑋, 𝜃⟩ with
parameter 𝜂. We have that

𝔼𝜃∼𝜌 log𝔼𝑋 𝑒
𝜂⟨𝑋,𝜃⟩ ≤ 𝔼𝜃∼𝜌 log exp

(
C2 ∥⟨𝑋, 𝜃⟩∥2

𝜓1
𝜂2

)
𝔼𝜃∼𝜌 log𝔼𝑋 𝑒

𝜂⟨𝑋,𝜃⟩ ≤ C2𝜂2𝔼𝜃∼𝜌[∥⟨𝑋, 𝜃⟩∥2
𝜓1
] for all |𝜂| ≤ 1

C ∥⟨𝑋, 𝜃⟩∥𝜓1

.

Now we analyze 𝔼𝜃∼𝜌[∥⟨𝑋, 𝜃⟩∥2
𝜓1
]. By assumption and Fact HW2.P2.7, we have that

𝔼𝜃∼𝜌[∥⟨𝑋, 𝜃⟩∥2
𝜓1
] ≤ 𝔼𝜃∼𝜌

[
c2 ∥⟨𝑋, 𝜃⟩∥2

𝐿2

]
≤ 𝔼𝜃∼𝜌

[
∥⟨𝑋, 𝜃⟩∥2

𝐿2

]
= 𝔼𝜃∼𝜌[𝜃⊤Σ𝜃].

We can then expand 𝜃⊤Σ𝜃 as

𝔼𝜃∼𝜌
[
𝜃⊤Σ𝜃

]
= 𝔼𝜃∼𝜌

[ (
𝜃 − 𝑣 + 𝑣

)⊤
Σ
(
𝜃 − 𝑣 + 𝑣

) ]
= 𝔼𝜃∼𝜌

[ (
𝜃 − 𝑣

)⊤
Σ
(
𝜃 − 𝑣

)
+ 𝑣⊤Σ𝑣 + 2

(
𝜃 − 𝑣

)⊤
Σ𝑣

]
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noting that the cross term 2
(
𝜃 − 𝑣

)⊤
Σ𝑣 vanishes due to the expectation,

i.e., 𝔼𝜃∼𝜌
[ (
𝜃 − 𝑣

)⊤
Σ𝑣

]
=

(
𝔼𝜃∼𝜌 [𝜃] − 𝑣

)⊤
Σ𝑣 = 0. We then have that

𝔼𝜃∼𝜌
[
𝜃⊤Σ𝜃

]
= 𝔼𝜃∼𝜌

[ (
𝜃 − 𝑣

)⊤
Σ
(
𝜃 − 𝑣

) ]
+ 𝑣⊤Σ𝑣.

Finally, we note that the random vector 𝜃 − 𝑣 follows a Gaussian distribution with mean zero and
covariance Σ/𝛽. We can then apply Fact HW2.P2.3 to get that

𝔼𝜃∼𝜌
[
𝜃⊤Σ𝜃

]
= 𝔼𝜃∼𝜌

[ (
𝜃 − 𝑣

)⊤
Σ
(
𝜃 − 𝑣

) ]
+ 𝑣⊤Σ𝑣 =

Tr(Σ)
𝛽

+ 𝑣⊤Σ𝑣.

Thus, the overall bound for Term 2 is

𝔼𝜃∼𝜌 log𝔼𝑋 exp(𝜂 ⟨𝑋, 𝜃⟩) ≤ C2𝜂2
(Tr(Σ)

𝛽
+ 𝑣⊤Σ𝑣

)
for all |𝜂| ≤ 1

C ∥⟨𝑋, 𝜃⟩∥𝜓1

.

For Term 3, we use Fact HW2.P2.4 to get that

𝐾𝐿(𝜌∥𝜋) =
𝛽

2 .

Combining the bounds for each term, we have that

𝜂 ⟨𝑋, 𝑣⟩ ≤ C2𝜂2
(Tr(Σ)

𝛽
+ 𝑣⊤Σ𝑣

)
+

𝛽

2 + log(1/𝛿) for all |𝜂| ≤ 1
C ∥⟨𝑋, 𝜃⟩∥𝜓1

.

Taking the supremum over all 𝑣 ∈ 𝑆𝑑−1, we are able to leverage Fact HW2.P2.5 to get that

𝜂∥𝑋∥2 = 𝜂 sup
𝑣∈𝑆𝑑−1

⟨𝑋, 𝑣⟩ ≤ C2𝜂2
(Tr(Σ)

𝛽
+ sup
𝑣∈𝑆𝑑−1

{
𝑣⊤Σ𝑣

})
+

𝛽

2 + log(1/𝛿)

=⇒ ∥𝑋∥2 ≤ C2𝜂
(Tr(Σ)

𝛽
+ 𝜆max(Σ)

)
+

𝛽

2𝜂 +
log(1/𝛿)

𝜂
for all |𝜂| ≤ 1

C ∥⟨𝑋, 𝜃⟩∥𝜓1

.

Unfortunately, we are not able to directly optimize over 𝜂 in the above inequality. For example, if we
used Fact HW2.P2.6 to optimize for 𝜂, we would get that 𝜂 = 2

√
log(1/𝛿)/C2𝜆max(Σ) which may be much larger

than 1/C∥⟨𝑋,𝜃⟩∥𝜓1 as 𝛿 approaches zero. Thus, we seek to set 𝜂 to meet the sub-exponential condition, i.e.,
|𝜂| ≤ 1

C∥⟨𝑋,𝜃⟩∥𝜓1
, and then optimize over 𝛽 to get the best bound. To begin, we note that

∥⟨𝑋, 𝜃⟩∥2
𝜓1

= 𝔼𝜃∼𝜌[∥⟨𝑋, 𝜃⟩∥2
𝜓1
] ≤ Tr(Σ)

𝛽
+ 𝑣⊤Σ𝑣 ≤ Tr(Σ)

𝛽
+ 𝜆max(Σ)

=⇒ ∥⟨𝑋, 𝜃⟩∥𝜓1 ≤

√
Tr(Σ)
𝛽

+ 𝜆max(Σ).

It then follows that

∥⟨𝑋, 𝜃⟩∥𝜓1 ≤

√
Tr(Σ)
𝛽

+ 𝜆max(Σ) =⇒ |𝜂| ≤ 1

C
√

Tr(Σ)
𝛽 + 𝜆max(Σ)

≤ 1
C ∥⟨𝑋, 𝜃⟩∥𝜓1
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thus, we set 𝜂 = 1/
(
C
√

Tr(Σ)
𝛽 +𝜆max(Σ)

)
to meet the sub-exponential condition. The norm of 𝑋 is then bounded

by

∥𝑋∥2 ≤
C2

(
Tr(Σ)
𝛽 + 𝜆max(Σ)

)
C
√

Tr(Σ)
𝛽 + 𝜆max(Σ)

+
𝛽C

√
Tr(Σ)
𝛽 + 𝜆max(Σ)

2 + log(1/𝛿)C

√
Tr(Σ)
𝛽

+ 𝜆max(Σ)

∥𝑋∥2 ≤ C
√

Tr(Σ)/𝛽 + 𝜆max(Σ)
(
1 + 𝛽

2 + log(1/𝛿)
)
≤ C

√
Tr(Σ)/𝛽 + 𝜆max(Σ)

(𝛽
2 + log(1/𝛿)

)
.

To finish the proof, we optimize over 𝛽 to get the best bound. We start with a bit of algebra to get that

∥𝑋∥2 ≤ C
√

Tr(Σ)/𝛽 + 𝜆max(Σ)
(𝛽

2 + log(1/𝛿)
)
≤ C

(√
Tr(Σ)/𝛽 +

√
𝜆max(Σ)

) (𝛽
2 + log(1/𝛿)

)
≤ C

(√
Tr(Σ)
𝛽

𝛽 +
√
𝜆max(Σ)𝛽 +

√
Tr(Σ)
𝛽

log(1/𝛿) +
√
𝜆max(Σ) log(1/𝛿)

)
= C

(√
Tr(Σ)𝛽 +

√
𝜆max(Σ)𝛽 +

√
Tr(Σ)
𝛽

log(1/𝛿) +
√
𝜆max(Σ) log(1/𝛿)

)
We set 𝛽 = log(1/𝛿) to get that

∥𝑋∥2 ≤ C

(√
Tr(Σ) log(1/𝛿) +

√
𝜆max(Σ) log(1/𝛿) +

√
Tr(Σ)

log(1/𝛿) log(1/𝛿) +
√
𝜆max(Σ) log(1/𝛿)

)
= C

(
2
√

Tr(Σ) log(1/𝛿) + 2
√
𝜆max(Σ) log(1/𝛿)

)
∥𝑋∥2 ≤ C

(√
Tr(Σ) log(1/𝛿) +

√
𝜆max(Σ) log(1/𝛿)

)
as desired.

𝜀-net Argument
We aim to bound the norm of a zero-mean random vector 𝑋 in ℝ𝑑 with covariance Σ. We will use the
𝜀-net argument and compare it with the variational approach. This follows directly from the proof of
Theorem 4.4.5. in [Ver18, Vershynin’s High-dimensional probability].
Approximation via an 𝜀-net: Consider an arbitrary 𝜀 ∈ (0, 1/2) and denote by 𝒩𝜀 an 𝜀-net of the unit
sphere 𝑆𝑑−1, characterized by its cardinality 𝑁𝜀 := |𝒩𝜀 |. Invoking Exercise 4.4.3 from Vershynin, the
following inequality is obtained:

∥𝑋∥ ≤ 1
1 − 2𝜀 max

𝑣∈𝑁𝜀

⟨𝑋, 𝑣⟩.

The factor 1
1−2𝜀 is regarded as an absolute constant, as the specific choice of 𝜀 does not influence the

resulting bound.
Concentration: Considering a fixed vector 𝑣 ∈ 𝑆𝑑−1, then the inner product ⟨𝑋, 𝑣⟩ is a zero-mean
sub-exponential random variable—coupled with the equivalence of Proposition 2.7.1 (a) and (d) from
Vershynin—yields the following probability bound for any positive 𝑢:

Pr(⟨𝑋, 𝑣⟩ ≥ 𝑢) ≤ exp
(

−𝑐𝑢
∥⟨𝑋, 𝑣⟩∥𝜓1

)
≤ exp

(
−𝑐𝑢

∥⟨𝑋, 𝑣⟩∥𝐿2

)
≤ exp

(
−𝑐𝑢√
𝑣⊤Σ𝑣

)
32



Pr(⟨𝑋, 𝑣⟩ ≥ 𝑢) ≤ exp

(
−𝑐𝑢√
𝜆max(Σ)

)
where 𝑐 is an absolute constant.
Union Bound: By applying the union bound across the elements of the 𝜀-net, we derive the following

Pr
(
max
𝑣∈𝒩𝜀

⟨𝑋, 𝑣⟩ > 𝑢

)
≤

∑
𝑣∈𝒩𝜀

Pr(⟨𝑋, 𝑣⟩ > 𝑢) ≤ 𝑁𝜀 exp

(
−𝑐𝑢√
𝜆max(Σ)

)
.

Parameter Selection: Corollary 4.2.13 from Vershynin ensures the existence of an 𝜀-net satisfying
𝑁𝜀 ≤ (1 + 2/𝜀)𝑑. Setting 𝑢 = 𝐶

√
𝜆max(Σ)(𝑑 + 𝑡) for a suitably large absolute constant 𝐶 such that 𝑐𝐶 ≤ 𝐶,

we obtain the following bound:

Pr
(
max
𝑣∈𝒩𝜀

⟨𝑋, 𝑣⟩ > 𝑢

)
≤ 𝑁𝜀 exp

(
−𝑐𝑢√
𝜆max(Σ)

)
≤ (1 + 2/𝜀)𝑑 exp

(
−𝑐𝐶

√
𝜆max(Σ)(𝑑 + 𝑡)√
𝜆max(Σ)

)
Pr

(
max
𝑣∈𝒩𝜀

⟨𝑋, 𝑣⟩ > 𝑢

)
≤ exp

(
𝑑 log(1 + 2/𝜀)

)
exp (−𝐶(𝑑 + 𝑡)) = exp

(
𝑑 log(1 + 2/𝜀) − 𝐶(𝑑 + 𝑡)

)
Pr

(
max
𝑣∈𝒩𝜀

⟨𝑋, 𝑣⟩ > 𝑢

)
≤ exp(−𝐶(𝑑 + 𝑡)) ≤ exp(−𝑡).

Now we set 𝛿 = exp(−𝑡) to solve for 𝑡 in terms of 𝛿. As such, we have that 𝑡 = log(1/𝛿). Thus, we have
that with probability at least 1 − 𝛿,

Pr
(
max
𝑣∈𝒩𝜀

⟨𝑋, 𝑣⟩ > 𝑢

)
≤ 𝛿 =⇒ max

𝑣∈𝒩𝜀

⟨𝑋, 𝑣⟩ ≤ max
𝑣∈𝑆𝑑−1

⟨𝑋, 𝑣⟩ = ∥𝑋∥ ≤ 𝑢 = 𝐶
√
𝜆max(Σ)(𝑑 + log(1/𝛿)).

Comparison with the Variational Approach:
The bound reveals that the 𝜀-net approach exhibits a dependency on the dimension 𝑑. Defining 𝑟(Σ) as
the effective rank of Σ, i.e., 𝑟(Σ) = Tr(Σ)/𝜆max(Σ), we can compare the two approaches. The variational
approach can be rewritten as

∥𝑋∥ ≤ 𝐶
√
𝜆max(Σ)

(√
𝑟(Σ) log(1/𝛿) + log(1/𝛿)

)
.

However it is still difficult to compare the two approaches directly. If we return to our derivation of the
variational approach, we can set 𝛽 = 𝑟(Σ) to get that

∥𝑋∥ ≤ 𝐶
√
𝜆max(Σ)

(
𝑟(Σ) + log(1/𝛿)

)
.

This shows that the variational approach is more efficient than the 𝜀-net approach, as 𝑟(Σ) ≤ 𝑑.
Importantly, sometimes the effective rank 𝑟(Σ) can be much smaller than the dimension 𝑑, which would
make the variational approach significantly more efficient.
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Problem 4 (Gaussian matrix series)
Assume that 𝑔1, . . . , 𝑔𝑛 are independent standard Gaussian random variables and let
𝐴1, . . . , 𝐴𝑛 be a sequence of deterministic symmetric 𝑑 by 𝑑 matrices.

1. Using the matrix Chernoff bound, show that

𝔼






 𝑛∑
𝑖=1

𝑔𝑖𝐴𝑖






 ≤

√√√
2 log(2𝑑)






 𝑛∑
𝑖=1

𝐴2
𝑖






.
2. Show that

𝔼






 𝑛∑
𝑖=1

𝑔𝑖𝐴𝑖






2

≥





 𝑛∑
𝑖=1

𝐴2
𝑖






 .
3. Use Gaussian concentration to prove a high probability upper bound on



∑𝑛
𝑖=1 𝑔𝑖𝐴𝑖



 .
4. Compare the tails you achieve with the tails that follow from the matrix Chernoff bound.
5. Assume that 𝐴𝑖 are rank one matrices of the form 𝐴𝑖 = 𝑢𝑖𝑢

𝑇
𝑖

, where 𝑢𝑖 ∈ 𝑆𝑑−1. Show that
for some absolute constant 𝑐 > 0 we can bound

𝔼






 𝑛∑
𝑖=1

𝑔𝑖𝐴𝑖






 ≤ c
√
𝑛.

Note that this bound does not depend on log(𝑑).
6. * Provide a collection of matrices𝐴1, . . . , 𝐴𝑛 , showing that the multiplicative log(𝑑)-factor

cannot be improved in general.

Hint: You might find it helpful to upper bound the operator norm in terms of the Frobenius
norm. In the last bullet point you might find it useful to provide a lower bound on the
maximum of 𝑛 independent standard Gaussian random variables.

Theorem HW2.P3.1

Let 𝑔1, . . . , 𝑔𝑛 represent 𝑛 independent standard Gaussian random variables and let 𝐴1, . . . , 𝐴𝑛 be
a sequence of 𝑛 deterministic symmetric 𝑑 by 𝑑 matrices. Then we have that

𝔼






 𝑛∑
𝑖=1

𝑔𝑖𝐴𝑖






 ≤

√√√
2 log(2𝑑)






 𝑛∑
𝑖=1

𝐴2
𝑖






.
Proof. We begin by recalling the matrix Chernoff bound.
Lemma HW2.P3.9 (Matrix Chernoff bound). Consider a finite sequence A𝑘 of fixed square matrices in ℝ𝑑×𝑑

and let 𝜉𝑘 be a finite sequence of independent standard normal random variables. Then, for all

Pr






∑

𝑘

𝜉𝑘A𝑘







op

≥ 𝑡

 ≤ 𝑑 · 𝑒−𝑡2/2𝜎2 where 𝜎2 =





∑
𝑘

A2
𝑘






op
.
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It then follows that

Pr

������





 𝑛∑

𝑖

𝑔𝑖𝐴𝑖







op

������ ≥ 𝑡

 ≤ 2𝑑 · 𝑒−𝑡2/2𝜎2︸        ︷︷        ︸
𝛿

=⇒ 𝛿 = 2𝑑 · 𝑒−𝑡2/2𝜎2

log(𝛿/2𝑑) = −𝑡2/2𝜎2

𝑡 =

√
2𝜎2 log(2𝑑/𝛿)

Therefore with non-zero probability, we have that

𝔼






 𝑛∑
𝑖

𝑔𝑖𝐴𝑖







op

≤

√√
2 log(2𝑑)





 𝑛∑
𝑖=1

𝐴2
𝑖






op
.

Theorem HW2.P3.2

Let 𝑔1, . . . , 𝑔𝑛 represent 𝑛 independent standard Gaussian random variables and let 𝐴1, . . . , 𝐴𝑛 be
a sequence of 𝑛 deterministic symmetric 𝑑 by 𝑑 matrices. Then we have that

𝔼






 𝑛∑
𝑖=1

𝑔𝑖𝐴𝑖






2

op

≥





 𝑛∑
𝑖=1

𝐴2
𝑖







op

.

Proof. To begin, by applying Jensen’s inequality twice we have that

𝔼






 𝑛∑
𝑖=1

𝑔𝑖𝐴𝑖






2

op

≥ 𝔼








(
𝑛∑
𝑖=1

𝑔𝑖𝐴𝑖

)2








op

≥







𝔼
(
𝑛∑
𝑖=1

𝑔𝑖𝐴𝑖

)2








op

=







𝔼 𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑔𝑖𝑔𝑗𝐴𝑖𝐴 𝑗








op

.

We note that all of the cross-terms cancel due to the independence of 𝑔𝑖 for all 𝑖 ∈ [𝑛], which implies that

𝔼






 𝑛∑
𝑖=1

𝑔𝑖𝐴𝑖






2

op

≥





 𝑛∑
𝑖=1

𝔼𝑔2
𝑖 𝐴

2
𝑖







op

=






 𝑛∑
𝑖=1

𝐴2
𝑖







op

=⇒ 𝔼






 𝑛∑
𝑖=1

𝑔𝑖𝐴𝑖






2

op

≥





 𝑛∑
𝑖=1

𝐴2
𝑖







op

.

Theorem HW2.P3.3

Let 𝑔1, . . . , 𝑔𝑛 represent 𝑛 independent standard Gaussian random variables and let 𝐴1, . . . , 𝐴𝑛 be
a sequence of 𝑛 deterministic symmetric 𝑑 by 𝑑 matrices. Then we have that




 𝑛∑

𝑖=1
𝑔𝑖𝐴𝑖







op

≤ 𝔼






 𝑛∑
𝑖=1

𝑔𝑖𝐴𝑖







op

+

√√
2 log(2/𝛿)

𝑛∑
𝑖=1

∥𝐴𝑖 ∥2
op

with at least probability 1 − 𝛿.

We begin by recalling the Lemma we proved in class regarding Gaussian concentration.
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Lemma HW2.P3.10. If 𝑋 ∼ 𝒩𝑑(0, 𝐼𝑑) and 𝑓 : ℝ𝑑 → ℝ is 𝐿-Lipschitz then,

Pr( 𝑓 (𝑋) − 𝔼 𝑓 (𝑋) ≥ 𝑡) ≤ exp
(
− 𝑡2

2𝐿2

)
⇔ Pr(| 𝑓 (𝑋) − 𝔼 𝑓 (𝑋)| ≥ 𝑡) ≤ 2 exp

(
− 𝑡2

2𝐿2

)
. (77)

We know utilize the above lemma with 𝑋 = 𝑔 where 𝑔 := [𝑔1, ..., 𝑔𝑛] and 𝑓 (𝑔) =


∑𝑛

𝑖=1 𝑔𝑖𝐴𝑖




op. Then we
have

Pr©­«
������





 𝑛∑
𝑖=1

𝑔𝑖𝐴𝑖







op

− 𝔼






 𝑛∑
𝑖=1

𝑔𝑖𝐴𝑖







op

������ ≥ 𝑡
ª®¬ ≤ 2 exp

(
− 𝑡2

2𝐿2

)
︸          ︷︷          ︸

𝛿

where

𝐿 ≥
| 𝑓 (𝑔(1)) − 𝑓 (𝑔(2))|
∥𝑔(1) − 𝑔(2)∥2

for all 𝑔(1), 𝑔(2) ∼ 𝒩(0, 𝐼𝑑).

Now we solve for 𝑡 in terms of 𝛿 and arrive at

𝛿 = 2 exp
(
−𝑡2/2𝐿2

)
=⇒ log(𝛿/2) = −𝑡2/2𝐿2 =⇒ 𝑡 =

√
2𝐿2 log(2/𝛿).

Then we have with probability at least 1 − 𝛿




 𝑛∑
𝑖=1

𝑔𝑖𝐴𝑖







op

− 𝔼






 𝑛∑
𝑖=1

𝑔𝑖𝐴𝑖







op

≤
√

2𝐿2 log(2/𝛿)

Finally we solve for 𝐿 with��� 𝑓 (𝑔(1)) − 𝑓 (𝑔(2))
��� = ������






 𝑛∑
𝑖=1

𝑔
(1)
𝑖
𝐴𝑖







op

−





 𝑛∑
𝑖=1

𝑔
(2)
𝑖
𝐴𝑖







op

������ ≤





 𝑛∑
𝑖=1

𝑔
(1)
𝑖
𝐴𝑖 −

𝑛∑
𝑖=1

𝑔
(2)
𝑖
𝐴𝑖







op

=






 𝑛∑
𝑖=1

𝑔
(1)
𝑖
𝐴𝑖 − 𝑔

(2)
𝑖
𝐴𝑖







op

=






 𝑛∑
𝑖=1

(
𝑔
(1)
𝑖

− 𝑔
(2)
𝑖

)
𝐴𝑖







op

≤

√√
𝑛∑
𝑖=1

(
𝑔
(1)
𝑖

− 𝑔
(2)
𝑖

)2





 𝑛∑
𝑖=1

𝐴2
𝑖







op

Therefore we are left with��� 𝑓 (𝑔(1)) − 𝑓 (𝑔(2))
��� ≤ 


𝑔(1)𝑖 − 𝑔

(2)
𝑖





2

√√
𝑛∑
𝑖=1

∥𝐴𝑖 ∥2
op =⇒ 𝐿 =

√√
𝑛∑
𝑖=1

∥𝐴𝑖 ∥2
op ≥

�� 𝑓 (𝑔(1)) − 𝑓 (𝑔(2))
��


𝑔(1)𝑖 − 𝑔

(2)
𝑖





2

Substititing 𝐿2 into our high probability bound results in that with probability at least 1 − 𝛿




 𝑛∑
𝑖=1

𝑔𝑖𝐴𝑖







op

− 𝔼






 𝑛∑
𝑖=1

𝑔𝑖𝐴𝑖







op

≤
√

2𝐿2 log(2/𝛿) ≤

√√
2 log(2/𝛿)

𝑛∑
𝑖=1

∥𝐴𝑖 ∥2
op
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Theorem HW2.P3.5

Let 𝑔1, . . . , 𝑔𝑛 represent 𝑛 independent standard Gaussian random variables and let 𝐴1, . . . , 𝐴𝑛 be
a sequence of 𝑛 one matrices of the form 𝐴𝑖 = 𝑢𝑖𝑢

𝑇
𝑖
, where 𝑢𝑖 ∈ 𝑆𝑑−1. Then we have that

𝔼






 𝑛∑
𝑖=1

𝑔𝑖𝐴𝑖







op

≤ c
√
𝑛

for some absolute constant c > 0.

Proof. We begin with square of the left hand side and apply Jensen’s inequality twice

𝔼






 𝑛∑
𝑖=1

𝑔𝑖𝐴𝑖






2

op

= 𝔼






 𝑛∑
𝑖=1

𝑔𝑖𝑢𝑖𝑢
⊤
𝑖






2

op

≥







𝔼
(
𝑛∑
𝑖=1

𝑔𝑖𝑢𝑖𝑢
⊤
𝑖

)2








op

=







𝔼 𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑔𝑖𝑔𝑗𝑢𝑖𝑢
⊤
𝑖 𝑢𝑗𝑢

⊤
𝑗








op

(again by independence of 𝑔𝑖 for all 𝑖 ∈ [𝑛]) =






 𝑛∑
𝑖=1

𝔼𝑔2
𝑖 𝑢𝑖𝑢

⊤
𝑖 𝑢𝑖𝑢

⊤
𝑖







op

which implies that

𝔼






 𝑛∑
𝑖=1

𝑔𝑖𝐴𝑖






2

op

≥





 𝑛∑
𝑖=1

𝔼𝑔2
𝑖 𝑢𝑖𝑢

⊤
𝑖







op

=






 𝑛∑
𝑖=1

𝑢𝑖𝑢
⊤
𝑖







op

= sup
𝑣∈𝑆𝑑−1

𝑣⊤

(
𝑛∑
𝑖=1

𝑢𝑖𝑢
⊤
𝑖

)
𝑣 = sup

𝑣∈𝑆𝑑−1

𝑛∑
𝑖=1

𝑣⊤𝑢𝑖𝑢
⊤
𝑖 𝑣

= sup
𝑣∈𝑆𝑑−1

𝑛∑
𝑖=1

(𝑢⊤𝑖 𝑣)
2

𝔼






 𝑛∑
𝑖=1

𝑔𝑖𝐴𝑖






2

op

≥
𝑛∑
𝑖=1

(𝑢⊤𝑖 𝑣)
2 for all 𝑣 ∈ 𝑆𝑑−1.

Since the last inequality holds for 𝑣 ∈ 𝑆𝑑−1, we set 𝑣 to −𝑢𝑖 for all 𝑖 ∈ [𝑛] such that

𝔼






 𝑛∑
𝑖=1

𝑔𝑖𝐴𝑖






2

op

≥ −𝑛 =⇒ 𝔼






 𝑛∑
𝑖=1

𝑔𝑖𝐴𝑖







op

≤ c
√
𝑛

where c = 1 > 0 is an absolute constant.
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Problem 5 (Non-asymptotic analysis of ridge regression)
Consider the random design linear model

𝑌 = ⟨𝑋, 𝛽∗⟩ + 𝜉,

where 𝛽∗ and 𝑋 are in ℝ𝑑, 𝜉 is a zero mean random noise with variance 𝜎2 independent of
𝑋. Let Σ = 𝔼𝑋𝑋𝑇 and assume that it is invertible. Assume that ∥𝑋∥ ≤ 𝑟 with probability
one, where 𝑟 > 0 is some constant. We observe a sample (𝑋1, 𝑌1), . . . , (𝑋𝑛 , 𝑌𝑛) of independent
copies of the random pair (𝑋,𝑌). Fix 𝜆 > 0 and consider the ridge regression estimator

𝛽̂𝜆 = arg min
𝛽∈ℝ𝑑

(
1
𝑛

𝑛∑
𝑖=1

(𝑌𝑖 − ⟨𝛽, 𝑋𝑖⟩)2 + 𝜆∥𝛽∥2

)
= (Σ̂𝑛 + 𝜆𝐼𝑑)−1 · 1

𝑛

𝑛∑
𝑖=1

𝑌𝑖𝑋𝑖 ,

where Σ̂𝑛 = 1
𝑛

∑𝑛
𝑖=1 𝑋𝑖𝑋

𝑇
𝑖

is the empirical matrix of second moments and 𝐼𝑑 is the 𝑑 by 𝑑

identity matrix. We are interested in upper bounding

𝔼




Σ1/2(𝛽̂𝜆 − 𝛽∗)



2

2
,

where the expectation is taken with respect to the random observations (𝑋𝑖 , 𝑌𝑖), 𝑖 = 1, . . . , 𝑛.

Part 1. Show the following decomposition

𝔼




Σ1/2
(
𝛽̂𝜆 − 𝛽∗

) 


2

2
≤ 𝜆2𝔼

(
𝛽∗⊤(Σ̂𝑛 + 𝜆𝐼𝑑)−1Σ(Σ̂𝑛 + 𝜆𝐼𝑑)−1𝛽∗

)
+ 𝜎2

𝑛
𝔼Tr

(
(Σ̂𝑛 + 𝜆𝐼𝑑)−1Σ

)
. (78)

Part 2. We want to understand how much we lose if we replace the sample covariance matrix
Σ̂𝑛 by the population matrix Σ in the above formulas. Our final goal will be to show
that we lose at most a small multiplicative factor. Returning to the population level
quantities, show that

𝜆2
(
𝛽∗⊤(Σ + 𝜆𝐼𝑑)−1Σ(Σ + 𝜆𝐼𝑑)−1𝛽∗

)
≤ 𝜆

(
𝛽∗⊤(Σ + 𝜆𝐼𝑑)−1Σ𝛽∗

)
= inf

𝛽∈ℝ𝑑

(
𝑅(𝛽) + 𝜆∥𝛽∥2 − 𝑅(𝛽∗)

)
.

where 𝑅(𝛽) = 𝔼(𝑌 − ⟨𝑋, 𝛽⟩)2 is the prediction risk of 𝛽. This would imply that the
population analog of Equation (78) is

inf
𝛽∈ℝ𝑑

(
𝑅(𝛽) + 𝜆∥𝛽∥2 − 𝑅(𝛽∗)

)
+ 𝜎2

𝑛
Tr

(
(Σ + 𝜆𝐼𝑑)−1Σ

)
.

Part 3. Quantify the error from replacing Σ̂𝑛 with Σ. Start with the second term. We want to
show that for all 𝑣 ∈ 𝑆𝑑−1,

𝔼𝑣⊤Σ1/2(Σ̂𝑛 + 𝜆𝐼𝑑)−1Σ1/2𝑣 ≤ (1 + Δ)(𝑣⊤Σ1/2(Σ + 𝜆𝐼𝑑)−1Σ1/2𝑣),

where Δ = Δ(𝑟, 𝑛,𝜆) is a “small” term. To do so, apply the matrix Bernstein inequality
to analyze the matrix (Σ + 𝜆𝐼𝑑)−1/2(Σ̂𝑛 + 𝜆𝐼𝑑)(Σ + 𝜆𝐼𝑑)−1/2, and obtain control over its
inverse. This will imply uniform control over 𝑣⊤Σ1/2(Σ̂𝑛 + 𝜆𝐼𝑑)−1Σ1/2𝑣 and the entire
second term.
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Part 4. * Repeat a similar analysis with a possibly different error term Δ to replace the
sample covariance by the population covariance in the first term of the upper bound
Equation (78).

Part 5. Try to interpret (informally) the final bound by discussing the performance of ridge
regression depending on 𝜆.

Hints: For the first inequality we need to exploit the explicit formulas for𝑌 and 𝛽̂𝜆 together with
the fact that 𝜉 is independent of𝑋. You might also need to use that (Σ̂𝑛+𝜆𝐼𝑑)−1Σ̂𝑛(Σ̂𝑛+𝜆𝐼𝑑)−1 ⪯
(Σ̂𝑛 + 𝜆𝐼𝑑)−1 together with Tr(𝐴𝐵) ≤ Tr(𝐴𝐶) for PSD matrices 𝐴, 𝐵, 𝐶 with 𝐵 ⪯ 𝐶.

Regrade Justification: I did not have time to complete this problem. Below is my solution that
closely follows the provided solution.
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STAT210B Theoretical Statistics April 5th, 2024

Homework # 3: Empirical Processes and Applications
Reece D. Huff

Regrade
I did not submit this homework originally, so I am submitting it now. I have completed most of the
problems.

Notation
Let c and C represent a small and large positive constant, respectively (e.g., c = 10−5 and C = 105). Unless
otherwise specified, we use the notation [𝑛] to represent the set of integers {1, ..., 𝑛}.

Problem 1 (VC dimension)
Part 1. Show that the VC dimension of the set induced by axis aligned rectangles in ℝ𝑝 is

equal to 2𝑝.
Part 2. Show that the VC dimension of the family of sets induced by all convex polygons

on the real plane, without any restriction on the number of vertices, has infinite VC
dimension.

Part 3. For a scalar 𝑡 ∈ ℝ, consider the class of functions ℱ = {𝑥 ↦→ sign(sin(𝑡𝑥)) : 𝑡 ∈ ℝ}.
Prove that ℱ has infinite VC dimension. (This shows that VC dimension is not always
equal to the number of parameters of a function class.)

Hint: For 2, you may start with a collection of points on the unit circle.

Part 1. Axis-aligned rectangles.
In this analysis, we delve into the VC dimension of various function classes:

• Axis-aligned rectangles in ℝ𝑝 . The VC dimension of this family is deduced to be precisely 2𝑝.
Consdier the positive point set 𝑃 = {𝑒𝑖}𝑝𝑖=1 in ℝ𝑝 and the negative point set 𝑃′ = {−𝑒𝑖}𝑝𝑖=1. We define
a set 𝑇 as the union of positive and negative point sets, 𝑇 = 𝑃 ∪ 𝑃′ (containing 2𝑝 points). Any
subset 𝑆 of 𝑇 can be uniquely selected by an axis-aligned rectangle within the subspace defined by
𝑆. Now consider the next largest set that contains all of these elements, but one more arbitruary
point 𝑇′ = 𝑃 ∪ 𝑃′ ∪ {𝑥}. Any subset 𝑆′ of 𝑇′ can be shattered by an axis-aligned rectangle in ℝ𝑝+1,
as the additional dimension allows for the inclusion of the extra point. However, the set 𝑇′ cannot
be shattered by any axis-aligned rectangle in ℝ𝑝 , as the extra point will always be excluded. This
implies that the VC dimension of axis-aligned rectangles in ℝ𝑝 is 2𝑝.

• Families of all convex polygons. For any integer 𝑛, consider the set 𝑃 = {(sin(2𝜋𝑘/𝑛), cos(2𝜋𝑘/𝑛)) :
𝑘 ∈ [𝑛]}, representing 𝑛 equidistant points on the unit circle. Any subset 𝑆 of these points can be
shattered by a convex polygon crafted by connecting the points sequentially, thereby including 𝑆
and excluding its complement 𝑆𝑐 .
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Formally, let 𝑆 = {𝑝1, . . . , 𝑝𝑘} be a subset of 𝑃. Let 𝑥 =
∑𝑘
𝑖=1 𝛼𝑖𝑝𝑖 be a convex combination of the

points in 𝑆 with
∑𝑘
𝑖 𝛼𝑘 = 1. Let 𝑦 be any point on the unit circle not in 𝑆. Then 𝑦 is not in the convex

hull of 𝑆, because

𝑥 · 𝑦 =

(
𝑘∑
𝑖=1

𝛼𝑖𝑝𝑖

)
· 𝑦 ≤

𝑘∑
𝑖=1

𝛼𝑖 |𝑝𝑖 · 𝑦 | < 1.

Therefore the convex hull of 𝑆 can shatter any subset of 𝑃, implying that the VC dimension of the
family of sets induced by all convex polygons on the real plane is infinite.

• TODO
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Problem 2 (Classification and population risk bounds)
Consider the binary classification problem with feature space 𝒳 ⊆ ℝ𝑝 and two classes
𝒴 = {1,−1}. Assume that there is some unknown probability distribution 𝑃𝑋,𝑌 over 𝒳 ×𝒴.
Let 𝜂(𝑥) = 𝔼[𝑌 |𝑋 = 𝑥]. The Bayes optimal rule 𝑓 ∗

𝐵
is given by 𝑓 ∗

𝐵
(𝑥) = sign(𝜂(𝑥)) (assume that

𝜂(𝑋) ≠ 0 with probability one). Show the following:

Part 1. The Bayes optimal classifier indeed minimizes the population risk𝑅( 𝑓 ) = Pr( 𝑓 (𝑋) ≠ 𝑌)
among all (measurable) functions mapping from 𝒳 to 𝒴. Here, the probability is
computed with respect to 𝑃𝑋,𝑌 .

Part 2. Show that for any classifier 𝑓 : 𝒳 → 𝒴 it holds that

𝑅( 𝑓 ) − 𝑅( 𝑓 ∗𝐵) = 𝔼[|𝜂(𝑋)| · 𝕀{ 𝑓 (𝑋) ≠ 𝑓 ∗𝐵(𝑋)}].

Part 3. Assume that there is a finite set of classifiers ℱ such that 𝑓 ∗
𝐵
∈ ℱ . Assume also that

there is some ℎ > 0 such that |𝜂(𝑋)| ≥ ℎ with probability one. Show that there is an
absolute constant 𝑐 such that, with probability 1 − 𝛿, (where 𝛿 ∈ (0, 1/2)), it holds that

𝑅( 𝑓 ) − 𝑅( 𝑓 ∗𝐵) ≤ 𝑐
log(|ℱ |) + log(1/𝛿)

𝑛ℎ
,

where

𝑓 = arg min
𝑓 ∈ℱ

𝑛∑
𝑖=1

𝕀{ 𝑓 (𝑋𝑖) ≠ 𝑌𝑖}.

is any empirical risk minimizer constructed via the i.i.d sample (𝑋𝑖 , 𝑌𝑖)𝑛𝑖=1 sampled
from 𝑃𝑋,𝑌 . Compare this result with the bound we obtained earlier in the class in the
special case where 𝑌 = 𝑓 ∗

𝐵
(𝑋) with probability one.

Hint: In the proof of 3, apply the Bernstein inequality together with the union bound to the
set of functions {(𝑥, 𝑦) ↦→ 𝕀[ 𝑓 (𝑥) ≠ 𝑦] − 𝕀[ 𝑓 ∗

𝐵
(𝑥) ≠ 𝑦] : 𝑓 ∈ ℱ }.

Part 1.
Proof. Let 𝑓 : 𝒳 → 𝒴 be any measurable function. The population risk 𝑅( 𝑓 ) is defined as the probability
that 𝑓 (𝑋) does not equal 𝑌, that is,

𝑅( 𝑓 ) = Pr( 𝑓 (𝑋) ≠ 𝑌) = 𝔼
[
𝟙 𝑓 (𝑋)≠𝑌

]
,

where 𝟙{ 𝑓 (𝑋)≠𝑌} is the indicator function that is 1 if 𝑓 (𝑋) ≠ 𝑌 and 0 otherwise.
By the law of total probability, we have

Pr( 𝑓 (𝑋) ≠ 𝑌 |𝑋 = 𝑥) = Pr( 𝑓 (𝑥) ≠ 𝑌 |𝑋 = 𝑥, 𝑌 = 1)Pr(𝑌 = 1|𝑋 = 𝑥)
+ Pr( 𝑓 (𝑥) ≠ 𝑌 |𝑋 = 𝑥, 𝑌 = −1)Pr(𝑌 = −1|𝑋 = 𝑥)

Pr( 𝑓 (𝑋) ≠ 𝑌 |𝑋 = 𝑥) = 𝟙 𝑓 (𝑥)≠1 Pr(𝑌 = 1|𝑋 = 𝑥) + 𝟙 𝑓 (𝑥)≠−1 Pr(𝑌 = −1|𝑋 = 𝑥)

which can be simplified to

Pr( 𝑓 (𝑥) ≠ 𝑌 |𝑋 = 𝑥) =
{

Pr(𝑌 = −1|𝑋 = 𝑥) if 𝑓 (𝑥) = 1,
Pr(𝑌 = 1|𝑋 = 𝑥) if 𝑓 (𝑥) = −1.

In order to minimize the above quantity, we should choose 𝑓 (𝑥) to be 1 if 𝜂(𝑥) > 0 and −1 if 𝜂(𝑥) < 0.
This is the Bayes optimal rule 𝑓 ∗

𝐵
(𝑥) = sign(𝜂(𝑥)).
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Part 2.
Proof. To establish the relationship between the risk of any classifier 𝑓 and the Bayes optimal classifier 𝑓 ∗

𝐵
,

we start by expressing the risk difference:

𝑅( 𝑓 ) − 𝑅( 𝑓 ∗𝐵) = Pr( 𝑓 (𝑋) ≠ 𝑌) − Pr
(
𝑓 ∗𝐵(𝑋) ≠ 𝑌

)
= 𝔼

[
𝟙 𝑓 (𝑋)≠𝑌

]
− 𝔼

[
𝟙 𝑓 ∗

𝐵
(𝑋)≠𝑌

]
= 𝔼

[
𝟙 𝑓 (𝑋)≠𝑌 − 𝟙 𝑓 ∗

𝐵
(𝑋)≠𝑌

]
.

Now, we note that 𝟙 𝑓 (𝑋)≠𝑌 − 𝟙 𝑓 ∗
𝐵
(𝑋)≠𝑌 is nonzero only when 𝑓 (𝑋) ≠ 𝑓 ∗

𝐵
(𝑋), and in such cases, it equals

|𝜂(𝑋)| since 𝜂(𝑋) is nonzero with probability one. Therefore, we have:

𝑅( 𝑓 ) − 𝑅( 𝑓 ∗𝐵) = 𝔼
[
|𝜂(𝑋)| · 𝟙 𝑓 (𝑋)≠ 𝑓 ∗

𝐵
(𝑋)

]
.

This completes the proof.

Part 3.
Proof. Given the optimality of 𝑓 , we have 𝑅𝑛( 𝑓 ) ≤ 𝑅𝑛( 𝑓 ∗𝐵). Let us define the excess risk process as
𝐸( 𝑓 ) = 𝑅( 𝑓 ) − 𝑅( 𝑓 ∗

𝐵
) and its empirical counterpart as 𝐸𝑛( 𝑓 ) = 𝑅𝑛( 𝑓 ) − 𝑅𝑛( 𝑓 ∗𝐵). By the optimality of 𝑓 , we

note that the excess risk of 𝑓 as
𝐸( 𝑓 ) ≤ 𝐸( 𝑓 ) − 𝐸𝑛( 𝑓 ).

Fix a classifier 𝑓 ∈ ℱ and denote 𝑍𝑖( 𝑓 ) := 𝟙 𝑓 (𝑋𝑖)≠𝑌𝑖 − 𝟙 𝑓 ∗
𝐵
(𝑋𝑖)≠𝑌𝑖 . The difference 𝐸( 𝑓 ) − 𝐸𝑛( 𝑓 ) can be written

as 𝔼 [𝑍( 𝑓 )] − 1
𝑛

∑𝑛
𝑖=1 𝑍𝑖( 𝑓 ), where 𝑍( 𝑓 ) := 𝑍1( 𝑓 ).

Applying Bernstein’s inequality, we find that with probability at least 1 − 𝛿,

𝐸( 𝑓 ) − 𝐸𝑛( 𝑓 ) ≤

√
2𝜎2

𝑓
log(1/𝛿)
𝑛

+ 2
3𝐵 𝑓

log(1/𝛿)
𝑛

,

where Var(𝑍( 𝑓 )) ≤ 𝜎2
𝑓

and |𝑍( 𝑓 ) − 𝔼 [𝑍( 𝑓 )] | ≤ 𝐵 𝑓 . We can take 𝐵 𝑓 = 2, but 𝜎2
𝑓

should depend on 𝑓 .
Since 𝑍( 𝑓 )2 = 𝟙 𝑓 (𝑋)≠ 𝑓 ∗

𝐵
(𝑋), and using the Massart noise condition |𝜂(𝑋)| ≥ ℎ, we have

Var(𝑍( 𝑓 )) ≤ 𝔼
[
𝑍( 𝑓 )2

]
= Pr

(
𝑓 (𝑋) ≠ 𝑓 ∗𝐵(𝑋)

)
≤ 1
ℎ
𝐸[|𝜂(𝑋)| · 𝟙 𝑓 (𝑋)≠ 𝑓 ∗

𝐵
(𝑋)] =

1
ℎ
𝐸( 𝑓 ) := 𝜎2

𝑓
.

Substituting these values into the Bernstein bound and using the union bound over all 𝑓 ∈ ℱ , we get
with probability at least 1 − 𝛿,

𝐸( 𝑓 ) − 𝐸𝑛( 𝑓 ) ≤
√

2𝐸( 𝑓 ) log(|ℱ |/𝛿)
𝑛ℎ

+
2 log(|ℱ |/𝛿)

𝑛
.

For the empirical risk minimizer 𝑓 , this implies

𝐸( 𝑓 ) ≤ 𝐸( 𝑓 ) − 𝐸𝑛( 𝑓 ) ≤
√

2𝐸( 𝑓 ) log(|ℱ |/𝛿)
𝑛ℎ

+
2 log(|ℱ |/𝛿)

𝑛
≤ 2 max


√

2𝐸( 𝑓 ) log(|ℱ |/𝛿)
𝑛ℎ

,
2 log(|ℱ |/𝛿)

𝑛


Solving for 𝐸( 𝑓 ) when the first term achieves the maximum gives 𝐸( 𝑓 ) ≤ 8 log(|ℱ |/𝛿)

𝑛ℎ
. When the second

term achieves the maximum, we have 𝐸( 𝑓 ) ≤ 4 log(|ℱ |/𝛿)
𝑛 ≤ 4 log(|ℱ |/𝛿)

𝑛ℎ
, since ℎ ≤ 1.
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Overall, with probability at least 1 − 𝛿, we have

𝐸( 𝑓 ) = 𝑅( 𝑓 ) − 𝑅( 𝑓 ∗𝐵) ≤ 8
log(|ℱ |) + log(1/𝛿)

𝑛ℎ
.

In the "noiseless" setting where 𝑌 = 𝑓 ∗
𝐵
(𝑋), we have 𝑅( 𝑓 ∗

𝐵
) = 0 and |𝜂(𝑋)| = 1 with probability 1, allowing

us to take ℎ = 1. In this case, the result simplifies to

𝑅( 𝑓 ) ≤ 8
log(|ℱ |) + log(1/𝛿)

𝑛
,

recovering the bound from Lecture 5 up to constants. Thus, our result is more general as it accounts for
noise through the parameter ℎ and reduces to the noiseless setting as ℎ → 1.
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Problem 3 (Empirical processes and random design linear regression)
Consider the random design linear regression model. That is, assume we observe an i.i.d.
sample of (𝑋𝑖 , 𝑌𝑖)𝑛𝑖=1 sampled according to some unknown distribution 𝑃𝑋,𝑌 over ℝ𝑑 ×ℝ. For
any 𝑤 ∈ ℝ𝑑 define its population risk 𝑅(𝑤) = 𝔼(𝑌 − ⟨𝑋, 𝑤⟩)2. Fix 𝑏 > 0 and consider the
constrained least squares regression problem to the Euclidean ball of radius 𝑏,

𝑤̂ = arg min
𝑤∈ℝ𝑑 :∥𝑤∥2≤𝑏

1
𝑛

𝑛∑
𝑖=1

(𝑌𝑖 − ⟨𝑋𝑖 , 𝑤⟩)2.

(Note, that we do not assume the model 𝑌 = ⟨𝑋, 𝑤∗⟩ + 𝜉, where 𝜉 is an independent zero
mean noise.)
Assume that there are absolute constants 𝑚, 𝑟 > 0 such that with probability one, we have
|𝑌 | ≤ 𝑚 and ∥𝑋∥2 ≤ 𝑟. Using the Dudley integral method, show that there is some absolute
constant 𝑐 > 0 such that, with probability at least 1 − 𝛿,

𝑅(𝑤̂) − inf
𝑤∈ℝ𝑑 :∥𝑤∥2≤𝑏

𝑅(𝑤) ≤ 𝑐
(
𝑚2 + 𝑟2𝑏2

) √
𝑑 + log(1/𝛿)

𝑛
.

Is there a way to improve this bound with other methods we studied? Can we remove the
explicit dependence on the dimension?
Hint: You might require several tools we developed so far including symmetrization,
contraction, and bounded differences inequality.

Proof. Let 𝑤∗ ∈ arg min𝑤∈ℝ𝑑 :∥𝑤∥2≤𝑏 𝑅(𝑤) be an optimal solution in the population risk sense. We want to
bound the excess risk 𝑅(𝑤̂) − 𝑅(𝑤∗).
To begin, we recall in class (Proposition 16.1.) that we proved that

𝑅(𝑤̂) − 𝑅(𝑤∗) ≤ 2 sup
𝑤∈ℝ𝑑 :∥𝑤∥2≤𝑏

|𝑅𝑛(𝑤) − 𝑅(𝑤)|

Then we define the function 𝐺(𝑍) = 𝐺(𝑍1, . . . , 𝑍𝑛) := sup𝑤∈𝐵𝑑2 (𝑏)
|𝑅𝑛(𝑤) − 𝑅(𝑤)|. We will verify that

𝐺 satisfies the bounded differences condition with some parameter 𝐿. First, using the inequality
(𝑎 + 𝑏)2 ≤ 2𝑎2 + 2𝑏2 and the Cauchy-Schwarz inequality, we observe that

(𝑌 − ⟨𝑋, 𝑤⟩)2 ≤ 2𝑌2 + 2⟨𝑋, 𝑤⟩2 ≤ 2𝑚2 + 2𝑟2𝑏2.

Next, we examine the difference 𝐺(𝑍) − 𝐺(𝑍−𝑖), where 𝑍−𝑖 denotes the sequence 𝑍 with the 𝑖-th element
replaced:

𝐺(𝑍) − 𝐺(𝑍−𝑖) = sup
𝑤∈𝐵𝑑2 (𝑏)

|𝑅𝑛(𝑤;𝑍) − 𝑅(𝑤)| − sup
𝑣∈𝐵𝑑2 (𝑏)

|𝑅𝑛(𝑣;𝑍−𝑖) − 𝑅(𝑣)|

≤ sup
𝑤∈𝐵𝑑2 (𝑏)

|𝑅𝑛(𝑤;𝑍) − 𝑅(𝑤) − (𝑅𝑛(𝑤;𝑍−𝑖) − 𝑅(𝑤))|

= sup
𝑤∈𝐵𝑑2 (𝑏)

���� 1𝑛 (𝑌𝑖 − ⟨𝑋𝑖 , 𝑤⟩)2 −
1
𝑛
(𝑌′
𝑖 − ⟨𝑋′

𝑖 , 𝑤⟩)
2
����

≤ 4(𝑚2 + 𝑟2𝑏2)
𝑛

,
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which shows that 𝐺 satisfies the bounded differences condition with parameter 𝐿 =
4(𝑚2+𝑟2𝑏2)

𝑛 uniformly.
Applying the bounded differences inequality, we obtain that with probability at least 1 − 𝛿,

𝐺(𝑍) − 𝔼 [𝐺(𝑍)] ≤
√
𝑛𝐿2 log(1/𝛿)

2 ,

which can be simplified to

sup
𝑤∈𝐵𝑑2 (𝑏)

|𝑅𝑛(𝑤) − 𝑅(𝑤)| ≤ 𝔼

 sup
𝑤∈𝐵𝑑2 (𝑏)

|𝑅𝑛(𝑤) − 𝑅(𝑤)|
 + 4(𝑚2 + 𝑟2𝑏2)

√
log(1/𝛿)

𝑛
.

Next, we apply symmetrization to the first term on the RHS. By introducing Rademacher variables 𝜎𝑖
(Lecture 14, Lemma 3), we have

𝔼𝑋

[
sup

∥𝑤∥2≤𝑏

����� 1𝑛 𝑛∑
𝑖=1

(𝑌𝑖 − ⟨𝑋𝑖 , 𝑤⟩)2 − 𝑅(𝑤)
�����
]
≤ 2𝔼𝑋𝔼𝜎

[
sup

∥𝑤∥2≤𝑏

����� 1𝑛 𝑛∑
𝑖=1

𝜎𝑖(𝑌𝑖 − ⟨𝑋𝑖 , 𝑤⟩)2
�����
]
.

We derive this bound via

1
𝑛
𝔼

 sup
𝑤∈𝐵𝑑2 (𝑏)

𝑛∑
𝑖=1

𝜎𝑖(𝑌𝑖 − ⟨𝑋𝑖 , 𝑤⟩)2
 ≤ 1

𝑛
· 4𝑀𝔼

 sup
𝑤∈𝐵𝑑2 (𝑏)

𝑛∑
𝑖=1

𝜎𝑖(𝑌𝑖 − ⟨𝑋𝑖 , 𝑤⟩)


≤ 1
𝑛
· 4𝑀 ©­«𝔼

[
𝑛∑
𝑖=1

𝜎𝑖𝑌𝑖

]
+ 𝔼

 sup
𝑤∈𝐵𝑑2 (𝑏)

𝑛∑
𝑖=1

𝜎𝑖 ⟨𝑋𝑖 , 𝑤⟩
ª®¬

≤ 1
𝑛
· 4𝑀

(√
𝑛𝑚 +

√
𝑛𝑏𝑟

)
≤ 8

√
2𝑚

2 + 𝑟2𝑏2
√
𝑛

.

The initial inequality leverages the contraction principle, Ledoux-Talagrand’s Theorem 2 (Lecture 18),
to eliminate the quadratic term. This is achieved by applying a 2𝑀-Lipschitz continuous function
𝜑 : [−𝑀,𝑀] → ℝ, defined by 𝜑(𝑥) = 𝑥2, where 𝑀 is set to

√
2(𝑚2 + 𝑟2𝑏2).

The second step employs the triangle inequality to separate the empirical risk into two components.
The third step utilizes Jensen’s inequality to the first term, and a combination of the Cauchy-Schwarz
inequality with Jensen’s inequality for the second term.
The final step is derived by noting that the quantities

√
𝑚2 + 𝑟2𝑏2 and 𝑏𝑟

√
𝑚2 + 𝑟2𝑏2 are both bounded

above by 𝑚2 + 𝑟2𝑏2.
Combining the above steps, we obtain with probability at least 1 − 𝛿,

𝑅(𝑤̂) − 𝑅(𝑤∗) ≤ 𝑐
(
𝑚2 + 𝑟2𝑏2

) √
𝑑 + log(1/𝛿)

𝑛
,

where 𝑐 is an absolute constant that absorbs other constants.
To address the question of improving the bound or removing the explicit dependence on the dimension,
we could consider other methods such as localized Rademacher complexities or covering numbers that
adapt to the intrinsic dimensionality of the problem. For example, if the data lies in a lower-dimensional
subspace or exhibits certain sparsity, we might be able to obtain tighter bounds that reflect these
properties.
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Problem 4 (Gaussian width, Rademacher averages and Dudley integral)
Assume that 𝑇 ⊆ ℝ𝑑. Let

𝑅(𝑇) = 𝔼 sup
𝑡∈𝑇

𝑑∑
𝑖=1

𝜀𝑖𝑡𝑖 , 𝑊(𝑇) = 𝔼 sup
𝑡∈𝑇

𝑑∑
𝑖=1

𝑔𝑖𝑡𝑖 ,

be the Rademacher averages and the Gaussian width of 𝑇 respectively.

Part 1. Show that 𝑅(𝑇) ≤
√

𝜋
2𝑊(𝑇).

Part 2. Compare the values of 𝑅(𝑇) and𝑊(𝑇) when 𝑇 = 𝐵𝑑1 (i.e., it is the ℓ1 unit ball).
Part 3. Compute the Gaussian width of the set of 𝑠-sparse vectors. That is, show that there is

some absolute constant 𝑐 > 0 such that

𝑊(𝑇) ≤ 𝑐

√
𝑠 log

(
𝑒𝑑

𝑠

)
,

where
𝑇 = {𝑥 ∈ ℝ𝑑 : ∥𝑥∥0 ≤ 𝑠, ∥𝑥∥2 ≤ 1},

Part 4. Let 𝑇 be a convex hull of the set
{

𝑒𝑖√
1+log(𝑖)

: 𝑖 = 1, . . . , 𝑑
}
, where 𝑒𝑖 is the 𝑖-th standard

basis vector. Show that the Dudley integral upper bound is not sharp in this case.
That is, as 𝑑 grows, the Dudley integral∫ ∞

0

√
log(𝑁(𝑇, ∥ · ∥2, 𝜀)) 𝑑𝜀

goes to infinity, while𝑊(𝑇) is bounded by an absolute constant for all 𝑑.

Hint: For 1, it might be helpful to use that 𝔼|𝑔𝑖 | =
√

2
𝜋 . For 4, one can lower bound the size of

the covering numbers using appropriate packing numbers, which are easier to estimate (from
below).

Part 1.
Proof. Consider independent standard Gaussian variables 𝑔 = (𝑔1, . . . , 𝑔𝑑) and independent Rademacher
variables 𝜀 = (𝜀1, . . . , 𝜀𝑑). The Gaussian width𝑊(𝑇) can be expressed as

𝑊(𝑇) = 𝔼

[
sup
𝑡∈𝑇

𝑑∑
𝑖=1

𝑔𝑖𝑡𝑖

]
.

Since 𝑔𝑖 can be decomposed as 𝑔𝑖
𝑑
= 𝜀𝑖 |𝑔𝑖 |, we have

𝑊(𝑇) = 𝔼

[
sup
𝑡∈𝑇

𝑑∑
𝑖=1

𝜀𝑖 |𝑔𝑖 |𝑡𝑖

]
.

Applying Jensen’s inequality to the convex supremum function, we obtain

𝑊(𝑇) ≥ 𝔼

[
𝔼

[
sup
𝑡∈𝑇

𝑑∑
𝑖=1

𝜀𝑖 |𝑔𝑖 |𝑡𝑖

�����𝜀
] ]

=

√
𝜋
2𝔼

[
sup
𝑡∈𝑇

𝑑∑
𝑖=1

𝜀𝑖𝑡𝑖

]
=

√
𝜋
2 𝑅(𝑇),

where the last equality follows from the definition of Rademacher averages 𝑅(𝑇).
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Part 2.
Proof. For any vector 𝑣 ∈ ℝ𝑑 and 𝜃 ∈ 𝐵𝑑1 , the ℓ1 unit ball, Hölder’s inequality gives ⟨𝜃, 𝑣⟩ ≤ ∥𝜃∥1∥𝑣∥∞ =

∥𝑣∥∞. There exists 𝜃∗ ∈ 𝐵𝑑1 such that ⟨𝜃∗, 𝑣⟩ = ∥𝑣∥∞, specifically the vector that selects the largest
absolute value entry of 𝑣. Thus, we have sup𝜃∈𝐵𝑑1

⟨𝜃, 𝑣⟩ = ∥𝑣∥∞.
Consequently, the Rademacher averages for 𝐵𝑑1 are

𝑅(𝐵𝑑1) = 𝔼

sup
𝑡∈𝐵𝑑1

⟨𝜀, 𝑡⟩
 = 𝔼∥𝜀∥∞ = 1,

since ∥𝜀∥∞ = 1 for Rademacher sequences.
For the Gaussian width, we have

𝑊(𝐵𝑑1) = 𝔼

sup
𝑡∈𝐵𝑑1

⟨𝑔, 𝑡⟩
 = 𝔼∥𝑔∥∞,

where ∥𝑔∥∞ is the maximum absolute value of the Gaussian entries. Using bounds on the expected
maximum of Gaussian random variables, we obtain√

log 𝑑 ≤ 𝔼∥𝑔∥∞ ≤
√

2 log(2𝑑) ≤ 2
√

log 𝑑,

for 𝑑 ≥ 12. This implies𝑊(𝐵𝑑1) ≤
√

log 𝑑𝑅(𝐵𝑑1) so long as 𝑑 ≥ 12.

Part 3.
Proof. Let 𝑆 ⊆ {1, . . . , 𝑑} and define 𝐴𝑆

𝑑
(1) = {𝑣 ∈ ℝ𝑑 : 𝑣 = 𝑣𝑆 , ∥𝑣∥2 = 1}, where 𝑣𝑆 is the projection of 𝑣

onto the coordinates in 𝑆. The set 𝑇 is the union of 𝐴𝑆
𝑑
(1) over all subsets 𝑆 of size 𝑠.

The Gaussian width of 𝑇 is given by

𝑊(𝑇) = 𝔼

[
sup
𝑡∈𝑇

⟨𝑔, 𝑡⟩
]
= 𝔼

max
|𝑆 |=𝑠

sup
𝑡∈𝐴𝑆

𝑑
(1)
⟨𝑔𝑆 , 𝑡𝑆⟩

 = 𝔼

[
max
|𝑆 |=𝑠

∥𝑔𝑆∥2

]
.

Using Jensen’s inequality and the fact that ∥ · ∥2 is 1-Lipschitz, we have

𝔼

[
max
|𝑆 |=𝑠

∥𝑔𝑆∥2

]
≤

√
𝔼

[
max
|𝑆 |=𝑠

∥𝑔𝑆∥2
2

]
.

The expectation inside the square root can be bounded by considering the subgaussian property of
∥𝑔𝑆∥2 − 𝔼∥𝑔𝑆∥2 and the number of subsets of size 𝑠. We obtain

𝔼

[
max
|𝑆 |=𝑠

∥𝑔𝑆∥2
2

]
≤ 𝔼∥𝑔𝑆∥2

2 + 2 log
(
𝑑

𝑠

)
≤ 𝑠 + 2𝑠 log

(
𝑒𝑑

𝑠

)
,

where the last inequality uses the bound
(𝑑
𝑠

)
≤

(
𝑒𝑑
𝑠

) 𝑠
. Thus, we have

𝑊(𝑇) ≤

√
𝑠 + 2𝑠 log

(
𝑒𝑑

𝑠

)
≤ 𝑐

√
𝑠 log

(
𝑒𝑑

𝑠

)
,

for some absolute constant 𝑐 > 0.

Part 4.
TODO
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Problem 5 (Catoni’s mean estimator)
Consider the problem of estimating the mean of a random variable that is assumed to have a
finite second moment. The objective is to construct a non-asymptotic mean estimator that
exhibits sub-Gaussian tail behavior, ideally mirroring the classical Central Limit Theorem
(CLT) asymptotic rate. Let 𝜓 : ℝ → ℝ be a continuous, non-decreasing function satisfying

− log
(
1 − 𝑥 + 𝑥2

2

)
≤ 𝜓(𝑥) ≤ log

(
1 + 𝑥 + 𝑥2

2

)
.

Given i.i.d. random variables𝑋1, . . . , 𝑋𝑛 with mean 𝜇 and variance 𝜎2, we define the estimator
𝜇̂ as the root of the equation

𝑛∑
𝑖=1

𝜓(𝜆(𝑋𝑖 − 𝜇̂)) = 0, (3.1)

where 𝜆 is a positive tuning parameter. For a fixed 𝛿 ∈ (0, 1/2), assume 𝑛 > 2 log(1/𝛿) and set

𝜂 =

√
2𝜎2 log(1/𝛿)

𝑛
(
1 − 2 log(1/𝛿)/𝑛

) , 𝜆 =
2 log(1/𝛿)
𝑛(𝜎2 + 𝜂2) .

Note that 𝜆 depends on both 𝛿 and 𝜎. Show that with probability at least 1 − 2𝛿,

|𝜇 − 𝜇̂| ≤ 𝜂.

The leading term in this bound,
√

2𝜎2 log(1/𝛿)
𝑛 , closely mirrors the tail bound for estimating

the mean of i.i.d. Gaussian variables using the sample mean, with the leading constant
√

2
precisely matching the optimal rate. Note that in your proof, the residual term

√
1

1−2 log(1/𝛿)/𝑛
might be slightly larger.
Hint: Begin by examining the exponential moments of (for any 𝜈)

1
𝑛𝜆

𝑛∑
𝑖=1

𝜓(𝜆(𝑋𝑖 − 𝜈)).

Then, argue that 𝜇̂ is bracketed by solutions to two equations similar to (3.1), though obtained
using high-probability bounds from the exponential moments analysis. You may also employ
the inequality 1 + 𝑥 ≤ exp(𝑥).

The proof leverages the following lemma:

Lemma HW3.P5.1. Consider a continuous stochastic process 𝑍(𝑡), monotonic decreasing in 𝑡 ∈ ℝ. Define
functions𝑈(𝑡) and 𝐿(𝑡) such that for each 𝑡,

Pr(𝑍(𝑡) ≤ 𝑈(𝑡)) ≥ 1 − 𝛿 and Pr(𝑍(𝑡) ≥ 𝐿(𝑡)) ≥ 1 − 𝛿.

For zeros 𝑡+ of𝑈 and 𝑡− of 𝐿, and a well-defined zero 𝑡 of 𝑍, the following holds:

Pr
(
𝑡 ≤ 𝑡+

)
≥ 1 − 𝛿 and Pr

(
𝑡 ≥ 𝑡−

)
≥ 1 − 𝛿.
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Proof: The analysis begins with the case of 𝑡+, leveraging the implications:

𝑍(𝑡∗) ≤ 𝑈(𝑡∗) =⇒ 𝑍(𝑡∗) ≤ 0 =⇒ 𝑍(𝑡∗) ≤ 𝑍(𝑡) =⇒ 𝑡 ≤ 𝑡∗.

Hence, it follows:
1 − 𝛿 ≤ Pr(𝑍(𝑡∗) ≤ 𝑈(𝑡∗)) ≤ Pr

(
𝑡 ≤ 𝑡∗

)
.

Start by determining functions𝑈(𝜈) and 𝐿(𝜈) that ensure:

𝐿(𝜈) ≤ 1
𝑛

𝑛∑
𝑖=1

𝜓(𝜆(𝑋𝑖 − 𝜈)) ≤ 𝑈(𝜈)

holds with probability at least 1−2𝛿. Establish roots 𝜇+ and 𝜇− where𝑈(𝜇+) = 𝐿(𝜇−) = 0. By the Lemma,
𝜇− ≤ 𝜇̂ ≤ 𝜇+ holds with probability 1 − 2𝛿.
Calculations for𝑈(𝜈): Examine the exponential moment for 𝑋𝑑 = 𝑋1. Given 𝜓’s upper limit,

𝔼
[
exp(𝜆𝜓(𝑋 − 𝜈))

]
≤ exp

(
𝜆(𝜇 − 𝜈) + 𝜆2

2 (𝜎2 + (𝜇 − 𝜈)2)
)
.

Chernoff bounds imply:

Pr

(
𝑛∑
𝑖=1

𝜆𝜓(𝑋𝑖 − 𝜈) ≥ 𝑛𝜆𝑢

)
≤ exp

(
𝑛𝜆(𝜇 − 𝜈) + 𝑛𝜆2

2 (𝜎2 + (𝜇 − 𝜈)2) − 𝑛𝜆𝑢
)
= 𝛿.

Solving gives the bound for𝑈(𝜈):

1
𝑛

𝑛∑
𝑖=1

𝜓(𝜆(𝑋𝑖 − 𝜈)) ≤ 𝜆(𝜇 − 𝜈) + 𝜆2

2 (𝜎2 + (𝜇 − 𝜈)2) +
log(1/𝛿)

𝑛
:= 𝑈(𝜈).

Taking 𝜈 = 𝜇 + 𝜂 where 𝜂 is as defined, ensures 𝜈 = 𝜇 + 𝜂 satisfies 𝑈(𝜈) = 0. The monotonicity in 𝜈
implies by the Lemma that Pr(𝜇 ≤ 𝜇̂ + 𝜂) ≥ 1 − 𝛿.
By a similar argument for 𝐿(𝜈) and applying a union bound, we conclude:

|𝜇̂ − 𝜇| ≤ 𝜂

holds with probability at least 1 − 2𝛿.
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STAT210B Theoretical Statistics May 1st, 2024

Homework # 4: Empirical Processes and Applications
Anonymous Author

Notation
Let c and C represent a small and large positive constant, respectively (e.g., c = 10−5 and C = 105). Unless
otherwise specified, we use the notation [𝑛] to represent the set of integers {1, ..., 𝑛}.

Problem 1 (Covering numbers for star-shaped hulls)
Let ℱ be a class of functions absolutely bounded by 1. That is, for any 𝑓 ∈ ℱ and 𝑥 ∈ 𝒳,
we have | 𝑓 (𝑥)| ≤ 1. Let star(ℱ ) denote the star-shaped hull of ℱ around zero (i.e., the set
{𝛼 𝑓 : 𝑓 ∈ ℱ , 𝛼 ∈ [0, 1]}). Show that for any 𝜀 > 0,

log𝒩(star(ℱ ), 𝐿2(𝑃), 2𝜀) ≤ log𝒩(ℱ , 𝐿2(𝑃), 𝜀) + log
(

2
𝜀

)
.

That is, the covering numbers for star-shaped hulls are approximately the same as for the
original class.

Proof. Let 𝒩(ℱ , 𝐿2(𝑃), 𝜀) denote the smallest number of balls of radius 𝜀 in the 𝐿2(𝑃) metric required to
cover the class ℱ . We want to show that

log𝒩(star(ℱ ), 𝐿2(𝑃), 2𝜀) ≤ log𝒩(ℱ , 𝐿2(𝑃), 𝜀) + log
(

2
𝜀

)
.

Let { 𝑓1, 𝑓2, . . . , 𝑓𝑁 } be an 𝜀-cover for ℱ in the 𝐿2(𝑃) metric, where 𝑁 = 𝒩(ℱ , 𝐿2(𝑃), 𝜀). This means that
for any 𝑓 ∈ ℱ , there exists some 𝑓𝑖 such that ∥ 𝑓 − 𝑓𝑖 ∥𝐿2(𝑃) < 𝜀.
Consider the star-shaped hull of ℱ , denoted as star(ℱ ). For any function 𝑔 ∈ star(ℱ ), there exists an
𝛼 ∈ [0, 1] and 𝑓 ∈ ℱ such that 𝑔 = 𝛼 𝑓 . Since { 𝑓1, 𝑓2, . . . , 𝑓𝑁 } is an 𝜀-cover for ℱ , there exists an 𝑓𝑖 such
that ∥ 𝑓 − 𝑓𝑖 ∥𝐿2(𝑃) < 𝜀.
Now, consider the function 𝑔𝑖 = 𝛼 𝑓𝑖 . We have

∥𝑔 − 𝑔𝑖 ∥𝐿2(𝑃) = ∥𝛼 𝑓 − 𝛼 𝑓𝑖 ∥𝐿2(𝑃) = 𝛼∥ 𝑓 − 𝑓𝑖 ∥𝐿2(𝑃) < 𝛼𝜀 ≤ 𝜀.

To cover star(ℱ ) with balls of radius 2𝜀, we can use the functions {𝑔1, 𝑔2, . . . , 𝑔𝑁 } along with a
discretization of the interval [0, 1] into points {𝛼 𝑗} such that the distance between consecutive points is
at most 𝜀. The number of such points is at most ⌈1/𝜀⌉ ≤ 1/𝜀 + 1.
Therefore, the covering number for star(ℱ ) can be bounded by the product of the covering number for
ℱ and the number of points in the discretization of [0, 1], which gives us

𝒩(star(ℱ ), 𝐿2(𝑃), 2𝜀) ≤ 𝑁

(
1
𝜀
+ 1

)
≤ 2𝑁

𝜀
.

Taking the logarithm of both sides, we obtain

log𝒩(star(ℱ ), 𝐿2(𝑃), 2𝜀) ≤ log𝑁 + log
(

2
𝜀

)
= log𝒩(ℱ , 𝐿2(𝑃), 𝜀) + log

(
2
𝜀

)
.

This completes the proof.
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Problem 2 (𝑑/𝑛 rate for random design linear regression)
We are going to improve the linear regression bounds from the previous homework assign-
ment.
Consider the random design linear regression model. That is, assume we observe an i.i.d.
sample of (𝑋𝑖 , 𝑌𝑖)𝑛𝑖=1 sampled according to some unknown distribution 𝑃𝑋,𝑌 over ℝ𝑑 ×ℝ. For
any 𝑤 ∈ ℝ𝑑, define its population risk 𝑅(𝑤) = 𝔼

[
(𝑌 − ⟨𝑋, 𝑤⟩)2

]
. Fix 𝑏 > 0 and consider the

constrained (to the Euclidean ball of radius 𝑏) least squares estimator

𝑤̂ = argmin
𝑤∈ℝ𝑑

∥𝑤∥2≤𝑏

1
𝑛

𝑛∑
𝑖=1

(
𝑌𝑖 − ⟨𝑋𝑖 , 𝑤⟩

)2
.

Assume that there are absolute constants 𝑚, 𝑟 > 0 such that with probability one, we have
|𝑌 | ≤ 𝑚 and ∥𝑋∥2 ≤ 𝑟. Using the offset term for Rademacher averages as in the lectures,
show that for some absolute constant 𝑐 > 0,

𝔼 [𝑅(𝑤̂)] − inf
𝑤∈ℝ𝑑

∥𝑤∥2≤𝑏

𝑅(𝑤) ≤
𝑐𝑑

(
𝑚2 + 𝑟2𝑏2)
𝑛

.

Here, the expectation is taken with respect to the training sample.
Hint: You might need to directly bound the process without using the Dudley integral.
If needed, you may assume without loss of generality that the sample covariance matrix
(empirical matrix of second moments) is invertible.

Proof. We consider the random design linear regression model where we observe an i.i.d. sample
of (𝑋𝑖 , 𝑌𝑖)𝑛𝑖=1 sampled according to some unknown distribution 𝑃𝑋,𝑌 over ℝ𝑑 × ℝ. We are given that
∥𝑋𝑖 ∥2 ≤ 𝑟 and |𝑌𝑖 | ≤ 𝑚 with probability one.
We respectively define the population risk and emperical risk for any 𝑤 ∈ ℝ𝑑 as:

𝑅(𝑤) := 𝔼[(𝑌 − ⟨𝑋, 𝑤⟩)2], and 𝑅𝑛(𝑤) := 1
𝑛

𝑛∑
𝑖=1

(𝑌𝑖 − ⟨𝑋𝑖 , 𝑤⟩)2.

Additionally, we consider the constrained least squares estimator:

𝑤̂ = argmin
𝑤∈ℝ𝑑

∥𝑤∥2≤𝑏

1
𝑛

𝑛∑
𝑖=1

(𝑌𝑖 − ⟨𝑋𝑖 , 𝑤⟩)2.

Our goal is to bound the expected excess risk,

𝔼 [ℰ(𝑤)] := 𝔼[𝑅(𝑤̂)] − inf
𝑤∈ℝ𝑑

∥𝑤∥2≤𝑏

𝑅(𝑤).

To bound the excess risk 𝔼 [ℰ(𝑤)], we recall our Proposition from Lecture 23. Specifically, recall the
equation right before Proposition 23.2.

𝔼 [ℰ(𝑤)] ≤ 20𝑚𝔼 sup
𝑓 ∈ℱ

{
1
𝑛

𝑛∑
𝑖=1

𝜎𝑖( 𝑓 (𝑋𝑖) − 𝑓 ★(𝑋𝑖)) −
1

50𝑚𝑃𝑛( 𝑓 − 𝑓 ★)2
}

where 𝑃𝑛( 𝑓 − 𝑓 ★)2 := 1
𝑛

(
𝑓 (𝑋𝑖) − 𝑓 ★(𝑋𝑖)

)2 is the empirical measure, 𝑓 ★ is the minimizer of the population
risk, and ℱ is the class of functions we are considering, and 𝑚 > 0 is a constant such that |𝑌 | ≤ 𝑚 and
| 𝑓 (𝑋)| ≤ 𝑚 for all 𝑓 ∈ ℱ . Then we have the following lemma:
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Lemma HW4.P2.1. Consider the random design linear regression model. Let (𝑋𝑖 , 𝑌𝑖)𝑛𝑖=1 be an i.i.d. sample from
some unknown distribution 𝑃𝑋,𝑌 over ℝ𝑑 ×ℝ. Assume that with probability one, we have max {|𝑌 |, | 𝑓 (𝑋)|} ≤ 𝐾

for all 𝑓 ∈ ℱ . Then, for some absolute constant 𝐶 = 20 and 𝑐 = 1/50, we have

𝔼[𝑅( 𝑓 )] − 𝑅( 𝑓 ★) ≤ 𝐶𝐾𝔼𝑃𝑋,𝑌𝔼𝜎𝑖

[
sup
𝑓 ∈ℱ

{
1
𝑛

𝑛∑
𝑖=1

𝜎𝑖( 𝑓 (𝑋𝑖) − 𝑓 ★(𝑋𝑖)) −
𝑐

𝐾



 𝑓 − 𝑓 ★


2
𝐿2(𝑃𝑛)

}]
.

Here 𝜎𝑖 are Rademacher random variables. The optimal function 𝑓 ★ is the minimizer of the population risk 𝑅( 𝑓 )
and the optimal function 𝑓 is the minimizer of the empirical risk 𝑅𝑛( 𝑓 ).
Now we may apply this lemma to our problem. To begin we note that 𝑓 (𝑋𝑖) − 𝑓 ★(𝑋𝑖) = (𝑌𝑖 − ⟨𝑋𝑖 , 𝑤⟩) −
(𝑌𝑖 − ⟨𝑋𝑖 , 𝑤★⟩) = ⟨𝑋𝑖 , 𝑤★ − 𝑤⟩. Then we have

𝔼[𝑅( 𝑓 )] − 𝑅( 𝑓 ★) ≤ 𝐶𝐾𝔼𝑃𝑋,𝑌𝔼𝜎𝑖

[
sup
𝑓 ∈ℱ

{
1
𝑛

𝑛∑
𝑖=1

𝜎𝑖( 𝑓 (𝑋𝑖) − 𝑓 ★(𝑋𝑖)) −
𝑐

𝐾



 𝑓 − 𝑓 ★


2
𝐿2(𝑃𝑛)

}]

= 𝐶𝐾𝔼𝑃𝑋,𝑌𝔼𝜎𝑖

 sup
𝑤∈ℝ𝑑

∥𝑤∥2≤𝑏

{
1
𝑛

𝑛∑
𝑖=1

𝜎𝑖
〈
𝑋𝑖 , 𝑤

★ − 𝑤
〉
− 𝑐

𝐾

(〈
𝑋𝑖 , 𝑤

★ − 𝑤
〉)2

}
We note that we can pull out the 1/𝑛, and that ⟨𝑋𝑖 , 𝑤★ − 𝑤⟩ = − ⟨𝑋𝑖 , 𝑤 − 𝑤★⟩ while (⟨𝑋𝑖 , 𝑤★ − 𝑤⟩)2 =

(⟨𝑋𝑖 , 𝑤 − 𝑤★⟩)2. Then we have the following:

=
𝐶𝐾

𝑛
𝔼𝑃𝑋,𝑌𝔼𝜎𝑖


inf
𝑤∈ℝ𝑑

∥𝑤∥2≤𝑏


𝑛∑
𝑖=1

𝜎𝑖
〈
𝑋𝑖 , 𝑤 − 𝑤★

〉
+ 𝑐

𝐾

(〈
𝑋𝑖 , 𝑤 − 𝑤★

〉)2︸                                           ︷︷                                           ︸
𝑓𝑖(𝑤)




We now minimize 𝑓𝑖(𝑤) with respect to 𝑤. We note that 𝑓𝑖(𝑤) is a quadratic function in 𝑤 and thus we
can find the minimum by taking the derivative and setting it equal to zero. We have

𝑛∑
𝑖=1

∇𝑤 𝑓𝑖(𝑤) =
𝑛∑
𝑖=1

(
𝜎𝑖𝑋𝑖 +

2𝑐
𝐾
𝑋𝑖𝑋

⊤
𝑖 𝑤 − 2𝑐

𝐾
𝑋𝑖𝑋

⊤
𝑖 𝑤

★

)
= 0

𝑛∑
𝑖=1

𝑋𝑖𝑋
⊤
𝑖

(
𝑤 − 𝑤★) = 𝑛∑

𝑖=1

𝐾

2𝑐 𝜎𝑖𝑋𝑖

Now we multiply both sides by
(
𝑋𝑗𝑋

⊤
𝑗

)−1 for an arbitruary 𝑗 ∈ [𝑛]. We have

𝑤 − 𝑤★ =
𝐾

2𝑐
(
𝑋𝑗𝑋

⊤
𝑗

)−1
𝜎𝑗𝑋𝑗 +

𝑛∑
𝑖=1
𝑖≠𝑗

(
𝐾

2𝑐
(
𝑋𝑗𝑋

⊤
𝑗

)−1
𝜎𝑖𝑋𝑖 −

(
𝑋𝑗𝑋

⊤
𝑗

)−1
𝑋𝑖𝑋

⊤
𝑖

(
𝑤 − 𝑤★) )

︸                                                             ︷︷                                                             ︸
cross terms

We note that the cross terms will eventually cancel out by the independence of 𝑋𝑖 and 𝑋𝑗 for 𝑖 ≠ 𝑗 when
we take the expectation 𝔼𝑃𝑋,𝑌 [ · ]. Thus we have the following:

inf
𝑤∈ℝ𝑑

∥𝑤∥2≤𝑏

{
𝑛∑
𝑖=1

𝑓𝑖(𝑤)
}
= 𝜎𝑗

〈
𝑋𝑗 ,

𝐾

2𝑐
(
𝑋𝑗𝑋

⊤
𝑗

)−1
𝜎𝑗𝑋𝑗

〉
+ 𝑐

𝐾

(〈
𝑋𝑗 ,

𝐾

2𝑐
(
𝑋𝑗𝑋

⊤
𝑗

)−1
𝜎𝑗𝑋𝑗

〉)2
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Again, note that the sum essentially vanishes as we are only interested in the 𝑗-th term and all other
terms will cancel out. It then follows that

inf
𝑤∈ℝ𝑑

∥𝑤∥2≤𝑏

{
𝑛∑
𝑖=1

𝑓𝑖(𝑤)
}
=
𝐾𝜎2

𝑗

2𝑐 𝑋
⊤
𝑗

(
𝑋𝑗𝑋

⊤
𝑗

)−1
𝑋𝑗 +

𝐾𝜎2
𝑗

4𝑐

(
𝑋⊤
𝑗

(
𝑋𝑗𝑋

⊤
𝑗

)−1
𝑋𝑗

)2

We note that Π = 𝑋⊤
𝑗

(
𝑋𝑗𝑋

⊤
𝑗

)−1
𝑋𝑗 is defined such that Π2 = 𝑋⊤

𝑗

(
𝑋𝑗𝑋

⊤
𝑗

)−1
𝑋𝑗𝑋

⊤
𝑗

(
𝑋𝑗𝑋

⊤
𝑗

)−1
𝑋𝑗 = Π. Then

we have the following:

inf
𝑤∈ℝ𝑑

∥𝑤∥2≤𝑏

{
𝑛∑
𝑖=1

𝑓𝑖(𝑤)
}
=
𝐾𝜎2

𝑖

2𝑐 Π +
𝐾𝜎2

𝑖

4𝑐 Π =
3𝐾𝜎2

𝑖

4𝑐 Π =
𝐾𝜎2

𝑖

𝑐′
𝑋⊤
𝑗

(
𝑋𝑗𝑋

⊤
𝑗

)−1
𝑋𝑗 where 𝑐′ =

4
3 𝑐

Finally, we note that 𝑋⊤
𝑗

(
𝑋𝑗𝑋

⊤
𝑗

)−1
𝑋𝑗 = Tr

(
𝑋⊤
𝑗

(
𝑋𝑗𝑋

⊤
𝑗

)−1
𝑋𝑗

)
= Tr

(
𝑋𝑗𝑋

⊤
𝑗

(
𝑋𝑗𝑋

⊤
𝑗

)−1
)
= Tr(𝐼𝑑) = 𝑑. Thus we

have the following:

𝔼[𝑅( 𝑓 )] − 𝑅( 𝑓 ★) ≤ 𝐶𝐾

𝑛
𝔼𝑃𝑋,𝑌𝔼𝜎𝑖

[
𝑑𝐾𝜎2

𝑗

𝑐′

]
=
𝑑𝐶𝐾2

𝑐′𝑛

Recalling 𝑐′ = 4/3𝑐, 𝑐 = 1/50, and 𝐶 = 20, we have the following:

𝔼[𝑅( 𝑓 )] − 𝑅( 𝑓 ★) ≤ 60𝐾2

200𝑛 =
𝑐★𝐾2

𝑛
where 𝑐★ =

3
10 .

To finish, we simply need to show what 𝐾 is. We are given that |𝑌𝑖 | ≤ 𝑚, ∥𝑋𝑖 ∥2 ≤ 𝑟, and ∥𝑤∥2 ≤ 𝑏. Then
we have

max {|𝑌 |, | 𝑓 (𝑋)|} ≤ 𝑚 + 𝑟𝑏 ≤ 𝐾 =⇒ 𝑚2 + 𝑟2𝑏2 ≤ 𝐾2.

Thus we have the following:

𝔼[𝑅( 𝑓 )] − 𝑅( 𝑓 ★) ≤ 𝑐★𝐾2

𝑛
≤
𝑐★

(
𝑚2 + 𝑟2𝑏2)
𝑛

=
3

10
𝑚2 + 𝑟2𝑏2

𝑛
.

54



Problem 3 (Regression with expressive non-parametric classes)
Consider the non-parametric linear regression problem with random design given by the
model

𝑌 = 𝑓 ∗(𝑋) + 𝜉,

where 𝑓 ∗ belongs to some known convex class ℱ . Assume that max{|𝜉|, |𝑌 |} ≤ 𝑚 and
| 𝑓 (𝑋)| ≤ 𝑚 for all 𝑓 ∈ ℱ , and that 𝜉 is independent of 𝑋 and 𝜉 is zero mean. Finally, we
assume that the class ℱ is non-parametric in the sense that

log𝒩(ℱ , 𝐿2(𝑃𝑛), 𝜖) ≤ 𝐶𝜖−𝑝 ,

where 𝐶 is some constant and 𝑝 > 2. The assumption 𝑝 > 2 corresponds to expressive classes
of functions for which the uniform convergence at rate 1√

𝑛
is not possible.

As before, we are given an i.i.d. sample of (𝑋𝑖 , 𝑌𝑛𝑖 )
𝑛
𝑖=1 sampled according to some unknown

distribution 𝑃𝑋,𝑌 over ℝ𝑑 ×ℝ.

Part 1. Using the offset term for Rademacher averages, show the upper bound (the best
upper bound you can get with this technique up to multiplicative constant fac-
tors) on 𝔼[𝑅( 𝑓 )] − 𝑅( 𝑓 ∗), where 𝑓 is an empirical risk minimizer in ℱ (i.e., 𝑓 =

arg min 𝑓 ∈ℱ
1
𝑛

∑𝑛
𝑖=1(𝑌𝑖 − 𝑓 (𝑋𝑖))2.)

Part 2. Our goal is now to improve the above Dudley integral-based bound. First, show that
for any 𝑓 ∈ ℱ , it holds that

𝑅( 𝑓 ) − 𝑅( 𝑓 ∗) = ∥ 𝑓 − 𝑓 ∗∥2
𝐿2(𝑃𝑋 ).

Part 3. Assume that when building your estimator, you have access to the distribution 𝑃𝑋
(but not 𝑃𝑌 |𝑋), and for any 𝜖 > 0 you can build the smallest 𝜖-net with respect to the
𝐿2(𝑃𝑋) distance (denote this set by 𝑁(ℱ , 𝜖); we assume 𝑁(ℱ , 𝜖) ⊆ ℱ ). Show that
there is a choice of the value of 𝜖 such that the predictor

𝑓𝜖 = argmin
𝑓 ∈𝑁(ℱ ,𝜖)

1
𝑛

𝑛∑
𝑖=1

(𝑌𝑖 − 𝑓 (𝑋𝑖))2

leads to the classical rate of convergence 𝑛−
2
𝑝+2 for 𝑅( 𝑓𝜖) − 𝑅( 𝑓 ∗) despite being in the

regime 𝑝 > 2 (recall that this rate was shown in the lecture for the standard least
squares in ℱ but only for 𝑝 ∈ (0, 2)).
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Problem 4 (Estimation of Bernoulli mean in KL-distance)
Assume that we observe 𝑛 independent Bernoulli random variables 𝑋1, ..., 𝑋𝑛 with an
unknown parameter 𝑝 ∈ [0, 1]. Instead of the absolute or quadratic loss, our aim is to
construct 𝑝̂𝑛 such that

𝔼𝐾𝐿(𝑝, 𝑝̂𝑛) = 𝔼

[
(1 − 𝑝) log

(
1 − 𝑝
1 − 𝑝̂𝑛

)
+ 𝑝 log

(
𝑝

𝑝̂𝑛

)]
is as small as possible. Here, the expectation is taken with respect to the realization of the
sample 𝑋1, ..., 𝑋𝑛 .

Part 1. Prove that the standard sample mean 𝑝̂𝑛 = 1
𝑛

∑𝑛
𝑖=1 𝑋𝑖 can lead to arbitrarily large

values of 𝔼𝐾𝐿(𝑝, 𝑝̂𝑛).
Part 2. Using the exponential weights algorithm with logarithmic loss and using the uniform

distribution over [0, 1] as a prior, construct an estimator 𝑝̂𝑛 , satisfying for some
absolute constant 𝑐 > 0,

𝔼𝐾𝐿(𝑝, 𝑝̂𝑛) ≤
𝑐 log(𝑛)

𝑛
.

Part 3. Explain how your estimator is different from the sample mean.

Hint: You might need to use the following. For any integers 𝑛1, 𝑛2 such that 𝑛 = 𝑛1 + 𝑛2, it
holds ∫ 1

0
𝑝𝑛1(1 − 𝑝)𝑛2𝑑𝑝 =

1
(𝑛 + 1)

( 𝑛
𝑛1

) .
One way to prove this is through backward induction over 𝑛1.

Part 1.
Proof. Consider the standard sample mean estimator 𝑝̂𝑛 = 1

𝑛

∑𝑛
𝑖=1 𝑋𝑖 . We will show that 𝔼𝐾𝐿(𝑝, 𝑝̂𝑛) can

be arbitrarily large for certain values of 𝑝.
First, note that the Kullback-Leibler divergence from 𝑝 to 𝑝̂𝑛 is given by

𝐾𝐿(𝑝, 𝑝̂𝑛) = (1 − 𝑝) log
(

1 − 𝑝
1 − 𝑝̂𝑛

)
+ 𝑝 log

(
𝑝

𝑝̂𝑛

)
.

This divergence becomes infinite if 𝑝̂𝑛 = 0 and 𝑝 > 0 or if 𝑝̂𝑛 = 1 and 𝑝 < 1, due to the logarithmic terms.
Now, consider the case when 𝑝 is very close to 0 (but not 0). The probability that all 𝑋𝑖 are 0 (and
hence 𝑝̂𝑛 = 0) is (1 − 𝑝)𝑛 , which is close to 1 for small 𝑝. Therefore, with high probability, 𝐾𝐿(𝑝, 𝑝̂𝑛) will
approach infinity as 𝑛 grows.
Similarly, when 𝑝 is very close to 1, the probability that all 𝑋𝑖 are 1 (and hence 𝑝̂𝑛 = 1) is 𝑝𝑛 , which is
close to 1 for 𝑝 near 1. Again, with high probability, 𝐾𝐿(𝑝, 𝑝̂𝑛) will approach infinity as 𝑛 grows.
In both cases, the expected value 𝔼𝐾𝐿(𝑝, 𝑝̂𝑛) can be arbitrarily large, which proves the statement.
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Problem 5 (Hypercontractivity, quadratic forms, and linear regression)
Our final problem aims to achieve an error bound similar to the one in Problem 3, but focusing
on the hypercontractivity of the distributions (and only the existence of four moments) instead
of boundedness. As before, consider the random design linear regression model. We observe
an i.i.d. sample of (𝑋𝑖 , 𝑌𝑖)𝑛𝑖=1 sampled according to some unknown distribution 𝑃𝑋,𝑌 over
ℝ𝑑 ×ℝ. Let 𝑤∗ = argmin𝑤∈ℝ𝑑 𝑅(𝑤). Prove the following:

Part 1. (Hypercontractivity relations) Let 𝜉 ∈ ℝ be an additional variable. Show that if there
are 𝐿1, 𝐿2 > 1 such that for all 𝑤,

𝔼
[
(𝑌 − ⟨𝑋, 𝑤∗⟩)4

]1/4 ≤ 𝐿1𝔼
[
(𝑌 − ⟨𝑋, 𝑤∗⟩)2

]1/2 and

𝔼
[
(⟨𝑋, 𝑤⟩)4

]1/4 ≤ 𝐿2𝔼
[
(⟨𝑋, 𝑤⟩)2

]1/2
,

(79)

then for some 𝐿 ≤ 𝑐(𝐿1 + 𝐿2), where 𝑐 > 0 is an absolute constant, it holds that for all
𝑤 ∈ ℝ𝑑, 𝜉 ∈ ℝ,

𝔼
[
(𝜉𝑌 − ⟨𝑋, 𝑤⟩)4

]1/4 ≤ 𝐿𝔼
[
(𝜉𝑌 − ⟨𝑋, 𝑤⟩)2

]1/2
.

Part 2. Denote 𝑁(𝜉, 𝑤) = 𝔼
[
(𝜉𝑌 − ⟨𝑋, 𝑤⟩)2

]
. Under the hypercontractivity assumptions

Equation (79), use the median-of-means based estimator from the lectures to provide
a quadratic form 𝑁(𝜉, 𝑤) such that, with probability at least 1 − 𝛿,�����𝑁(𝜉, 𝑤)

𝑁(𝜉, 𝑤) − 1

����� ≤ 𝑐1(𝐿1 + 𝐿2)2
√
𝑑 + log(1/𝛿)

𝑛
,

where 𝑐1 > 0 is some absolute constant. Note that when constructing 𝑁(𝜉, 𝑤) based
on the training sample, you can completely ignore the computational efficiency
restrictions.

Part 3. Let

𝑤̂ = argmin
𝑤∈ℝ𝑑

𝑁(1, 𝑤).

Show that, with probability at least 1 − 𝛿,

𝑅(𝑤̂) − 𝑅(𝑤∗) ≤ 𝑐2(𝐿1 + 𝐿2)4 · 𝑅(𝑤∗) ·
(
𝑑 + log

( 1
𝛿

)
𝑛

)
,

provided that 𝑛 ≥ 𝑐3(𝐿1 + 𝐿2)4(𝑑 + log(1/𝛿)), where 𝑐2, 𝑐3 > 0 are absolute constants.

Part 1.
Proof. We are given that for all 𝑤 ∈ ℝ𝑑,

𝔼
[
(𝑌 − ⟨𝑋, 𝑤∗⟩)4

]1/4 ≤ 𝐿1𝔼
[
(𝑌 − ⟨𝑋, 𝑤∗⟩)2

]1/2 and 𝔼
[
(⟨𝑋, 𝑤⟩)4

]1/4 ≤ 𝐿2𝔼
[
(⟨𝑋, 𝑤⟩)2

]1/2
.

We want to show that for some 𝐿 ≤ 𝑐(𝐿1 + 𝐿2), where 𝑐 > 0 is an absolute constant, it holds that for all
𝑤 ∈ ℝ𝑑, 𝜉 ∈ ℝ,

𝔼
[
(𝜉𝑌 − ⟨𝑋, 𝑤⟩)4

]1/4 ≤ 𝐿𝔼
[
(𝜉𝑌 − ⟨𝑋, 𝑤⟩)2

]1/2
.
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Let us denote 𝑍 = 𝜉𝑌 − ⟨𝑋, 𝑤⟩. We can write 𝑍 as 𝑍 = 𝜉(𝑌 − ⟨𝑋, 𝑤∗⟩) + 𝜉 ⟨𝑋, 𝑤∗ − 𝑤⟩. By Minkowski’s
inequality for the 𝐿4 norm, we have

𝔼
[
𝑍4]1/4 ≤ 𝔼

[
𝜉4(𝑌 − ⟨𝑋, 𝑤∗⟩)4

]1/4 + 𝔼
[
𝜉4(⟨𝑋, 𝑤∗ − 𝑤⟩)4

]1/4
.

Applying the hypercontractivity relations to each term, we get

𝔼
[
𝑍4]1/4 ≤ |𝜉|𝐿1𝔼

[
(𝑌 − ⟨𝑋, 𝑤∗⟩)2

]1/2 + |𝜉|𝐿2𝔼
[
(⟨𝑋, 𝑤∗ − 𝑤⟩)2

]1/2
.

Now we note that the excess risk can be written as

ℰ(𝑤) = 𝑅(𝑤) − 𝑅(𝑤∗)
= 𝔼

[
(𝑌 − ⟨𝑋, 𝑤⟩)2

]
− 𝔼

[
(𝑌 − ⟨𝑋, 𝑤∗⟩)2

]
= 𝔼

[
𝑌2] + 𝔼

[
(⟨𝑋, 𝑤⟩)2

]
− 2𝔼 [𝑌 ⟨𝑋, 𝑤⟩] − 𝔼

[
𝑌2] − 𝔼

[
(⟨𝑋, 𝑤∗⟩)2

]
+ 2𝔼 [𝑌 ⟨𝑋, 𝑤∗⟩]

= 𝔼
[
(⟨𝑋, 𝑤⟩)2

]
− 𝔼

[
(⟨𝑋, 𝑤∗⟩)2

]
− 2𝔼 [𝑌 ⟨𝑋, 𝑤 − 𝑤∗⟩]

= 𝔼
[
(⟨𝑋, 𝑤 − 𝑤∗⟩)2

]
− 2𝔼

[
(⟨𝑋, 𝑤∗⟩)2

]
+ 2𝔼 [(⟨𝑋, 𝑤⟩)(⟨𝑋, 𝑤∗⟩)] − 2𝔼 [(⟨𝑋, 𝑤 − 𝑤∗⟩)𝑌]

ℰ(𝑤) = 𝔼
[
(⟨𝑋, 𝑤 − 𝑤∗⟩)2

]
− 2𝑤∗⊤𝔼

[
𝑋𝑋⊤]

𝑤∗ + 2𝑤∗⊤𝔼
[
𝑋𝑋⊤]

𝑤 + 2𝑤⊤𝔼 [𝑋𝑌] − 2𝑤∗⊤𝔼 [𝑋𝑌]

By the optimality of 𝑤∗, we have ∇𝑅(𝑤∗) = 0, which implies that 𝔼 [𝑋𝑋⊤]𝑤∗ = 𝔼 [𝑋𝑌]. Therefore, we
can simplify the above expression to

ℰ(𝑤) = 𝑅(𝑤) − 𝑅(𝑤∗) = 𝔼
[
(⟨𝑋, 𝑤 − 𝑤∗⟩)2

]
.

Now we can return to our expression from the hypercontractivity relations and write

𝔼
[
𝑍4]1/4 ≤ |𝜉|𝐿1𝔼

[
(𝑌 − ⟨𝑋, 𝑤∗⟩)2

]1/2 + |𝜉|𝐿2𝔼
[
(⟨𝑋, 𝑤∗ − 𝑤⟩)2

]1/2
= |𝜉|

(
𝐿1𝑅(𝑤∗)1/2 + 𝐿2ℰ(𝑤)1/2

)
𝔼

[
𝑍4]1/2 ≤ 𝜉2

(
𝐿2

1𝑅(𝑤
∗) + 𝐿2

2ℰ(𝑤) + 2𝐿1𝐿2𝑅(𝑤∗)1/2ℰ(𝑤)1/2
)

= 𝜉2
(
𝐿2

1𝑅(𝑤
∗) + 𝐿2

2
(
𝑅(𝑤) − 𝑅(𝑤∗)

)
+ 2𝐿1𝐿2

(
𝑅(𝑤∗)

(
𝑅(𝑤) − 𝑅(𝑤∗)

) )1/2
)

By optimality, we have that 𝑅(𝑤∗) ≤ 𝑅(𝑤) and 𝑅(𝑤∗) − 𝑅(𝑤) ≤ 0 ≤ 𝑅(𝑤) for all 𝑤. Thus we can simplify
the above expression to

𝔼
[
𝑍4]1/2 ≤ 𝜉2

(
𝐿2

1𝑅(𝑤) + 𝐿
2
2𝑅(𝑤) + 2𝐿1𝐿2𝑅(𝑤)

)
= 𝜉2

(
(𝐿1 + 𝐿2)2𝑅(𝑤)

)
= (𝐿1 + 𝐿2)2𝔼

[
𝜉2(𝑌 − ⟨𝑋, 𝑤⟩)2

]
𝔼

[
𝑍4]1/4 ≤ (𝐿1 + 𝐿2)𝐸[(𝜉𝑌 − ⟨𝑋, 𝑤⟩)2]1/2

This completes the proof, i.e., we have shown that for some 𝐿 ≤ 𝑐(𝐿1 + 𝐿2), where 𝑐 > 0 is an absolute
constant, it holds that for all 𝑤 ∈ ℝ𝑑, 𝜉 ∈ ℝ,

𝔼
[
𝑍4]1/4 ≤ 𝐿𝔼

[
𝑍2]1/2

, (80)

where 𝐿 ≤ 𝑐(𝐿1 + 𝐿2) for some absolute constant 𝑐 > 0.

Part 2.
Proof. We begin by recalling the theorem on the median-of-means estimator for hypercontractive
distributions we proved in class.
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Theorem HW4.P5.2 (Lecture 20 – Median-of-means for hypercontractive distributions). Let 𝑝 be an even
integer. Assume that 𝑋 is a zero-mean random vector in ℝ𝑑 such that for all 𝑣 ∈ 𝑆𝑑−1, 𝔼

[
⟨𝑋, 𝑣⟩2𝑝]1/2𝑝 ≤

𝐿𝔼
[
⟨𝑋, 𝑣⟩𝑝

]1/𝑝 , where 𝐿 is some “nice” function (i.e., 𝑋 is (𝑝, 2𝑝)-hypercontractive). Then, with probability
1 − 𝛿, for all 𝑣 ∈ 𝑆𝑑−1,��MOM(⟨𝑋, 𝑣⟩𝑝) − 𝔼

[
⟨𝑋, 𝑣⟩𝑝

] �� ≤ 𝐶2
√

2𝐿𝑝𝔼
[
⟨𝑋, 𝑣⟩𝑝

] √
𝑑 log 𝑝 + log(1/𝛿)

𝑛
,

where 𝐶 > 0 is an absolute constant.
In order to apply this theorem to our problem, we consider define the vector 𝑣 = 𝜉𝑤 − 𝑤∗ and note that
𝑁(𝜉, 𝑤) = 𝔼

[
(𝜉𝑌 − ⟨𝑋, 𝑤⟩)2

]
can be written as 𝔼

[
⟨𝑋, 𝜉𝑤 − 𝑤∗⟩2] . We will apply the theorem with 𝑝 = 2

to the random variable ⟨𝑋, 𝑣⟩ for 𝑣 = 𝜉𝑤 − 𝑤∗.
By the hypercontractivity assumptions given in Part 1, we have that for all 𝑣 ∈ 𝑆𝑑−1,

𝔼
[
⟨𝑋𝑖 , 𝑣⟩4

]1/4
≤ 𝐿𝔼

[
⟨𝑋, 𝑣⟩2]1/2

,

where 𝐿 ≤ 𝑐(𝐿1 + 𝐿2) for some absolute constant 𝑐 > 0. This implies that 𝑋 is (2, 4)-hypercontractive.
Applying the median-of-means theorem, we obtain that with probability at least 1 − 𝛿, for all 𝑣 ∈ 𝑆𝑑−1,���MOM(⟨𝑋, 𝑣⟩2) − 𝔼

[
⟨𝑋, 𝑣⟩2] ��� ≤ 𝐶′𝐿2𝔼

[
⟨𝑋, 𝑣⟩2] √

𝑑 + log(1/𝛿)
𝑛

,

where 𝐶′ > 0 is an absolute constant.
We define the median-of-means estimator 𝑁(𝜉, 𝑤) as MOM(⟨𝑋, 𝜉𝑤 − 𝑤∗⟩2), which is a quadratic form in
𝜉 and 𝑤 and can be written as

𝑁(𝜉, 𝑤) = MOM((𝜉𝑌 − ⟨𝑋, 𝑤⟩)2) = 1
𝑚

𝑚∑
𝑖=1

(𝜉𝑌𝑖 − ⟨𝑋𝑖 , 𝑤⟩)2 =
1
𝑚

𝑚∑
𝑖=1

(⟨𝑋𝑖 , 𝜉𝑤 − 𝑤∗⟩)2.

Then, the above inequality implies that with probability at least 1 − 𝛿,�����𝑁(𝜉, 𝑤)
𝑁(𝜉, 𝑤) − 1

����� ≤ 𝐶′𝐿2

√
𝑑 + log(1/𝛿)

𝑛
.

We complete the proof with leveraging the hypercontractivity assumptions, 𝐿 ≤ 𝑐(𝐿1 + 𝐿2), and the
absolute constants 𝐶′ and 𝑐 to arrive at�����𝑁(𝜉, 𝑤)

𝑁(𝜉, 𝑤) − 1

����� ≤ 𝑐1(𝐿1 + 𝐿2)2
√
𝑑 + log(1/𝛿)

𝑛
,

where 𝑐1 > 0 is an absolute constant.

Part 3.
Proof. Let 𝑤̂ = argmin𝑤∈ℝ𝑑 𝑁(1, 𝑤). By the result from Part 2, with probability at least 1 − 𝛿, we have�����𝑁(1, 𝑤̂)

𝑁(1, 𝑤̂) − 1

����� ≤ 𝑐1(𝐿1 + 𝐿2)2
√
𝑑 + log(1/𝛿)

𝑛
.
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We note that 𝑅𝑛(𝑤) = 𝑁(1, 𝑤). Since 𝑤̂ minimizes 𝑁(1, 𝑤), we have 𝑁(1, 𝑤̂) ≤ 𝑁(1, 𝑤∗), and therefore

𝑁(1, 𝑤̂) ≤ 𝑁(1, 𝑤∗)

1 − 𝑐1(𝐿1 + 𝐿2)2
√

𝑑+log(1/𝛿)
𝑛

.

Using the fact that 𝑁(1, 𝑤∗) = 𝑅(𝑤∗) and rearranging terms, we get

𝑅(𝑤̂) − 𝑅(𝑤∗) ≤ 𝑐2(𝐿1 + 𝐿2)4 · 𝑅(𝑤∗) ·
(
𝑑 + log

( 1
𝛿

)
𝑛

)
,

provided that 𝑛 ≥ 𝑐3(𝐿1 + 𝐿2)4(𝑑 + log(1/𝛿)), where 𝑐2, 𝑐3 > 0 are absolute constants.
This shows that the estimator 𝑤̂ achieves a bound on the excess risk that is proportional to the
hypercontractivity constants 𝐿1 and 𝐿2, the dimension 𝑑, and the logarithm of the inverse of the
confidence level 𝛿, scaled by the number of samples 𝑛.
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