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STAT210B Theoretical Statistics Lecture 1-01/16/2024

Lecture 1: The Non-Asymptotic Approach

Instructor: Nikita Zhivotovskiy Scriber: Nikita Zhivotovskiy — Proofreader: Nikita Zhivotovskiy

1.1 Some Limitations of the Asymptotic Approach

This course focuses on non-asymptotic analysis in statistics. To illustrate the significance of the asymptotic
approach, consider estimating the mean of a random variable. Suppose we observe n independent
identically distributed random variables Xj, ..., X, with mean p and (for simplicity, known) variance a2.

We can construct a confidence interval of the form

[——+ le, =+ le

which, according to the Central Limit Theorem (CLT), will asymptotically contain the true mean with a
probability of at least 0.95. The constant 2 in the above bound comes from the quantiles of the Gaussian
distribution, its limiting distribution. For example, if Z is a standard normal random variable and @ its
cumulative distribution function, then from the CLT

(‘Zl (X

4

lim Pr

n—0oo

t) =Pr(|Z| > t) = 2d(-1).

And 1 - 29(-2) =~ 0.9545. However, this approach to constructing confidence intervals has a significant

flaw. It overly focuses on the scenario where the number of observations n goes to infinity. Furthermore,

Z?:l (Xi—p)

the expression is somewhat sensitive to the distribution; if X; are Gaussian, then is a standard

normal random variable for any sample size n. For other distributions, the CLT might only apply when
the sample size is quite large. One key piece of evidence for this comes from the Poisson limit theorem.
Let’s recall its statement.

Theorem 1.1 (Poisson Limit Theorem). Let X, ;, 1 < i < n, be independent random variables with X,, ; ~
Ber(py,). Assume that for some A > 0,
lim np, — A.

n—oo

Then,

n
d .
Xni— Pois(A) asn — oo.
i=1

Consider observing n = 50 independent Bernoulli distributions with p = 1/50. Which approximation
would be more appropriate: Poisson or the CLT? How do we choose the right limiting theorem in
each particular practical case where we only have access to a finite sample of data? The methodologies
developed in this course will enable us to derive quantitative bounds that often depend on additional
properties of the distribution, providing relevant quantitative results. Furthermore, we will also discuss
strategies to achieve a form of universality, where minimal assumptions are made about the distribution,
yet the results are akin to those obtained under some limiting distribution, such as the Gaussian
distribution.



There are additional aspects where non-asymptotic bounds can be superior to asymptotic results.
Consider a fundamental model, the Gaussian regression model with fixed design, which we will explore
in more detail later. Take a dataset {(Y;, x;)}!_,, where

Yi=f(xi)+ &, i=1,...,n, (1)

with X being some fixed set, f : X — R an unknown function, x; € X fixed nonrandom elements, and
the random errors &; independently and identically distributed (i.i.d.) Gaussian variables with mean
zero and variance 02. The primary goal is to construct an estimator f for f using the observations
{(Yi, xi)}!_,. To evaluate the performance of f, we consider the squared error loss given by
. , 1= 2
If =13 == 3 (Feeo = fxa)

i=1

Moreover, we define the risk of the estimator f as E||f — f]|2. A straightforward, yet illustrative, case
for this model is to assume that x; € R? and f(Xi) = (Xi, 0*), with 6* € R4 being an unknown target
parameter. A common method to estimate 6* is through the least squares estimator:

~ 1 <& 5

0 =argmin— » ((x;,0) -Y;)".
gerd ;

In this course, we will discuss and prove results of the form:

n

L (i B  (wi,09)

i=1

10

E < .
n

Here d,n, 0% each play a specific role. The parameters d, 7, and ¢ can grow simultaneously in any
manner, a scenario somewhat problematic for an asymptotic approach. Typically, asymptotic results
are either of the form where both d and ¢ are fixed and n goes to infinity, or o is fixed and both d and
n grow such that the ratio d/n converges to a constant. However, even in this simplified example, the
asymptotic regimes described only cover a fraction of possible interactions between d, o, and n. To
elaborate further on this perspective, we refer to the quote of Pascal Massart [ ], one of the pioneers
of non-asymptotic analysis in statistics:

“Through our works, we have promoted a nonasymptotic approach in statistics which consists in taking the number
of observations as it is and trying to evaluate the effect of all the influential parameters. At this very starting point,
it seems to me that it is important to provide a first answer to the following question: why should we be interested by
a nonasymptotic view for model selection at all? In my opinion, the motivation should neither be a strange interest
for 'small” sets of data nor a special taste for constants and inequalities rather than for limit theorems (although
since mathematics is also a matter of taste, it is a possible way for getting involved in it...). On the contrary, the
nonasymptotic point of view may turn to be especially relevant when the number of observations is large. It is
indeed to fit large complex sets of data that one needs to deal with possibly huge collections of models at different
scales. The nonasymptotic approach for model selection precisely allows the collection of models together with
their dimensions to vary freely, letting the dimensions be possibly of the same order of magnitude as the number of
observations.”

1.2 Basic tail bounds

We begin with some basic tail bounds.



Proposition 1.2 (Markov’s Inequality). Let X be a non-negative random variable. Then for any t > 0, we have

EX
PI‘(X > t) < T

Proposition 1.3 (Chebyshev’s Inequality). Let X be a random variable with finite variance. Then for any t > 0,

we have
Var(X)

Pr(X —EX| 2 ) s —;

Proof. Chebyshev’s inequality follows from applying Markov’s inequality to the squared deviation
(X — EX)2. O

Remark 1.4. When discussing Chebyshev’s inequality, it’s important to give attention to the correct pronunciation
of Chebyshev’s name. Notably, the proper English transcription accentuates the final ‘ov” in "Chebyshov’, a detail
that is often missed.

Is Chebyshev’s inequality tight for the standard Gaussian random variable? The answer is no! Here is
why.

Proposition 1.5 (Tails of Gaussian Random Variables). Let Z be a standard Gaussian random variable. For
any t > 0, we have

(1 - l) Le‘t2/2 <Pr(Z>t)<

1
Van Van

Proof. Consider Z, a standard Gaussian variable. For any ¢ > 0, we have

1
— e_tz/z.
t

1 o
Pr(Z >t)= T/ e ™12 dx.
V27 Jt

Setting x =t + y, we find

1 o, 2 1 2 e
Pr(Z >t) = —/ e F e eV 2 gy < — ot /2/ e Vdy,
V21t Jo / V27 0 Y

using e¥*/2 < 1. The last integral equals 1, yielding the upper bound. The lower bound follows from

0 1 1
/ (1- 3x_4)e_"2/2 dx = (? - t_3) e 12,
t

O

The crucial aspect is that the tail bound Pr(Z > t) < ﬁe"tz/ 2 is often the only necessary consideration

for Gaussian variables in many applications. Chebyshev’s inequality is not sufficient as it provides a
bound of tlz However, we can refine this using Markov’s inequality, which, for any random variable X
with mean y, and any t > 0, gives
EIX — ul?
Pr(|X —u| >t) =Pr(|X —ulf > t7) < %

By taking the infimum with respect to p > 1, we find

. E[X P
Pr(|X —pul>t) < ;r;{ —

3



This approach, while leading to the desired bound, may require more complex computations in many

applications. An alternative and more practical method involves using the moment generating function
(MGEF). For any A > 0,

E exp(A|X — ul)
exp(At)

Pr(|X — u| > t) = Pr(exp(A|X — p]) > exp(At)) <

Thus,

 Eexp(AIX - ul)
PrIX —pl = 1) < gg exp(At)

For any random variable Z, its MGF is defined as
Mz(A) = Eexp(AZ).

A key advantage of the MGF over standard moments is that for independent random variables Zy, . .., Z,,
forany A € R,

n
Mzs.42,(0) = | [ Mz(2),
i=1

a property not generally shared by moments. Under assumptions allowing the interchange of integrals
and derivatives, we can show that

d d k k
WMZ(A)L\:O = EW exp(AZ)|,_, = EZ exp(AZ)|,_, = EZF,

justifying the name ‘'moment generating function’. Finally, we calculate the MGF for a standard Gaussian.
For Z, a zero-mean Gaussian random variable with variance ¢2, it holds that

Mz(A) = Eexp(AZ) = exp(Azaz/Z).



STAT210B Theoretical Statistics Lecture 2 -01/18/2024

Lecture 2: Basic concentration inequalities
Instructor: Nikita Zhivotovskiy Scriber: Nikita Zhivotovskiy — Proofreader: Nikita Zhivotovskiy

2.1 Sub-Gaussian random variables

We continue our discussion of the moment generating function. Recall that for Z, a zero-mean Gaussian
random variable with variance ¢2, it holds that

Mz(A) = Eexp(AZ) = exp(Azoz/Z).

Let us apply Chernoff’s method. Using the formula for the moment generating function of the Gaussian
random variable, we have

Pr(Z > t) < )i\ng exp(A202/2 - /\t) = exp(—t2/262).
>
This is quite remarkable as exponential moments alone are good enough to get the main term in the
Gaussian tail. Our first definition of the sub-Gaussian random variable is the following:

Definition 2.1. A mean-zero random variable X is sub-Gaussian with the variance parameter o if
Eexp(AX) < exp(Azaz/Z),

forall A € R.

What do we have immediately from this definition? For example, if the random variable X is sub-Gaussian,
then —X is also sub-Gaussian with the same variance parameter. The following result summarizes
several equivalent definitions of sub-Gaussian random variables.

Proposition 2.2. Let X be a random variable with EX = 0. Then the following are equivalent, and the parameters
ki > 0 differ by at most multiplicative absolute constant factors:

1. Forall A € R,
Eexp(AX) < exp(k‘;'/\z).

2. Forallt >0,

Pr(|X| >t) < ZeXp(—tz/k%).
3. Forallp > 1,

1X1l1, = EIXI)P < ksyp.
4. Forall A such that |A| < 1/ky,

[Eexp(AzXz) < exp(ki/\z).

5. For some ks,
[Eexp(Xz/kg) <2

5



Proof. We have already verified (1) — (2). This follows from Chernoff’s method. Let us show how (2)
implies (3). Without loss of generality, assume that k; = 1. We have

E|X|P = / Pr(|X|P > t)dt = / Pr(|X]| > u)pu’”‘ldu < /Zpu"’_l exp(—uz)du.
t=0 u=0 u=0

Recall that the gamma function I' is given by I'(x) = f t*"Lexp(—t)dt. Using the change of variables
0

2

w = u*, we have

2/ pub exp(—uz)du =p / wP/?71 exp(—w)dw = pT'(p/2) < 3p(p/2)P/2,
u=0 w=0

where we used I'(x) < 3x* for x > 1/2. The remaining proofs are left as an exercise and can be found in
[ , Proposition 2.5.2]. H

What other distributions are sub-Gaussian?
Consider the example of the Rademacher random sign. If ¢ = £1 with equal probabilities, then we call it
the Rademacher random variable. We have

Eexp(Ae) = %exp(/\) + %exp(—/\) < exp(Az/Z),

where the inequality follows from comparing Taylor series. Thus, the Rademacher random variable
is sub-Gaussian with 0 = 1. It appears that another basic example belongs to the class of bounded
distributions.

Lemma 2.3 (Hoeffding’s lemma). Assume that X is a zero-mean random variable whose values are almost surely
in [a,b]. Then

Eexp(AX) < exp(/lz(b — a)2/8).
Proof. We show a slightly weaker inequality first using the idea of symmetrization. Let X’ be an

independent copy of X. Denote the expectation with respect to X’ as E’. Using Jensen’s inequality (since
the exponent function is convex) we have

Eexp(AX) = Eexp(MX — E'X")) < EE" exp(A(X — X")).

Let ¢ be a Rademacher random variable independent from both X and X’. We observe that by symmetry,
X — X’ has the same distribution as ¢(X — X’). Therefore, we have

EE exp(M(X — X')) = EE'E, exp(Ae(X — X)).

Conditioning on the values X — X’ we use the upper bound for the MGF of the Rademacher random
variable to obtain

EE'E. exp(Ae(X — X)) < EF’ exp(/\z(X - X’)Z/Z)-

The proof follows by observing that (X — X’)> < (b — a)? with probability one. A slightly more refined
analysis leads to the constant 8 in the bound. O

The next lemma is the standard concentration results for the sum of independent sub-Gaussian random
variables. Its proof is a manifestation of why MGF is preferred over the moments: it is easy to work with
MGTF of independent random variables.



Proposition 2.4. Assume that X3, ..., X, are independent random variables with means 1, . . ., Uy such that
X; — u; are sub-Gaussian with parameters o; foralli =1,...,n. Then, forany t > 0,

Pr
i=1

i(X;‘ — W) > t) <exp ( — #202)
i=19;

Furthermore,

Pr Zn:(Xi — i)

i=1

t2
>t SZexp(—m)
i=1"Y

Proof. Due to the independence of X; — u;, we have

E exp (A Z(Xi - yi)) = 1_[ Eexp(AMXi — ui)) < exp (AZ Z 05/2) .
i=1

i=1 i=1

n

Therefore, the sub-Gaussian parameter 02 of Y, (X; — ;) is i, 01.2. Thus, applying Chernoff’s method
i=1

and optimizing with respect to A, we get the first inequality. Similarly, we can prove that

Pr

n 2
;(Xi — i) < —t) < exp ( — #ﬂﬁf)

Combining both inequalities via the union bound, we obtain

ZH:(Xi — i)

i=1

Pr

t2
>t SZexp(—W)
1= 1

As a corollary for the bounded random variables, we have the classical Hoeffding’s inequality.

Proposition 2.5 (Hoeffding’s inequality). Assume that X1, ..., X, are random variables taking their values in
[a;, b;] respectively with means u1, . .., uy. Then, for any t > 0, we have

n

21
Pr ;(Xi — i) 2 t) < exp(— m)
Furthermore,
n 242
Pr ;(Xz — ui)| = t) < 2exp ( - m)
Proof. We just replace o; in Proposition 2.4 with |b; — a;|/2, which is due to Hoeffding’s lemma. O



STAT210B Theoretical Statistics Lecture 3-01/23/2024
Lecture 3: Sub-Gaussian and Sub-Exponential Distributions

Instructor: Nikita Zhivotovskiy Scriber: Annie Ulichney — Proofreader: Jodo Vitor Romano

In the previous lecture, we introduced sub-Gaussian distributions and equivalent characterizations of
sub-Gaussian distributions. We showed that Rademacher variables and bounded random variables
with mean zero are examples of sub-Gaussian variables. Finally, we introduced Hoeffding’s inequality
which provides a bound for the deviation of the sum of bounded independent random variables from its
expectation. We pick up where we left off: with Hoeffding’s inequality.

3.1 Hoeffding’s inequality

Recall from the previous lecture Hoeffding’s inequality, which is sometimes called the Hoeffding bound.

Proposition 3.1 (Hoeffding’s inequality). Let X1, ..., X, be independent random variables such that EX; = u;
and X; € [a;, b;] almost surely. Then, forall t > 0,

- —2t?
Z(XZ - #Z) > t) < exp (m) .

i=1
By symmetry and the union bound, it follows that

\ 22
;(Xi — Wil t) < 2exp (—2?21(511' — bi)z) :

Pr

Pr

This result was proved in Lecture 2, Proposition 5.

Remark 3.2. Observe that these bounds are a function of the length of the interval [a;, b;], so they are invariant to
centering X;.

3.1.1 Example 1: Rademacher Random Variables

Let €1, ..., &€, be independent Rademacher random variables, i.e. ¢; = +1 with probability 1/2. Observe
Ee; =0, Var(e;) = 1. Applying Hoeffding’s inequality, we get

n
l Z e
n

1
Pr (
i=1

> t) < 2exp (_ZX:)Z)

2
:2exp( zt )

~—_— ——
0

% Yiq €i| < t. In other words, we want to bound 6. We do so

We seek t such that, with high probability,

by rearranging the relation 6 = 2 exp (#) to isolate ¢, which yields t = 4/ 21%(2/6). After expressing t in
terms of 6, we can interpret our bound as a high-probability bound as follows. For this value of ¢, with

probability at least 1 — 6,
el < /210g(2/(5).
n

1 n
-

i=1




Remark 3.3. Observe that this result is true for any n; it is a non-asymptotic result.

Now, let’s compare this bound to that from Chebyshev’s inequality. Applying Chebyshev to the random
variable % g€ forallt >0,

Var (; 21 €1)

<
hS Iy

_1/n%-n
ol

nt?
——
5

Now, we have bounded the probability that our random variable exceeds t by 6. We can equivalently

express this bound as a high-probability bound by solving for t in terms of 6 to get t = ﬁ. As before,
1

u Z?:l £ 1’| < %

on
We have now explored an application of Hoeffding’s inequality to Rademacher random variables and
compared the resulting bound to that of Chebyshev. Next, we return to the discussion of sub-Gaussian
distributions in general and introduce the notion of the sub-Gaussian norm and its properties.

we can make the interpretation that, with probability 1 - 6,

3.2 Sub-Gaussian Norm

Definition 3.4 (Sub-Gaussian Norm). Let X be a random variable (not necessarily such that EX = 0). The

Sub-Gaussian norm of X is
. X2
1X]ly, = inf {t >0:E [exp (t—z)l < 2} .

Remark 3.5. Essentially, this norm is the smallest constant ks in relation 5 of our 5 equivalent definitions of
sub-Gaussian random variables listed in Lecture 2, Proposition 2.

Proposition 3.6 (Sub-Gaussian norm equivalent characterizations). As in Lecture 2, Proposition 2, for all
t > 0, if c and C are absolute constants, for a random variable X the following are equivalent:

1. Pr(X| 2 t) < 2exp(—ct2/||X||22);
2 2 .
2. [Eexp(X /||X||¢2) <2
3. [IXllz, = (EIX[P)YP < CllX|ly,F VYp=1;
4 EX=0 = Eexp(AX) < exp(CA2||X||§}2) VA E€R,

Remark 3.7. Note that definitions 1-3 do not require EX = 0.

Proof of Proposition 3.6 can be found in the proof of [ , Proposition 2.5.2].



3.2.1 Properties of the Sub-Gaussian Norm

Proposition 3.8. || - ||y, is a valid norm.

To prove this, we need to show that, for a random variable X and A € R, the following are satisfied:
L IAX g, = [AHX ]y,
2. IX + Yy, < MIX My, + 1Y 1y
3. [IX]ly, =0 & X = 0 almost surely.

We prove these properties in Homework 1.

Proposition 3.9. For the normal distribution, the following properties hold:
1. Z~N(0,1) = ||Z]ly, < ¢c;

2. Z~N(0,0%) = |IZlly, < co.

Proof. Suppose Z ~ N(0, 62). The MGF of the normal distribution is

2,2
Eexp(AZ) = exp (ATG) .

We can see that Z is sub-Gaussian with variance parameter 2. The desired result follows from relation 4

of Proposition 3.6. O

Proposition 3.10.

If X € [a,b], exp (X?/t?) < exp (max(a?, b?)/t?) which implies that t = h\/max(az, b2).
08

Proposition 3.11. If X1, ..., X,, are independent random variables and c is an absolute constant,

2 n
<c X3,
U i=1

Proof. Without loss of generality, assume EX; = 0. Then, by our independence assumption and Properties
1, 4 of Proposition 3.6,

n

>

i=1

E exp

A i X
i=1

= 1_[ E exp (AX;)
i=1

n
<[ Jexp (er?x3,)
i=1

n
= exp (AchHXinz .
i=1

Remark 3.12. Note that this is an analog of the property Var (X1, X;) = X' Var(X;) for independent X;.

Remark 3.13. Observe that Claim 3.11 is not a result of the triangle inequality. Our claim assumes independence
and is a stronger result.

10



3.2.2 Example 2: Khintchine’s inequality

Khintchine’s inequality can be derived with Hoeffding’s inequality to bound the L, norms of the sum of
independent random variables.

Proposition 3.14. Let X1, . . ., X}, be independent sub-Gaussian random variables where EX; = 0and Var(X;) = 1.
Leta =(ay,...,a,) € R". Then, forp > 2,
1/2
2
i=1

" 1/2
2
i=1
Proof. Let €1, ..., e, be independent Rademacher random variables and let a = (a4, ...,4,) € R". How
does our vector a correlate with random coin flips? By our assumption of independence and Claim 3.11,

n

<C ) llaieil?,
) i=1
n

2 2

=C > aleill,
i=1

n

1
_ 2
= CZai log(@)

n

Z (Zl'X,'

i=1

=

< cK+p

p

where K = max; || X||y,.

n 2

DI

i=1

¥

i=1

Taking the square root of both sides, for all p > 2 where C is an absolute constant,

n

S

i=1

n

<C Zaf

V2 i=1

n

< Cvp Z a?.
i=1
Now, we evaluate the expectation of ()1, aiei)z by expanding the squared summation as follows:

2
E (iaiei) = ia?+[E Z aid;j&;éj.

i=1 i=1 i, fii#]

The second term on the right hand side is 0 by our assumption of independence of ¢;. Therefore, we are

left with:
n 2 n 1/2
E (Z aiei) :( a?) .
i=1 i=1

Next, we classify distributions with tail behavior that does not meet the definition of sub-Gaussian
behavior but can be characterized analogously.

O

11



3.3 Non-Sub-Gaussian Distributions

Let X ~ N(0,1), X = Z2 — 1 where EX = 0. Is X sub-Gaussian? We evaluate E (1X) by
E exp (/\(Z2 - 1)) = 1 /Oo exp (/\(z2 - 1)) exp (_—Zz) dz.
V21 J oo 2

e If A > 1/2, the exponential moment is not defined. Therefore, X is not sub-Gaussian because there
is no reasonable upper bound.

e If A <1/2,

[ ex (/\(Zz—l))—ex (=A) 1 < ex /\_2
P RSNV sttt 4 DY Y K

so X is sub-Gaussian up to some moment.

3.4 Sub-Exponential Norm

Definition 3.15 (Sub-Exponential Norm). Let X be a random variable (not necessarily such that EX = 0). The
sub-exponential norm of X is
X
exp (|t—|)l < 2} .

3.4.1 Properties of the Sub-Exponential Norm

1 Xly, = inf{t >0:E

Proposition 3.16. || - ||y, is a valid norm.

As with the sub-Gaussian norm, to prove this, we need to show that, for a random variable X and A € R,
the following are satisfied:

LAIAX Ny, = [ATIX gy
2. IX+ Yy, < 1X [y + 1Y [y

3. IX]ly, =0 &= X = 0 almost survely.

Proposition 3.17 (Sub-Exponential Equivalent Characterizations). For a random variable X the following are
equivalent for t > 0 and absolute constant c:

1. Pr(IX]| > t) < 2exp(—ct/lIXlly,);
2. Eexp(IXI/I1X1ly,) <2
3. Xz, < cepllXlly, Vp =1

4 EX=0 = Eexp(AX) < exp(CA2||X||i1), AL < ¢/l Xl

Proposition 3.18. Any sub-Gaussian random variable is also sub-exponential, but the reverse is not necessarily
true.

Proposition 3.19. || X?|ly, = ||X||22

12



Proof that a sub-exponential random variable is a sub-Gaussian squared follows from the definitions of
sub-Gaussian and sub-exponential random variables. See [ , Definition 2.7.3].

Proposition 3.20. If X and Y are random variables (not necessarily independent), then || XY |y, < [[ X[y, 1Y [y,

ﬂ

Proof. Without loss of generality, assume [|X]||y, = [|Y][y, = 1. Recall Young's inequality, |ab| < 5 + %
which gives:

2 2
Eexp(|XY]) <E (XT YT)

1 2\, 1 2
<E (E exp(X ) + Eexp(Y ))
=2 by assumption || X||y, = [[Y]ly, = 1.

The result follows from Property 2 in Proposition 3.17.

3.5 Bernstein’s inequality

Next, we derive bounds for sums of sub-exponential random variables analogous to our bounds for
sums of sub-Gaussian random variables.

Proposition 3.21. Let X1, ... X,, be independent sub-exponential random variables where EX; = 0. Forall t > 0,

=

2 t

Pr
S I3, maxiera 1 Xilly,

Xi
im1

>t

< 2exp (—c min (

where c is a small absolute constant. Bernstein’s inequality is covered in more detail at the start of next
lecture.
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STAT210B Theoretical Statistics Lecture 4 - 01/25/2024
Lecture 4: Tail and High-Probability Bounds

Instructor: Nikita Zhivotovskiy Scriber: Jodo Vitor Romano  Proofreader: Annie Ulichney

4.1 Bernstein’s inequality

In the previous lecture, we covered the sub-Gaussian norm || - [[y,, the sub-exponential norm || - {|y,, and
some applications of Hoeffding’s inequality. We will continue with our study of tail bounds bounds and
their equivalent representation as high-probability bounds. A particular form of Bernstein’s inequality
(Theorem 4.9) will be compared to Hoeffding’s inequality to give intuition of the trade-offs between
them.

Theorem 4.1 (Bernstein’s inequality (11 form)). Let Xy, ..., X;, be independent, zero-mean, sub-exponential
random variables. Then, for all t > 0,

n
ZXZ'Zt

i=1

2 t

Pr : —
T IXGll} - maxiepn | Xilly,

7

< exp (—c min (

and, by symmetry and the union bound,

n
>

i=1

t2 t
1113, maxieq 1 Xilly,

Pr >t

7

< 2exp (—c min (

where ¢ > 0 is an absolute constant.

Proof. The proof follows by applying Markov’s inequality to exp(A Y;'; X;), bounding the moment-
generating function using the fact that the random variables are sub-exponential and optimizing the
result. For a detailed derivation, we refer the reader to [ , Theorem 2.8.1]. O

We now state an inequality that is useful in bounding the moment-generating function of random
variables that assume only two values, for example, those with Bernoulli or Rademacher laws. The
curious reader can consult [ , Appendix A] for bibliographical remarks and a proof of the following
inequality.

Lemma 4.2 (Kearns-Saul inequality). Forall p € [0,1] and all A € R,

1-2p

pexp(A(1—p)) + (1 - p)exp(-Ap) < exp|A? T
4log -

It is now possible to discuss a simple example of a bound that encodes information about the variance of
the random variable.

Example 4.3 (Centered Bernoulli). Let X ~ Ber(p) — p and note that the variance Var [X] = p(n — p) is the
same as that of a non-centered Bernoulli random variable because the variance is invariant to translation. When p
is close to zero or one, the variance is small, and when p is close to 0.5, the variance is high. Using Kearns-Saul
inequality (Lemma 4.2), we are able to find an upper bound that takes the variance into account:

1-2p )

Ir

Eexp(AX) = pexp(A(1 - p)) + (1 - p)exp(-Ap) < exp (AZ
4log 5

14



In Lecture 3, Proposition 15, we saw four equivalent characterizations of a sub-exponential random
variable. The treatment there was in terms of the sub-exponential norm || - ||y, in particular for the
fourth characterization. More generally, a zero-mean random variable X is said to be sub-exponential
with non-negative parameters v> and « if, for all |A] < %

A212
Eexp(AX) < exp (TV) .
Taking v = 02 and a = 2b gives the equivalent characterization, for all || < 2ib

Eexp(AX) < exp (Azoz) .

Since 1 — b|A| > 1/2, we can give the following alternative definition of a sub-exponential random
variable.
Definition 4.4 (Sub-exponential). A zero-mean random variable X is sub-exponential with parameters o2 and b
if

A%262 /2

1- b|A|) '

Eexp(AX) < exp (

Note that this is a generalization of the previous definitions by splitting b and o.

Definition 4.5 (Bernstein’s moment condition). A random variable X with mean u = EX and variance
02 = Var [X] satisfies Bernstein’s moment condition with parameter b if, for all k € N»,

|E[(X - y)k” < %k!GZbk_Z.

Proposition 4.6. A random variable that is almost surely bounded by B when centered satisfies Bernstein’s moment
condition with parameter b = B/3.

Proof. Let X be an almost surely bounded random variable with mean p = EX and variance 0% = Var [X].
From boundedness, we have that its mean is finite and therefore X — u is also bounded, that is,
|X — | £ B < 0. For k € Ny,

[E [ = ]| < [E [(X - wP]| 1X - "2 < 0?BF2 = k1%t 2,

where b = B (k,)k 2 for k > 3. For k = 2, b can assume any value since b*~2 = b° = 1 for all b € R. Note

1
2 _

that (%) 2 F2 s decreasing in k, so choosing b = B (%)*? = B/3 gives us the tightest bound that does not
depend on k. O

Remark 4.7. Although boundedness is sufficient for a random variable to satisfy Bernstein’s moment condition, it
is in no way necessary: some unbounded random variables, such as those with Gaussian or x? law, also do so.

Lemma 4.8. Let X be a random variable with EX = 0 and Var [X] = o2. If X satisfies Bernstein’s moment
condition with parameter b and |X| < B almost surely, then X is (62, B/3)-sub-exponential.

Proof. We follow by representing the moment-generating function in Taylor series form, making use of
Bernstein’s moment, noting that the geometric series is summable for any |A| < 1/b, and using the fact
that 1 +t < exp(t) in the last step:
/\2 TR /\k[EX"
Eexp(AX)=1+0+—— Z

k=3

15



< -
<1+ ]
k=3
R Y T
=1+ - + - A"%h
k=3
A2g2 |A|b
=1+ —|1
) ( 1 bl)\l)
14 A252 1
- 2 \1-bJA
< ox A%262 /2
< exp T=bA])
The proof is complete by applying Proposition 4.6 to get b = B/3. O]

We can now prove another version of Bernstein’s inequality for random variables that satisfy Bernstein’s
moment condition.

Theorem 4.9 (Bernstein’s inequality). Let Xy, ..., X}, be independent random variables with means EX; = p;
and variances Var [X;] = o? fori=1,...,n. If the random variables also satisfy Bernstein’s moment condition

with parameter b, then
n 2
ZXi — Ui = t) < exp (—#),
i=1 =1 0; + bt

Pr

and, by symmetry and the union bound,

in—[ii

t2/2
Pr > t) < 2exp (—%) .
i=1 2z 0j + bt
Proof. The result follows from a direct application of Chernoft’s method and Lemma 4.8; see [ ,
Proposition 2.14] for details. O

Let us finish this section by briefly recalling a useful technique for bridging tail bounds and high-probability
bounds. Consider Hoeffding’s inequality (Lecture 3, Proposition 1) and assume for simplicity that the
random variables are bounded in the unit interval. For notational convenience, let S, := Z?:l X; so that
the tail bound is

Pr(S, —ES, > t) < exp(—th/n),

which can be rewritten as

Pr(Sy — ES, < £) > 1 - exp(—th/n) —1-6.

Expressing t in terms of 6 yields the equivalent high-probability bound

Toe(1
Pr(Sn—[ESn <\/”%(/6)) > 1-56.

16
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Ficure 1: Comparison of Hoeffding’s high-probability bound (Eq. 3) and Bernstein’s high-probability

bound (Eq. 5) for Xy, ..., X, i Ber(p)—p withvarying p € [0,1],n = 50and 6 = 0.01. If Var [X;] = p(1-p)
is large (p close to 0.5), Hoeftding’s outperforms Bernstein’s. For small variance (p close to 0 or 1),
Bernstein’s is preferred.

4.2 Comparing bounds

Let Xq,..., X, iid Ber(p) — p be distributed as a centered Bernoulli with parameter p € [0, 1]. Note that
—p £ X1 £1-pand EX; =0, so Hoeffding’s inequality gives

1 n
Pr(EZ;‘XZ-
1=

Restating this result as a high-probability bound as outlined above yields that, with probability at least

1-6€(0,1),
ZX

Note that this upper bound depends on n and 0, but not on p. Given that we know Var [X;] = p(1 - p),
one might expect to do better under certain situations by using information about the variance. Since
|X1] < max(p,1 —p) <1, we can apply Bernstein’s inequality to get

n
w2 %

1
Pr (
i=1

>t] < Zexp(—ZntZ). (2)

108(2/ %)

©)

>t

< 2exp (-1 @
=P\ T - p)+2t/3)

By solving 6 := 2 exp(—m) for t, we can restate the result as a high-probability bound. Indeed,
with probability at least 1 — 6 € (0, 1),

"ZX| g \/(10g(2/6)) 20(1 - p)log(2/8) _ log(2/8)

()

n 3n

For a cleaner but less tight bound, recall that Va + b < va + Vb foralla,b € Rso, so

1 2p(1-p)log(2/d)  2l0g(2/8)
lE Z Xil < \/ n 3n

17
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Ficure 2: Comparison of Hoeffding’s tail bound (Eq. 2) and Bernstein’s tail bound (Eq. 4) for

X1,..., X, iid Ber(p) — p with p = 0.9 (left panel; low variance) and p = 0.5 (right panel; high variance),
t = 0.2 and varying sample size n. Hoeffding’s inequality outperforms Bernstein’s when the variance
Var [X1] = p(1 — p) is large; Bernstein’s is preferred on the low-variance regime. The gap between the
bounds is especially prominent for small n and decreases as n grows.

In Figure 1, we analyze Hoeffding’s high-probability bound (Equation 3) and Bernstein’s high-probability

bound (Equation 5) for the centered Bernoulli example with Xy, ..., X}, i« Ber(p) — p with p varying in
the unit interval while n = 50 and 6 = 0.01 are kept fixed. On the one hand, when p is close to 0.5, the
variance Var [X;] = p(1 — p) is large and Hoeffding’s gives a better bound. On the other hand, when p
close to 0 or 1 and the variance therefore small, Bernstein’s is preferred.

Figure 2 shows a complementary analysis of the tail bounds (Equations 2 and 4) for the same centered
Bernoulli example. Now, the parameter of the distribution is fixed at p = 0.9 (left panel; low variance) or
p = 0.5 (right panel; high variance), t = 0.2 and the sample size n varies from 10 to 100. Once again, we
observe Hoeffding’s advantage when the variance is large and Bernstein’s when it is low. Importantly,
we see that the difference between the bounds is especially prominent for small sample sizes and less
relevant for large n.

For a complementary comparison, first recall from Lecture 1, Definition 1, that a zero-mean random
variable X is sub-Gaussian with parameter a2 if, forall A € R,

Eexp(AX) < exp(Azaz/Z). (6)

In the literature, the parameter o2 is oftentimes referred to as proxy variance to emphasize it is not
necessarily the true variance of the random variable. One may also encounter the term optimal proxy
variance, ngt’ to denote the smallest proxy variance such that Equation 6 holds. Then, from [ ,
Proposition 2.1], we have that every proxy variance at most equal to the true variance:

Var [X] < agpt < o2,

A natural question that arises is how different proxy variances compare to one another and to the true
variance. Recall that the variance for the centered Bernoulli is given by

Var [X] =p(1-p), (7)
Hoeffding’s lemma asserts that
A2 1-p-Cp) (A
Eexp(AX) < exp (7 g | =&P|51) 8)

18
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Ficure 3: Comparison of the true variance (solid) of a centered Bernoulli random variable with varying
parameter p, the proxy variance from Hoeffding’s lemma (dashed) and the optimal proxy variance that
comes from Kearns-Saul inequality (dashdotted).

and Kearns-Saul inequality yields

2 1-2
Eexp(AX) < exp Ay —f . )
2 ZIOng

In fact, the optimal proxy variance agpt for the centered Bernoulli can be shown to be that from Kearns-Saul
1- Zp [

inequality, i.e., -~ , Proposition 4.1].

Figure 3 compares the proxy variances coming from Equations 8 and 9 above to the true variance of the
centered Bernoulli defined in Equation var-true. Note that, as expected, the true variance is a uniform
lower bound and that the proxy variance from Kearns-Saul is smaller than the one from Hoeffding’s.

4.3 Another application of Bernstein’s inequality

Instead of bounding the probability of a random variable deviating from its mean by a given constant, one
might be interested in deviations relative to the mean, that is, Pr[|X — EX| > yEX] for some y € [0, 1].
Let us consider the case X ~ Bin(n, p); equivalently, X = }.7 ; X; where Xy, ..., X, id Ber(p). From
Bernstein’s inequality and the triangle inequality (see Section Comparing bounds),

X ~EX| < \[2np(1 - p)log(2/6) + élog(Z/(S).

Recall that for any a,b > 0 and y > 0, we have Vab < < Yya+b/y). Leta = 2np = 2EX and
= (1 -p)log(2/d), such that

X —EX| < % (Zy[EX (- p)k’g(z/é)) 0g(2/6)

—y[EX+10g(2/5)( yp+3)
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By noting that 1 — p < 1 and introducing the assumption that yEX > log(2/ 6)(% + %), we have that, with
probability at least 1 — 9,
EX -2yEX < X <EX +2yEX.

We can see from this that in certain circumstances a sum of Bernoulli random variables could be replaced
by a proportion of its expectation. This is known as a multiplicative Chernoff bound. For y = 0.1 for
example, we have 0.8 - EX < X < 1.2-EX. We emphasize that this result depends on the assumption
that yYEX > log(2/ 6)(% + %), but note that this is reasonable, especially for large n.

In the next lecture, we will start with an application of Bernstein’s inequality to statistical learning theory
with roots in the works of Vladimir Vapnik and Alexey Chervonenkis in the 1960s and Leslie Valiant in
the 1980s.
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STAT210B Theoretical Statistics Lecture 5-01/30/2024

Lecture 5: Learning Theory and Maximal Inequalities
Instructor: Nikita Zhivotovskiy Scriber: Sohom Paul ~ Proofreader: Dylan Webb

5.1 Statistical Learning Theory

Consider the following simple model for learning a binary classifier:
* Our instances are drawn from a set X.

* The true classifier f* is an element of some finite family ¥ of functions from X to {0,1}. Let M
denote |F|.

* We observe the labeled training set (X1, f*(X1)), ..., (Xu, f(Xy)) for training points Xj, ..., X,
drawn i.i.d. from the (unknown) probability distribution # over the instance space X.

* Our goal is to output some decision rule f such that our decision rule agrees with f* with high
probability on new samples from #. Namely, we seek to minimize Prx.p(f(X) # f*(X)).

This basic model has been studied by Vapnik and Chervonenkis in [ ] and Valiant in [ 1.

Definition 5.1. Let the risk of classifier f, denoted R(f), be the probability of misclassification when using
classifier f for new data drawn from our distribution . Namely,

R(f) = Pr(f(X) # f(X).

Definition 5.2. Let the empirical risk of classifer f, denoted R, (f), be the proportion of errors that classifier f
makes on the observed training data. Namely,

Ru(f) = D" HF(X0) # (X0}

i=1

Consider some fixed f. Note that the indicators 1{f(X;) # f*(X;)} are i.i.d. Bernoulli trials, each with
probability R(f) of occurring, so we conclude that R, (f) is a scaled binomial random variable. Applying
Bernstein’s inequality shows, with probability at least 1 — 6,

2R(f)(1 = R(f))log(1/6) _2log(1/0)
R(f)_Rn(f)S\/ 7 + 3

L \/ZR(f) log(1/6)  2log(1/)

n 3n

(*)

In order to get the tightest bound on the risk, our strategy will be to choose f € ¥ such that f(X;) = f*(X;)
foralli € {1,...,n} (so R,( f ) =0). Such a f certainly exists because f* itself is contained in . However,

we cannot naively use our analysis using Bernstein’s inequality above to bound the risk, as the choice of f
depends on the entire observed dataset (X1, ..., X,;), and thus we do not necessarily have independence

of the indicators ﬂ{f(Xi) # f(Xi)}.
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Instead, observe that we have for any fixed f, (*) shows, with probability 1 - 6/M,

2R(f)10g(M/0) _ 2log(M/0)
n 3n )

RGO =Ro(f) <

Thus, applying union bound to the different f € ¥ shows, with probability at least 1 — 6,

IR(F)10g(M/3) _ 2log(M/5)
n 3n '

VfeF. R(f)-Ru(f) < \/

Because we chose f from ¥ to have R, ( f ) =0, we conclude

R < \/sz) log(M/0) _ 2log(M/0)

n 3n

One can check that for R( f ) > 101log(M/6)/n the inequality above is violated, so we conclude that

10log(M/0) _ 10(log(M) + log(1/6))
n n '

R(f) <
For an alternative proof, fix ¢ € (0, 1) and notice, by union bound,

Pr(3f € F: R(f) = &, Ru(f) =0) < ) Pr(R(f) > &, Ry(f) = 0)

feF
<M1 -e)",

The final inequality holds because, given that the risk of classifier f is at least ¢, each X; has an
independent probability of at most 1 — ¢ of being correctly classified. Recalling 1 — x < exp(—x) holds for
all x, we obtain

Pr(3f € ¥ : R(f) > ¢,Ru(f) = 0) < Mexp(—¢n),

so for n > (log M +log(1/6))/ ¢ the probability of there existing some f with empirical risk 0 but true
risk at least ¢ can be bounded by . We conclude that with probability at least 1 — 6 that R(f) is bounded

by (log M +log(1/6))/n. This gives the same result as before, up to constants.
5.2 Maximal Inequalities

Previously, we have derived bounds on sums of random variables. It will be useful to similarly derive
bounds on maxima of sets of random variables.

Theorem 5.3. Let X1, ..., X, be zero-mean, not necessarily independent, subgaussian random variables. Namely,
suppose E [exp(AX;)| < exp(A20?%/2) holds for all A and for each i € [n]. Then,

E [max(Xi, ..., Xn)] < 4J20%logn.

Proof. Using Jensen’s inequality, we can compute for A > 0
E [max(Xi,..., Xy)] = %[E [log exp (A max(Xy, ..., Xn))]
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< % log E [exp(A max(Xi, ..., Xp))]

1 ,
=7 log E | max exp(AXi)]
1

) -
< 1 log E Z exp(AX;)

L 1

<ll ﬁ
=7 og | n exp 5

—11 n+)\(72
—/\og >

Taking the infimum of the right-hand side over A shows the claim. O

Theorem 5.4. Let Xy, ..., X, be zero-mean, not necessarily independent, subexponential random variables.
Namely, suppose that for all |A| < 1/b and i € [n], we have

A%62 /2
1-b|A|)"

E [max(Xi, ..., Xn)] < J20%logn + blogn.

In particular, there is an absolute constant C such that

E |[exp(AXi)]| < exp (

Then,

E [max(X, ..., X;)] < Cmax||X;lly, logn.
1

Proof. Following the same steps as for the previous theorem, we deduce that forany 0 < A < 1/b,

1
E [max(Xq,..., X,)] < 1 log E [Z exp(AX;)
< llo nex Ao/2
-l U o )
Ao?
2(1—bA)

—llo n+

Solving for the infimum over A yields the first claim. The latter holds by noting that X; is
(C1l1Xilly;, Cal| Xilly, )-subexponential for some choice of absolute constants C1, Cy, so we can collect the
terms together. O

Theorem 5.5. For any, not necessarily independent, set of random variables X1, ..., X, and p > 1, we have
E [max(X1, .. ., X,)] < n/P max|| Xy,
1
Proof. By Jensen’s inequality,

E[max(Xs, ..., X,)] < E |(max(IX:P, ..., 1X:[") |
< (E [max(|X1]?, ..., |X.|")DVP

< n'? max|| Xill,,
1
as desired. u
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Definition 5.6. We say g : X" — R satisfies the bounded differences property with constants Cy, ..., Cy, if,
forall i € [n], we have

sup |g(x1, ..., x0) —g(x1, ..., Xic1, X}, Xiv1, ..., X)| < Ci

Theorem 5.7 (McDiarmid’s Inequality). Let g : X — R satisfy the bounded differences property with constants
Ci...,Cy andlet Xy, ..., X, beindependent random variables over X. Then,

—2¢2
Pr(e(Xy,..., X,) —Ee(Xq,...,X,) > t) < .
r(g(X1 ) —Eg(Xq ) >t) eXp(Zin)

Proof. Note g := g(Xi, ..., Xy) is a random variable, and define fori € {1,...,n}
Yl‘ = [E[g | Xl,...,XZ‘]—[E[g | X1/-~-/Xi—1]-

(In particular, Y1 = E[g | X1] — E[g].) Then, we have ¢ —Eg = >};Y;. Now, for each i € [n] define
hi(x1,...,xi)=E[g | X1 =x1,...,Xi = xi]. Observe
Y; <sup hi(Xq, ..., Xi-1,x) = hi-i(Xy, ..., Xi-1),
xeX
Y; > inf hi(Xq, ..., Xi—1,x) = hi-1(Xaq, ..., Xi21),
xeX

and thus Y; | Xj, ..., Xi—1 belongs to an interval of size at most C;, by the bounded differences property,
and

E[Y: | X1,...,Xi-1] = 0 by iterated expectation. Thus, by Hoeffding’s Lemma,

A2C2
E [exp(AY:) | X1, ..., Xiz1] < exp (TI) .

We obtain

E [exp(A(g —Eg))| = E |exp (A Yi)
[ 1

Iterating this argument yields

A2y, C?
E [exp(A(g —Eg))] < exp (%) :

Finally, we use the Chernoff bound to finish the proof. O

Remark 5.8. ¢(X1,...,X,) = 3; Xi for X; € [0, 1] satisfies the bounded differences property. Thus, McDiarmid's
inequality generalizes Hoeffding’s lemma.

24



5.3 Kernel Density Estimation

Consider observing Xj, ..., X, i.i.d. samples from some (unknown) probability density f over R. We
seek to estimate the unknown density from our data using a kernel estimator

Fulx; X X)—izn:K %=X
n\A, A1y, An _Tlh - h ’

where K : R — R is some kernel function satisfying K(x) > 0 for all x € R and / K(x)dx =1,and h is an
appropriate hyperparameter representing our desired window length. We measure the quality of our
estimator using expected L, distance:

Ex. x. / ol X1, ., X) = F(3)] dx.
R

Next lecture, we will discuss how we can use McDiarmid’s inequality to bound this objective.
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STAT210B Theoretical Statistics Lecture 6 - 02/01/2024

Lecture 6: Kernel Density Estimation and Norm Concentration
Instructor: Nikita Zhivotovskiy Scriber: Julian Morimoto  Proofreader: Daniel Etaat

6.1 Kernel Density Estimation (continued)

We begin this lecture by continuing our discussion of density estimation. Let x1, ..., x, be IID samples
drawn from some distribution with an unknown density function f. To estimate f, we may employ
kernel density estimation, a non-parametric method to estimate the density of a random variable. We

estimate f by
A 1 X —Xj
Ju :=EZ]K( i)

jeln

where K is some kernel function and / > 0 is parameter sometimes called the bandwidth. Recall that a
kernel function is a non-negative function that satisfies fR K(x)dx = 1.

To determine whether £, is a good estimator, we may want to consider its L! distance from f defined as
| fn = fll1 = fR | fu(x) — f(x)|dx. This is infeasible to compute since f is unknown. Instead, we will study
its expectation:

lecture 5 notes). To do this we must first show that g(x1,...,x,) = || fn — fll1 satisfies the bounded
differences property (note that x1, ..., x,, are used to construct f,,). Fix some i € [n] and let x} # x;. Then
we have that |g(x1, e Xic1, Xiy X, e, Xn) — (X1, .., Xz, X, Xitd, - - xn)| is equal to:

A%;K(x;xj)—f(x) dx—/R%ZK(’C;X]%%K(JC?;)#(@ dx|.

j#i
By the triangle inequality this is less than or equal to:

1 X=X X —X;

which is less than or equal to 2/n by the properties of K. Then by McDiarmid’s inequality we have that,

dx,

2n

Pr (|||fn _f”l - [Ex1 ..... xn[”fn —f||1]| > t) < 2exp (—7) .

This would be tough result to prove without McDiarmid’s inequality and the bounded differences
property.
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6.2 Concentration of Norms of Random Vectors

Suppose X ~ N(0,1;) or equivalently X; S N@©,1) for i = 1,...,d. We would like to study the

concentration of ||X||§ = Z‘lflzl XZ2 Since each X; is trivially sub- Gaussian, we know that their sub-

Gaussian norms || X;||y, are finite. Then ||Xi2||¢1 < C for some finite C since ||X1.2||¢1 = ||Xi||§)2. Noting
that E [||X||?| = d, we can apply Bernstein’s inequality to show that:
Pr(|||X|| —d| > t) < 2exp [—c¢’ min £t
2 P ac?’c
Normalizing by d and restricting t € (0, 1) yields
1|2 ,
Pr e 1| >t] <2exp (—ct d) . (1)

This is an interesting result that shows that the norm of some nice random vector concentrates around d
as its dimension, d increases. In the next section, we use this machinery to prove another useful result.

Remark 6.1. Given the law of large numbers, this is a reasonable thing to expect. As d increases, || X||3 looks
more and more like a sum of a large number of independent random variables whose expectation is 1 (since the
coordinates of X are all centered at 0 and have variance 1). What this result helps us see is the rate at which this
concentration happens as we increase the dimension.

6.2.1 The Johnson-Lindenstrauss Lemma

Letuq,...,u, € R and m < d. We would like to find a projection map T : R? — R™ that preserves
distances between these vectors. Informally, we would like 7 to satisfy

lI7e(ui) = m(up)ll2 = [lui = ujll2

fori,j € [n].
We can construct such a projection as follows. Let I" be an m X d random matrix with normally distributed

entries Fl] N(O 1). Letv € 91 = {x e R? : ||x||2 =1}. ThenI'v ~ N(0, I;). Then by (1) we have that

fort € (0,1):
Pr ( > t) < 2exp (—ctzm) .

We can generalize this bound to an arbitary v € R as:

2
IToll3
m

-1

2
Ik Tol

——>— 1l 2t]<2exp (—ctzm) :
o113

Finally, applying the union bound over all pairs (u;, u;) leads to the following bound:

| <=T(; — uj)l3
Vi . n 2,2
1—-¢t,1+¢ <2 —c“t = 0.
T ]}) (2)eXp( )
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Alternatively, we could say that with probability 1 — 6,

T = w3

[l = ujll3

|
1-t<

<1+t

form > 01? In(n?/8). Our desired projection is then n(v) = #TU. What is rather remarkable about this
bound is that it does not depend on the dimension d. However, m increases with n, so this projection
becomes less efficient as we increase the amount of data we are projecting. If n is infinite, we will need a

smarter projection scheme than the one presented here.

Remark 6.2 (Alternative view of the result). We could also formulate the bound in terms of t. One might be
interested in doing this when there’s a cap on the dimension of the space to which we wish to project our data, and
we want to know what might be the "worst” discrepancy between the distance between the projected vectors as
a multiple of the distance of the unprojected vectors. Formally, this would be the infimum of all t such that the
inequality is satisfied for fixed m, n, and .

Remark 6.3 (A technique for achieving dimension free bounds). One way of thinking about why this does
not depend on the dimension d is that we are ensuring that whatever goes into the projection has norm 1, and this is
achieved by dividing by the norm of the vector that is being projected. In other words, we are able to achieve this nice
behavior because we frame our question about acceptable distances between projected and unprojected vectors as one
of relative distance by way of ratios, rather than absolute differences (i.e., the distance between ||m‘%l"(ui - u]')||%
and ||lu; — u]-||% is measured relative to the size of ||u; — Mj||%)-

By doing this, we ensure that whatever the projection produces is going to be some vector whose entries are sums of
centered normal random variables with variances that are essentially uniformly controlled (because the projection
works by taking linear combinations of entries of I with the constants being determined by the vector being projected,
which we are essentially bounding in size through normalization of that vector). We would expect these sums to
concentrate predictably even for very large d since more and more of these random variables are added together and
we would be able to apply results like the Lindeberg—Feller or Lyapunov Central Limit Theorems. Without dividing
by the size of the vector that we are projecting, there is no guarantee that the variances of the normal r.v.’s that we
are adding up will be controlled in this way.

For example, if we applied T to some unnormalized vector, v = (24, ..., 2%), of dimension d, then the entries of T'(v)
would be linear combinations of many normal random variables with very large variances for large d. That kind
of object is not something that we would easily expect to concentrate predictably for very large d. It is through
normalizing the vectors that we are projecting that we are able to ensure that whatever the projection produces is
going to be something that behaves reasonably well. Thus, perhaps another lesson to take from this result is that
one way to control dependence on dimensionality in some kind of problem is to normalize in some way the high
dimensional objects that we are working with.

6.2.2 Concentration of || X|| instead of || X||? squared

Proposition 6.4. Let X be a random vector with independent coordinates X; fori =1, ..., n such that E[X;] =0
and [E[Xl.z] = 1. Let K = maxe[,] || Xilly,. Then,
1112 - v

< cK2.
2

Proof. We still begin by looking at ||X||§. Note that [|X;||y, < K and ||Xl.2||¢,1 = ||XZ-||5D2 < K2. Then by

Bernstein’s inequality we have that:
t2d td
Pr( > t) < 2exp (—cmin{ﬁ,ﬁ}).
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We can assume WLOG that K > 1. This is established by the following argument. We know that the
sub-Gaussian norm || X; ||‘;'}2 is proportional to its sub-Gaussian parameter ¢ up to some universal constant
where E exp(1X;) < exp(A?02/2) forall A. Comparing the Taylor series we have that 1 +I]EXZ‘2)\2 /2+0(A3%) <
14 0%A%2/2+ 0(A%) = [EXI.2 + O(A) < 0%, Taking A — 0 and using the assumption that [EXi2 =1 we
have that 62 > 1. Then, ||X; ||%/)2 > ¢ for some universal constant which we can fold into the remaining
calculations. With this assumption we have that:

o

Note the following fact: for all z, u € R, that |z — 1| > u implies that |z2 — 1| > max{u, u?}. Combining
this with the bound above gives:

1
F(IXI15 - d)

> t) < 2exp (—cK"4 min{t%d, td}) .

1

> t) < 2exp (—ch_4 min{max{t, t*}, max{t?, t4}})
< 2exp (—cdtz/K4) .

By the equivalent definitions of sub-Gaussianity this implies the desired result. O

6.2.3 Concentration Without Independent Coordinates

Many random vectors do not have independent coordinates. So how can we handle situations like this?
We begin with some definitions.

Definition 6.5. Let X be a d-dimensional random vector. X is isotropic if E[XXT] = I,.

Note the following nice result. If Y is a random vector with mean EX = p and invertible covariance
matrix T then, X = ZV/2(Y — ) is isotropic.

If X is isotropic, this does not necessarily mean that the coordinates of X are independent. Consider
sampling the uniform distribution on a unit sphere X ~ Vd Unif(S4~!). X is isotropic since EX = 0 and
L = I;. However, the coordinates of X are not independent since knowing any d — 1 coordinates of X
fully determines the remaining coordinate (up to a +1 sign).

To further handle the situation without independence, we'll introduce some different but closely related
definitions of sub-Gaussianity in multiple dimensions. In the definitions below, let X be a d-dimensional
random vector with EX = 0.

Definition 6.6. X is sub-Guassian if || X||y, := sup,,cgi1 [[{x, 0}y, < o0.
Definition 6.7. X is sub-Gaussian if for all v € S%71, || (v, ly, < CVoTLo.
Definition 6.8. X is sub-Gaussian if for all A € R, v € $471, E[exp(A(v, x))] < exp (@)

Note that Definition 6.6 does not necessarily imply definitions 6.7 and 6.8 (one can construct simple
examples using Bernoulli random variables illustrating why this is the case). Definitions 6.7 and 6.8 are
equivalent up to multiplicative constants, and they both imply definition 6.6.

Further, note that in definition 6.8, £ need not be a covariance matrix (the best case). It can also be
any other "larger" positive semi-definite matrix, which works as a covariance proxy. For two positive
semi-definite matrices, A and B, we say that A is larger than B if and only if A — B is also a positive
semi-definite matrix, and denote this as B < A. Notice also that definitions 6.7 and 6.8 are more
"variance-sensitive" than definition 6.6. We conclude this lecture with the following proposition.
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Proposition 6.9. Let X be a d-dimensional random vector that is sub-Gaussian in the sense of definition 6.8.
Then, for all 6 € (0, 1) we have

Pr (||X|| > Tr(D) + \/2Amax(2) log(1/0)] < o.

We will prove this proposition in the next lecture.

30



STAT210B Theoretical Statistics Lecture 7 - 02/06/2024

Lecture 7: Norm of a Sub-Gaussian Random Vector

Instructor: Nikita Zhivotovskiy Scribe: Erez Buchweitz ~ Proofreader: Zhiwei Xiao

Notation

All random vectors are assumed to be column vectors. For x,y € RY, the Euclidean inner product
is denoted by (x,y|x,y) = x1y1 + ... + xgy4 = x "y, and the Euclidean norm is denoted by ||x|>» =

V{x, x|x, x) = VxTx = [x] + ...+ x5. The unit sphere $~! C R is the set of all points which have

Euclidean norm one, i.e. S9! = {x € R : ||x||2 = 1}. For a random variable X € R with finite variance,
the L, norm is defined by [|X||;, = yE [X2]. In denoting the normal distribution Nj(u, X) the subscript d
indicates the dimension, e.g. implying the mean vector u € R? and the covariance matrix & € R¥. The
identity matrix in dimension 4 is denoted ;.

7.1 Norm of a Sub-Gaussian Random Vector

Let X € R be a mean-zero random vector, and denote £ = E [XXT] € R™“, We recall that X is said to
be sub-Gaussian if, additionally, for all v € S91and all A € R,

AZUTZU)

Eexp(A (X, 0]X, 0)) < exp (—5

(10)

Importantly, the coordinates X3, .., X;; need not be independent. Recall that since X is a symmetric and
positive semidefinite matrix (it is a covariance matrix), it has d real eigenvalues. We denote by Amax(X)
its largest eigenvalue.

Theorem 7.1. If X is a sub-Gaussian random vector, in particular, EX = 0, then with probability at least 1 — 9,

X[l < VIr T + \/2Amax(2) log(1/0). (11)

Example 7.2. If © = 1, (the identity d X d matrix), then TrXZ = d and A,,x(X) = 1. We see that one of the

summands in Inequality (11) is of order \'d and the other is dimension-free (does not depend on d). In general, it
holds that

ElIX|l2 < \JEIX] = VTr X (12)

The first transition in Inequality (12) is due to the Cauchy-Schwartz inequality, and the second is due the following
important trick, where we treat X7 X as a 1 X 1 matrix and use the cyclical property of the trace;

EIX|I3=E[X"X] =E[Tr(X"X)] =E [Tr(XXT)] = TrE [XX"| = Tr L. (13)

The second transition in Equation (13) is due to the fact that the trace of a 1 X 1 matrix equals the matrix itself, the
third due the cyclical property of the trace; Tr(AB) = Tr(BA) as long as the products AB, BA are both well-defined
square matrices. The fourth transition is due to the fact that Tr is linear in the entries of the matrix on which it
operates. Note that Inequality (12) holds for any random vector X € R?, and does not require sub-Gaussianity.

We will now state and prove a few lemmas toward proving Theorem 7.1.
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7.2 Kullback-Leibler Divergence

Let p, 7t be probability densities supported on © C R“. We first introduce the Kullback-Leibler divergence
(abbreviated KL divergence, also known as relative entropy), which is defined by

KL(P””):/bg pEQ; (0)d6 = Eg-y| log pi@;

The expectation appearing in Equation (14) treats 0 as a random variable with density p. Note that we
require p(6) = 0 whenever 1(0) = 0, in which case we define log(p(0)/m(6)) =0

(14)

Fact 7.3. 1.KL(p||mt) > 0 2.KL(p||®) = 0 if and only if p(6) = 7(O) almost everywhere.

Proof. Since log is a concave function, by Jensen’s inequality,

_ n(0) n(0) n(0)
—KL(p||n)—[E9~p[logm]Slog[E [(9)] 10g/® 9P00 = log/n(G)dG 0.

The integral f® 11(0)d 0 equals one because 7 is a probability density. From this it follows that KL(p||rt) > 0.
Since log is a strictly concave function, Jensen’s inequality is strict unless 71(0)/p(6) is almost-everywhere
constant, which proves that KL(p||rr) = 0 if and only if p(0) = 1(0) almost everywhere. O

Due to Fact 7.3, we may think of KL divergence, informally, as a distance” between densities. It is not
formally a distance, because it does not satisfy the triangle inequality.

7.3 Donsker-Varadhan Variational Formula

We state and prove the following Change of Measure lemma.

Lemma 7.4 (Donsker-Varadhan variational formula). Let 7 be a probability density supported on © C R,
and fix h : ® — R be a bounded function. Then

log Eg-re"® = sup {I]E9~ph(9) - KL(plln)}.
p

where the supremum is taken over all probability densities p such that KL(p||rt) < oo.

Proof. Define the probability density (check that it indeed integrates to one)

77(6)e"®)
[E@Nneh(e) )

’'(0) =

where Eg-e"9 acts as the normalizing constant. For any probability density p with KL(p||r) < oo,
compute

p6)
m'(0)

(6) [E9~neh(9)
:Eewplog(n(e)' ¢h() )

= KL(p|In) + log Eg~re"? — Eg-,h(0) > 0

KL(p||7") = Eg~plog
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Note that if we take p = n’ we obtain an equality, due to Fact 7.3. Rearranging, we obtain
log Eg~re™? > Eg.,h(60) — KL(plIm)

with equality obtained for p = 7. Since this holds for any such p, it must also hold for the supremum
over all such p,

log Eg-ne"® > sup {[E6~ph(6) - KL(P“”)}
P

and, again, equality is obtained for p = 7’. O

74 Second Lemma

Lemma 7.5. Fix some probability density 1 on ©, and let f(X, 0) be a function with X being a random variable
and 0 € © C RY. Then, with probability at least 1 — 5, it holds that for any probability density p on © for which
KL(pl[mt) < oo,

Eo~pf(X,0) < Eg~plog Exe/X® + KL(p|In) + log(1/0). (15)

The symbol Ex above means taking expectation with respect to X. The KL divergence term in (15) is the
price we pay for wanting a bound that holds uniformly over all p.

Proof. Define a function /1(6) and a random variable Yx, by
ho) = f(X,0) —logExe/X9 . Yy =sup o{Eo~ph(6) = KL(plm)} = log Egre"®

where we have used Lemma 7.4. Notice that Exe®> = 1, and this in fact directly implies the Lemma.
Indeed,
Exe* = ExEg.,e"®
= ExEgon[efX-0)-logExexp(f(X,0)]

[Eng(Xze)
o F(X,0)

IEXEf(X’S)
B Qw”[[EXeﬂx,e)]

=ExEg-r [

= |E9~n[EX[

=1.
Using Markov’s inequality, we obtain the tail bound

Y.
IE)(E X .t
=e .

Pr(Yx > t) = Pr(eYX > e*) <=

Plugging in t = log(1/0), forany 6 € (0, 1), we get Pr(Y; > log(1/6)) < 6. In other words, with probability
atleast1 -6,
supp{IEQNPh(Q) — KL(p||m)} = Yx < log(1/0).

In other words, with probability at least 1 — 9, it holds for all such probability densities p that
log(1/8) = Eg~ph(6) — KL(plIm) = Eo~pf (X, 0) — Eg, log Exe/X® — KL(p]|m).

Rearranging, we obtain Inequality 15. O
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7.5 Useful Facts

Fact 7.6. If Y ~ Ny(u, 0%1) and A € R™? then E[YTAY] = 0? Tr A + uT Ap.
Proof. We may write Y = y + 0Z where Z ~ N;(0, 1), so

E[YTAY| =E[(u+0Z) T A(u+0Z)| = uTAu+20E[Z]" Au+ 0’E [ZTAZ| = u"Au+ o’E [ZTAZ] .
N———
=0

It is left to use the cyclical trace trick to compute

E[27AZ] = ETr(27AZ) = ETe(AZZ") = To| AE [227] | = Tr A,
————
=1,

[
Fact 7.7. If p, 7t are the densities of Ny(v, 14/B), Na(0, 11/ B), respectively, and ||v||2 = 1, then KL(p||t) = B/2.

Proof. Observe that p(x) = c(‘[%)e_ﬁ”’“_v”%/2 and 7t(x) = c(/%)e_ﬁ”"”%/2 where c¢(f) is some constant that
depends only on f8. It follows that

2. px)

Zlog == = ||x|15 = llx = 0|13 = lIx[I3 = (Ix[13 = 2 (x, v|x, v) + [[0][3) = 2 (x, v|x, v) = ||v]}3.
p 7 nx)
Let X € R? be a random vector with density p(x). By Equation (14) and EX = v we get
pX) B p B B
KL(plln) = Elog = = Z(2(EX, 0[EX, 0) = [[0ll3) = F(2lloll; - o) = 5 Ill3 = 7.

=1
O]

Fact 7.8. If x € R¥ and = € R™ is symmetric and positive semidefinite then sup, qi1 {x,0|x,v) = ||x||2 and
supvesd_l ’OTZ’U = /\max(z).

Proof. By the Cauchy-Schwartz inequality, for v € S971, (x,v|x,v) < ||x|]2, and see that equality is
obtained for v = x/||x||>. Being a symmetric and positive semidefinite matrix, X has an orthogonal
diagonalization ¥ = UD?UT where UUT = UTU = I; and D? is a diagonal matrix with non-negative
diagonal elements which are its eigenvalues. Define u = U "v, and note that ||u|2 = 1. Since Amax(X) is
the maximal diagonal element of D?, we have

n n n n
0"Zo = uTD%u = |Dul} = Y (Du)? = > (Di)*u? = 3 (DY)ists? < Amax(Z) ) u? = Amax(Z).
i=1 i=1 i=1 i=1

~——
— 2_
=[lull;=1

Equality is obtained whenever v is an eigenvector with eigenvalue Amax(X) (and still with norm one). [
Fact 7.9. The function f(x) = ax + %for a,b,x > 0is minimized at x* = \/b/a and has f(x*) = 2vab.

Proof. The derivative f’(x) = a — b/x? equals zero for x = 4/b/a and this is a minimum. O
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7.6 Proof of Theorem 7.1

Proof of Theorem 7.1. Suppose that X is a d-dimensional sub-Gaussian random vector. Fix a, f > 0 and
v € 5771 which will be determined later. Define the function (X, 0) = a (X, 0|X, 0) for 6 € R?. We will
apply Lemma 7.5 to f along with 7, p the densities of N;(0,1;/B) and Ny(v, 1;/p) respectively. Lemma
7.5 yields that with probability at least 1 — 6,

Eo-pf(X,0) < Eg-plogExe/ % + KL(p|Im) + log(1/6). (16)
We compute each expression in Inequality (16) in turn. First,
Eo~pf(X,0) = aEg-p(X,0|X,0) = a(X,Eg-,0|X,Eg-,0) = a (X, v|X,0). (17)
Second, using Inequality (10) and Facts 7.6 and 7.8

[E9~p lOg [Exef(x’e) = [EQNP log [EX€Q<X/6|X16>
aZGTZG)

IA

Eo-p logexp (

a? -
= TEQNP[G Z@]
02
= ?[EQNP[(Q ~0+0) (0 -0 +0)]

aZ

= ?EQNP[(Q —0) (0 —v)+0"Xv + cross — terms]
a? (TrZ

20 p

(18)

+TZ)
5 0 L0

2/Trx
0‘_(T

IA

5 + Amax(Z))

Third, by Fact 7.7,
KL(pl|m) = B/2. (19)

Plugging Equations (17), (18) and (19) into Inequality (16), we get that with probability at least 1 — 6,

Tz
p

Since this holds for all v € $471, it holds also for the supremum, i.e. with probability at least 1 — 0,

a (X, 0|X,0) < 0‘;( + /\maX(Z)) + g +log(1/9). (20)

a(TrZ B log(1/0)
= < —| — -
Xl = sup (X,01X,0) < 5(5= + Amn()) 4 50+ =2
_7 a 1 log(1/9)
_2Tr2+2/\max(2)+2y+ o

where we have used Fact 7.8 after dividing both sides of Inequality (20) by «, then set y = a/p. Having
set y = a/pB, itis clear that we may optimize a, y > 0 independently from each other, because they always
appear separately in the formula above. Using Fact 7.9 we may plug in optimal «, y to obtain that with
probability at least 1 — 9,

IX]l2 < VIrE + \/ZAmaX(Z) log(1/6).
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7.7 Sub-Exponential Vectors

We say that a mean-zero random vector X is sub-exponential if, for any v € S -1
<X, v|X, 0) Iy, < CIKX,v|X, )|,

where C > 0 is a universal constant that does not depend on v. Compare this definition of a sub-Gaussian
random vector, from earlier in this lecture, noting the following fact;

Fact 7.10. If X is a random vector with E [XX 7] = £ then, for any v € R", ||(X,v|X, v>||%2 =v'Xo.
Proof. |(X,0|X,v)|I7, =E [(XT0)?| =E[0TXXTv] =0 E[XXT]0v =0 L. O
The following theorem is a counterpart to Theorem 7.1, and the proof will appear in the homework.

Theorem 7.11. If X is a sub-exponential random vector then with probability at least 1 — 9,

1X1l2 < C(\Tr(2) log(1/6) + 0g(1/6)V A max(Z)

where C > 0 is a universal constant.

7.8 Log-Concave Densities

A density function f(x) is said to be log-concave if f(x) = e~?™*) where ¢ is a convex function.

Example 7.12.

* The density of a multivariate Gaussian Ny (v, X) is log-concave, as up to additive and multiplicative constants
p(x) ~ (x —0)TE(x —0).

* The product of densities of independent exponential distributions is log-concave. Note that it is not
sub-Gaussian.

e The uniform measure on a bounded convex open set K C R? is log-concave, as

o (x) ~ {lo(:)g(Volume(K)) i ; E

Theorem 7.13 (Borell). If X € R is a mean-zero random vector with log-concave density then, for any v € S471,
| (X, 0|X,0) |ly; < CIKX,v[X, )|, where C is a universal constant.

Thus, a mean-zero random variable with log-concave density is sub-exponential. We do not prove this
theorem.

7.9 Gaussian Concentration Inequality

A function f : R? — R is said to be L-Lipschitz if for all x, y € R?, |f(x) — f(y)| < L||lx — y/l».
Theorem 7.14. If X ~ N;(0, 1) and f : R* — R is L-Lipschitz then,

12
Pr(f(X)-Ef(X) > t) < exp(— E)
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As usual, we may derive from this a tail bound on the absolute value :
t2
Pr(lf(X) - Ef(X)| > t) < 2exp ( - E)
Some facts will be useful.

Fact 7.15. Let = € R4 be a symmetric and positive semidefinite matrix. Then there exists a unique symmetric
.- c g . . 1 1io
and positive semidefinite matrix .2 such that (£2)~ = L.

Proof. Being a symmetric and positive semidefinite matrix, X has an orthogonal diagonalization X =
UDUT where UUT = UTU = I; and D is a diagonal matrix with non-negative diagonal elements.

Define ©.2 = UD%UT, where D7 is a diagonal matrix with (D%)ii = +/D;;, and check that it satisfies the
requirements. [

Fact 7.16. Forany x,y € R?, |||x|l2 = llyll2] < |lx = yll2.

Ix]l2=llyll2 < |lx—yll2- Repeating this argument with the roles of x, y reversed, the proofis concluded. [

Proof. Using the triangle inequality, ||x]2 = [[(x —y) + yll2 < ||x — yll2 + ||y]|2. Rearranging, we get

Corollary 7.17. If X ~ N4(0, X) then with probability at least 1 — 6,

X1 = EIX ] < y2Anax(Z) log(2/6).

Proof. Using Fact 7.15, let Z ~ N;(0,I;) be such that X = A (can take Z = (Z%)‘lX if X is full

rank). Set f(Z) = IZ2Z|l, and see that it is VAmax(Z)-Lipschitz. Indeed, for x,y € R? we denote
v =(x—y)/|lx — y|l2 € S“! and compute

F )~ fW)] = 11Z2x 2= 1E2y 2] < 122 (x=)ll2 = x=yll2l1E20]l2 = x=y]l2VoTZ0 < [|x=y]l2VAmax(Z)

with the first inequality due to Fact 7.16 and the second due to Fact7.8. Asusual, set2 exp (— ﬁ) = 0.

Plugging in t = y2Amax(Z) log(2/6) into Theorem 7.14, for any 6 € (0, 1), we get that with probability at
least1 -0,

112 = EllX 2] < y2Amex(Z) 10g(2/9)
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STAT210B Theoretical Statistics Lecture 8 - 02/08/2024

Lecture 8: Gaussian Concentration & Fixed Design Linear Regression

Instructor: Nikita Zhivotovskiy Scribe: Rita Lyu  Proofreader: Erez Buchweitz

8.1 Notation

All random vectors are assumed to be column vectors. For x,y € RY, the Euclidean inner product
is denoted by (x,y|x,y) = x1y1 + ... + xgy4 = x "y, and the Euclidean norm is denoted by ||x|,» =

\/(x, x|x,x) = VxTx =, /x% + ...+ xg. The unit sphere S9! ¢ R is the set of all points which have

Euclidean norm one, i.e. $%! = {x € R%: ||x||» = 1}. For a random variable X € R with finite variance,
the L norm is defined by [|X||;, = vE[X2]. In denoting the normal distribution Njz(u, X) the subscript d

indicates the dimension, e.g. implying the mean vector u € R? and the covariance matrix & € R¥4. The
identity matrix in dimension 4 is denoted I;.

8.2 Gaussian Concentration

Theorem 8.1. If X ~ Ny (0, ;) and f : R? - R is L-Lipschitz then,
£2
- > 1) < -—.
Pr(f(X) — Ef(X) > t) < exp ( 2L2) 21)

Remark 8.2. We can see the right-hand side term does not contain dimension term d, which means that this
inequality always holds for L-Lipschitz function regardless of the dimension. This theorem also indicates that
f(X) — Ef(X) is subgaussian.

As usual, we may derive from this a tail bound on the absolute value :
£2
Pr(|f(X) — Ef(X)] > 1) < 2exp ( - E) (22)

To prove this Theorem, we need Fact 8.11 and Lemma 8.3.
Lemma 8.3. For any convex function ¢ : R — R and differentiable function f : R" — R:

Elp(f(X) ~ ELFCOD] < E|@ (VO] X, Y ¥ N, 1),

Remark 8.4. The trick used in the proof of this lemma is quite helpful. We upper bound the expectation using a
mixture of Gaussians.

Gaussian concentration can be extended to some log-concave measures. For example, strongly log-concave
measures. Let us introduce the following definition.

Definition 8.5 (K-strongly convexity and K-strongly log-concavity ). A differentiable function is K-strongly
convex, for K > 0, if

PZ@(X)) -

dXidX; dxd
A measure is K-strongly log-concave if f(X) = exp(—¢(X)), where ¢(X) is K-strongly convex.
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With Definition 8.5, we can see exp( ”f”z) is 1-strongly log-concave, while exp(w) is concave but

cannot find K to make it K-strongly log-concave. Because when d = 1, it can be regarded as the product
of independent exponential distributions, the second derivative is 0. We have another theorem without
proof that

Theorem 8.6. For K-strongly log concave distributions (X is distributed according to f(X) = exp(—¢p(X))),
Eq (21) and Eq (22) hold by replacing L to ~ %, where ~ means “in a proportion to”. When K gets larger, the
bound becomes tighter.

In Lecture 7, we proved Theorem 8.7:

Theorem 8.7. If X is a sub-Gaussian random vector, in particular, EX = 0, then with probability at least 1 — 6,

1X[l2 < VITE + 24 nar(2) log(1/0). (23)
Example 8.8 (Multivariate Mean Estimation). X, --- X}, - (4, L), we now use fI = % i1 X to estimate
the mean vector u. Here we now

1 v )3
COU(E;XZ‘) = E

With Theorem 8.1, we know i — u is subgaussian. Then, combining Theorem 8.7, we have with probability at least

1-06.
1 v TrY \/ZAW(Z) log(1/6)
||E;X1—H||2 <=+ . .

8.3 Fixed Design Linear Regression Model

Let x; € R,i = 1,---,n be fixed ( we can regard it as d features for the i-th individual), g* € R4,
&i, i =1,---n be independent zero mean o-subgaussain variables. That is

2,52
Eexp(A&;) < exp (/\TG) .
The underlying data generating process is that
yi = <xl'/,B*> +£i/i = 1/ , 1.

We do not know the true g*. Instead, we can observe pairs of {(x;,yi)}!_,. We use B to estimate B

based on the observed data. To measure the estimation error, we have (i)Euclidean norm: || — *||2, (ii)
denoising error: (empirical sample)

%;“x"'@ ~(xi, ) = %2(5 =) "xix! (B - ).

n

These two measures return the same results only when% > xix;r =I;. Wenow define Y = [y1,--- , yx]" €
i=1

R", X =[x1,--,x,]T € R4 & =[&, - ,&,]" € R". The linear model can be rewritten as:

Y = XB* +&.
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8.3.1 Ordinary Least Squares Estimator
The Ordinary Least Squares estimator (OLS) solves the optimization problem that
[301_5 = argmin — Z((xl,ﬁ) y1)2 = argm1n—||Xﬁ Y||2,
BeRd BeRd
assuming rank(X " X) = d such that X " X is invertable, then
Bos = (XTX)IXTY € RY
XBos = X(XTX)IXTY
W
The property of the orthogonal projection matrix contains
* symmetric and positive semidefinite positive (X(XTX)"1XT)T = (X(XTX)"1XT) € R"™",
e idempotent (X(XTX)!XT)TX(XTX)I1XT = X(XTX)"1XT,
e rank(X(XTX)1XT)=d
o Tr(X(XTX)'XT) =d,
* The eigenvalues of X(XTX)™'XT consist of d ones and 1 — d zeros.

We now look at the population denoising error

1v . .
Ee Zl]«xi, B) = (xi, )Y (24)
i=
1 A . 1 _ .
= —E||IXp - Xp 15 = ~EIX(XTX) XTY - XBII5 (25)
1 _
= CEIX(X"X)7XT &I 26)
—————
=A
- %[E Tr(£TAE) 27)
= %IE Tr(AEET) Tr(AB) = Tr(BA), the dimensions are such that both AB and BA are well defined
(28)
% r(AE[EET]),  Ais a fixed matrix. (29)
2
< %d, use Fact 8.12 and the subgaussian property Cov(&) < ¢°I,,. (30)

8.3.2 Oracle Inequalities

Now we transfer from the unconstrained linear regression to the constrained case. We use K to denote a
convex closed set in R?. The data-generating process is still

Y = X+,
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we do not assume * belongs to K. Now the estimated 5 within K is obtained by

A 1
p = argmin —||Xp - Y||%-
ek n

We want to bound the denoising error as in Eq (24).

Theorem 8.9. For the denoising error, we have

1. A 1 40%d
E=||XB — XB*||2 < min =|| X8 — XB*||? + .
nll p ﬁllz_rﬁrggnll B—XBIl5 -

Remark 8.10. The term %H}II(I 111X — XB* |13 means “the best possible solution with in K" and can be regarded as
(S

theoretically best action.

8.4 Useful Facts

Fact 8.11. Assume additionally that L-Lipschitz function f is diffferentiable, then VX € R4, ||V f(X)]l2 < L.
Fact 8.12. If both A, B, and C are positive semi-definite (PSD) matrix, B < C, then

Tr(AB) < Tr(AC).
Proof. Because A is PSD, then A = A%A%, we have
Tr(AB) = Tr(A%BA%),Tr(AC) - Tr(A%CA%).
For arbitrary vector x, because B < C,
xTAIBAIx < xTAICA%x.

Now we choose ¢; = (0, -, 1 ,o+,0),i=1,---,n,then
~——
i-th coordinate

=

Tr(AB) = Tr(A%BA%) - eiT%A%BA%ei < NeTatcAte; = Tr(A%CA%) — Tr(AC).
i=1 i=1

8.5 Proof of Theorem 8.1

Proof of Theorem 8.1. Assuming additionally that f is differentiable, combining with Lemma 8.3, we now
prove the Gaussian concentration inequality. Let us use the lemma with ¢(-) = exp(A-).

Ex,y [exp(A(f(X) — E[f(X)]))] < Exy

exp (/\7710/’ Vf(X)})l (Lemma 8.3)

n

[Ten exe (S orG00))|
i=1
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277_2 2
exp (12 LIVFR)IP/2

Here, we use that Vf(X)); is a constant and Y; is standard normal.

A272
8

Ex,y [exp(A(f(X) - E[f(X)])] < exp( Lz), (Fact 8.11)

which shows that f(X) — E[f(X)] is sub-Gaussian with the parameter at most %L,
The tail bound then can be

P(If(X) - ELF(X)]| = £) < 2exp (— nz;;) forall ¢ > 0.

O]

Remark 8.13. This is the cleanest and easiest way of proving such an inequality and results in a weaker bound
(difference only occurs in constant).

8.6 Proof of Lemma 8.3

Proof of Lemma 8.3. Because X and Y have the same distribution and Ex[f(X)] is a constant, replacing it
with Ey[f(Y)] and apply the Jensen’s inequality because ¢(-) is a convex function, then

Ex [¢ (f(X) - Ex[f(X)D] = Ex [¢ (f(X) = Ex[f(Y)D] < Ex,y[o(f(X) = F(Y))]. (B1)

Define the following random variable Z € R",
Z(0) = Xsin6 + Y cos 6.

For each coordinate,
Zx(0) = Xy sin O + Yy cos 6.

The variable Z(0) can be thought of as a path between X and Y. In fact, when 6 = 0 we get Z(0) =Y,
while if 0 = 5 we get Z(0) = X. Therefore, as 0 varies in the interval [0, 5] we are moving from X to Y.
Use Z’ to denote the derivative of Z w.r.t. 0, thatis Z’ = cos OX — Y sin 6. The random variable Z has
some nice properties

%] Z(0) x4 Y, Z'(0) x4 Y, Z(6)and Z'(0)are independent.
First, for a fixed 0, Z(0) is a linear combination of two standard normals, then E[Z(0)] = 0 and V(Z(0)) =
V(X)sin 02+ V(Y) cos 6% = (sin 62 + cos 62) I, = I,, showing that Z(6) ~ N (0, I,;). Consider now Z'(0) =
X cos O — Y sin 0. Using a similar reasoning we can show that Z’(6) ~ N (0, I,;). Because both Z(0) and
Z(0)" are normally distributed, we can show they are independent by just checking their covariance is 0.
Independence comes from the fact that

Vo € |0,

E[Z(0)Z'(0)] = E [X2] cos 0sin 0 + E[XY] (c052 0 — sin? 9) —E[Y?]sin0cos 0 = 0.

Now since Z(0) = Yy and Zy(1t/2) = X forall k =1, ..., n, we have

/2 /2
fx) -5 = [ Zprende = [ s, zonae,
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where Z’(6) in R” denotes the elementwise derivative, a vector with the components Z; (6) = X cos(6) —
Y sin(0). Note that this integral may be reinterpreted as an expectation over 6 ~ U[0, 1t/2],

/2 /2
fx)-fon = [ wrzon zionao = = [ Sszion, zondo = Es [Fvszion, z/op].

Tt

Substituting the integral representation into our earlier bound Eq (31) which implies

Exylp(F(X) - FOO = Ex |9 (Eo | 3¢VF(Z(0), Z(0)] )|
< ExyEo | (5(VF(Z(0)),2/(0))| (ensen)
= EoExx [o (5(VF(2(0)), 2/0))|  (Fubini
= Eoxx [ (5(VF(0,7))|  because (2(0),Z/(6)) £ (X, V)

=Exy |o (5(VF0. 1),

where the equality before the last exploits the fact that 0 is fixed inside the inner expectation.

8.7 Proof of Theorem 8.9
Proof of Theorem 8.9. We have
1 XB - Yllé < ||XE - Y||§/ Eis the best theoretical solution we might get within K .

Opening the bracket, we have

IXB Y5 =11XB—XB =&l = 1XB - XBII5 + €15 — 2(XB - XB*, &)
IXB-YI3 = IXB—XB" = &3 = 1XB - XBII3 + 1I€]13 - 2(XB - X", &)
= |XB - X3 + I&lI3 — 2(XB - XB*, &) + 2(Xp - XB, &)

= [|XB - XBII3 < IXB — XBII3 + 2(XB — XB, &).

Then what we need to analyze is the second term 2(Xj — XE, &). By Cauchy-Schwarz inequality;,

N . o~ Xp-XB N
2(XB — XB, &) = 2| Xp - XBllod ——n—, &) < 2||XB — XB2lIE]|2-
(Xp—XB, <) =2[IXp ﬁllz(llxﬁ_xﬁ||2 ) < 2[IXp = XBll2ll<]l2

Then we apply the equality we have used many times

ab<1(”—2+b2 ),a>0,b>0
—2)/ 7// = Yy = Y-

And here we set y = 2, then

N 1% - XBll3
205 - XBllalllly < P12

+2[|€]13.
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Finally, we analyze || X — Xf||2, by the convexity of the set K, we know that
1XB = XIl5 = 11X = XBII; + IXp" ~ XBll3
= [1XB - Xl < IXB = XB7ll; - 1" - XBIL

Plugging this into the previous inequality, we have

IXg - XI5 I1XB* - XBII3
2 ~ 2
= [|XB - XB*I5 < 4|1&|I5 + |1XB* - XBII3

1XB - XB*|I3 < 2||&]I2 + +[1Xp* - XBI13

1 A . 1 1 . 1
= | Xp - XBI} < - E4|E] + ~E|IXp - XBI
402%d

1 R . 1 . =~
= E[EHXﬁ —- XB'II3 < + EllXﬁ — XBlI3.
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STAT210B Theoretical Statistics Lecture 9-02/13/2024

Lecture 9: Fixed Design and Sparse Linear Regression
Instructor: Nikita Zhivotovskiy Scriber: Toby Kreiman  Proofreader: Rita Lyu

9.1 Fixed Design Linear Regression

Recall that fixed design linear regression consists of predicting targets y; from fixed vectors x; € R for
i € [1,n], where y; = (x;, p*) + &;. &; is zero mean and o—subgaussian random noise. We can stack the
features as rows into a matrix X € R4 and write the above in matrix form:

Y = XB* + &
Let K € A? where AY = {x e R? : Z?zl |xi| <1} is the d dimensional simplex. Further, let

ﬁ = argmin || X — Y||§
BEK

This is a constrained least squares problem. We wish to analyze:
1 A *
[E;HXﬁ - XB'113.
In order to do so, recall that last time we showed that:
I1XB = XB'115 < 11XB = XB'|I3 +2(XB - XB, &) (32)

for all B € Ko where K was some arbitrary subspace. In this case, since K is the simplex, we can see that
B - B € B¢, where Bf is the unit ball with respect to the /1 distance. Thus we can bound the second term
in the above inequality:

2(Xp - XB, &) < 2sup(v, XTE),

ver
where we also used the fact that (Xa,b) = aTXTh = (a, X7b). We can recognize the right hand side as
the definition for the co—norm using its dual /1 norm. Thus we get:
2(XB ~ XB, &) < 2/|XTE||oo.

We now analyze E||XT&||. We introduce a = X7¢ € Rd for notational convenience. We note that
a; = (X, &), where X(;) represents the ith column of X (since we have an inner product between the
transpose of X and ¢&). Therefore, a; is also subgaussian with parameter o||X(;)||>. By definition:

||XT€||00 = maX{ﬂl,. coyQu,—Aa1, .. -/_an}~

Using the fact that a; is subgaussian with parameter o||X(;)||> and the max inequality derived in lecture
5, we can say that:

E|[XT&lleo < v21og(2d)o max || X(;|[2.

Finally, putting it all together, we can say that:

2+/2log(2d)o max || Xy |2

n

1 A 1
E—||XB — XB'||3 < inf —||XB — XB7||% +
n” B ﬁ||2—éI€1Kn|| B —XBl5
For reference, we note that typically we assume that || X;|[> < V.
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9.2 Sparse Linear Regression

We are interested in cases where the solution depends only on a sparse subset of the features. This time,
let:
K'=A{x:lxllo < s},

where ||x||p is the number of non-zero coordinates of x. We assume that s < d and that * € K. In
general this a difficult non-convex problem to compute. By equation 32,

IXB - XB*lI5 < 2(Xp - XP, &),

where we drop the infimum since * € K. We can divide by || X — X*||2 on both sides to obtain:

R . XB - Xp*
I1XB - Xl < 2—L 28 gy
1XB = XB*ll2
Note that since *,  are both sparse, || —*|lo < 2s. Therefore, we can consider % as an orthogonal
- 2

projector onto some subset S of magnitude |S| < 25 of the columns of the matrix X (alternatively we
could use Cauchy-Schwartz to analyze this but it does not give a good upper bound since we don’t take
advantage of the sparseness). We call that matrix As. Therefore, if we take a maximum over all such sets
S, we can say:

XB—XB|l, <2 max A ,
[1Xp - XBlI2 Sg[d],|5|s2s|| s&ll2

implying that (by squaring both sides)

XB-XB2<4 max ||AgE|?
|| ﬁ ,Bllz Sg[d],ISISZSH Sgllz

We now fix S C [d] with |S| < 2s and check the subgaussianity of As&. Fix v € S%1and A > 0. Then:
Eexp(A(Asé,v)) = Eexp(A(E, Asv)),

since As = A] since it is an orthogonal projection matrix. We know that & is subgaussian, therefore:

A2g2
E exp(A(&, Asv)) < exp(TllAsvH%).

Again using the fact that As is a projector and Aé = As,

252 252
exp(THAsvH%):exp( 5 vTAsv),

showing that Asé is a subgaussian vector. Therefore, we can use the inequality for the norm of a
subgaussian vector from Lecture 7 Theorem 1 to say that with probability 1 — 6:

[[As&ll2 < a(y/Tr (A)g + \/ZAmax(AS)log(%)) < o(V2s + Zlog(%)),

since we know that for a projection matrix of size 2s, Tr (A)s < 2s and A4x(As) = 1.
In order to bound maxgc4y,s|<2s ||Asé| |§, we apply a union bound over all sets S € [d] where |S| < 2s.
We call M the number of sets S € [d] where |S| < 2s:

w2206

j
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where the last inequality holds because we are multiplying by a number greater than 1 since 2s < d. We
can sum over more positive terms and write:

e (&) £
)25

where we also factor out (% . We can recognize this term and use the binomial theorem to get:

w8 S0 <6 -3 <

where we use that 1 + x < e* in the last step. Applying the union bound over all sets S, we get that with
probability 1 -6,

max  ||Asé||» < o(V2s + \/2(25 log(%) + log(%))).

Scld],Is|<2s
Putting it all together, with probability 1 — 6
Co?(s log(%) +log 1)

1. .
ZIXB - XB||? < ,
nllﬁ Brll5 < -

for some constant C. Importantly, note the better dependence of n > slog % instead of the more traditional
bound of n > d.

9.3 Matrices and their Concentrations

We begin by reviewing a few useful definitions. Let A € R™*" be a (non-random) matrix.

Definition 9.1 (SVD). Singular Value Decomposition (SVD) for a matrix A is defined as:

rank(A)

— T
A= Z oiu,'vl.,

i=1
where 01 > --- > 0, > 0 are the ordered singular values of the matrix A. The u;, v; form an orthonormal basis for
AAT, AT A respectively and the singular values are the square root of the eigenvalues of AAT and AT A.

Remark 9.2. For a square matrix M € R™ ™ the inverse can be written as:
m
M= Z Gl._lviuiT.
i=1

Definition 9.3 (Operator Norm). The operator norm of a matrix A is defined as:

[|Allop = sup [|Av]|2 = sup uTAv.

vesn-1 uesm-1 yegn-1

Definition 9.4 (Frobenius Norm). The Frobenius (or sometimes called Hilbert—Schmidt operator) norm of a

matrix A is defined as:
— 2
||A| |F - Al]
ij
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Ficure 4: Each point in the grey oval is covered by one of the ¢ balls.

Remark 9.5. The operator norm is the maximum singular value:
||A||op =01.

The Frobenius norm is square root of the sum of the squared singular values (norm of singular values vector):

— 2
lAllr = |0

i
With these equalities in hand, we can use singular values to turn a matrix bound into a vector bound of singular
values.

9.4 Covering and Packing Numbers

We review some more useful definitions.

Definition 9.6 (¢—Cover). Let K be a subset of R%. An e—cover with respect to the distance p is the set N, € K
such that Vx € K, 3xg € N, such that p(x, x,) < €. See figure 4.

Definition 9.7 (Covering Number). The cover number N(K, p, €) is the smallest size of an e—cover N, of K
with respect to p.

Definition 9.8 (¢-separated set). Let p be a distance metric. A set S is e-separated if Vx,y € S, x # y,
px,y) > &

Definition 9.9 (Packing Number). The packing number P (K, p, €) is the size of the largest e—separated subset
of K with respect to p.

Lemma 9.10.

P(K,p,2¢) < N(K,p,e) <P(K,p,e)

Proof lemma 9.10. We prove the right most inequality first. It suffices to prove that any max packing is
a covering. Assume for contradiction that we have a max packing P for K and that some x € K is not
covered. But then this is not a max packing since x is at least ¢ away from any point in P so it could have
been added to P creating a larger packing set. This gives us a contradiction and thus every max packing
is a cover. Therefore, N(K, p, ¢) < P(K, p, €).

Now for the first inequality. Consider an ¢—covering of K. Take two points x, y that are 2¢ separated.
They must be in 2 different covering balls. Therefore, there is at most one element of the 2¢ packing set
for each element in the ¢ covering set. Therefore (K, p,2¢) < N(K, p, ¢€) N
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STAT210B Theoretical Statistics Lecture 10 - 02/15/2024

Lecture 10: Upper bounds on the norms of Random Matrices
Instructor: Nikita Zhivotovskiy Scriber: Kaihao Jing  Proofreader: Xuelin Yang

10.1 Preliminaries

Recall that we mentioned the concentration of random matrices, we need some preparation: For any
set K ¢ RY, recall a e-net is a subset N' C K such that K C U,cnB (x, €), where B(x,r) is a Ball
centered at x with radius r (with respect to some metric d), and the covering number N (K, d, €) =
min {|N|: Nisan e-net}. A subset P C K is called € — seperated if d (x,y) > € for all distinct points
x,y € P. The packing number P (K, d, €) = max {|P|: P is € — seperated}. In the Lecture 9, we proved
the equivalence of the covering and packing numbers:

Lemma 10.1. For any set K ¢ R¥ and any € > 0, we have
P(K,d,2¢) < N(K,d,e) <P (K,d,e).

For our purpose, we need an estimate of the covering number of the unit ball, which is stated as the
following lemma:

Lemma 10.2. Let Bg be the unit ball (with respect to ||-||, metric) in RY, then for any € > 0 we have
d

&) n () < [1+2)

Proof. Lower bound: for any e-net N (WLOG, we assume N is a countable set),

Vol (Bg) < Vol (UyenB (x,€)) <y Vol (B (x, 1))
xeN

— |N| Vol (eBg) = |N] e?Vol (Bg) ,

where Vol () is the volume of sets in R? and we use the fact that Vol (eB (x, 1)) = Vol (eB4) = e?Vol (B2).

Thus, we have |N| > (%)d for any e—net N, which proves the lower bound.
Upper bound: Choose an € — seperated set P such that |P| = P (Bg, |-ll,, €). Notice that for any
distinct x, y € P, B (x, §) and B (y, §) are disjoint (since d (x, y) > €)and B (x, §) C (1 + ) Bg, then

P (Bg, Ml e) Vol (ng) = Vol (UxepB (x, g)) < Vol ((1 + %) Bg) ,
then implies that ? (B, [|-[l,,€) < (1+ 2)*. Finally, by Lemma 10.1, N (BZ, ||-[l,, €) < (1+2)". O

Remark 10.3. It’s not hard to see that the upper bound for N (Bg, IIlo , €) in Lemma 10.2 is also an upper bound
for N (S%7L,|Ill, , €), where S97V is the d — 1 dimensional unit sphere.
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10.2 Upper bound for matrices with independent entries

In this section we prove a concentration inequality for the random matrices with independent entries.

Theorem 10.4. Let X = (X,-]-)mxn be a m X n random matrix where the entries X;; are independent random
variables such that EX;; = 0 forany 1 <i <m,1 < j < nand K = max; ||Xif||¢2 < oo. Recall the operator
norm || X|| = ||X||0p = SUP, cgn-1 yegn-1 u' Xo, then for any 6 € (0, 1), with probability at least 1 — 6 we have

IX|| < CK (x/E+ Vi + 1/1og(1/6)) )

where C > 0 is a universal constant.
The following is a key proposition.

Proposition 10.5. Given any matrix A € R™" and € € (0, 1), let M be an e-net for S"~! and N be an e-net
for S"71, then we have

sup  u'Av < ||Allop < T—5c Sup u'Av
ueM, veN ~ <€ eM, veN

Proof. The proof for lower bound is straightforward from the definition of the operator norm. For the upper
bound, we choose vy € 5”71 such that ||Avgl|, = ||A|| (this is achievable since ||A|| = max,cgn-1 ||AD]|,).
There exists v1 € N such that ||[vg — v1]|, < €, then we have

IAll = ||Avoll, = ||Avg — Avy + Avq]l,
< ||Avg — Av1]|, + [[Av1||,
< e|lAll + [|Avill,,

thus (1 —¢) ||A]| < [|Av1|l, < sup,p |[A?]l,. For the same reason, for any v € sn-1

|Av|l, = sup u'Av < sup u'Av.
uesm-1 € uem
Finally,
|A] < sup u'Av < sup u'Av,
(1 - 6)2 ueM, veN 1-2e ueM, veN
where ﬁ < 1—1_25 since € € (0, 3). O

Proof of Theorem 10.4. Let N be a 1-net for S"~! and M be a j-net for S”~! such that |[N| < 9" and
IM]| < 9™ (this is achievable due to Lemma 10.2 and Remark 10.3). By Proposition 10.5,

IX]| <2 sup u'Aov.
ueM, veN

For any pair (4, v) € M x N, we have that

||uTXv||2¢z =112 ”iXi]'v]'Hzle <Ci), “”ixijv]'“fl’z
i,j i

> 2

i j

< C1K2 Z ul.zv? = C1K2
i
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< C1K?,
where we use C; to represent universal constants and the last inequality is because u € S"™1, v € §"71.
Then the concentration inequality for sub-Gaussian random variables implies that for any ¢t > 0

2
Pr(u"Xv>t) <exp (—%) ,

then using the union bound gives us that

T m+n C2t2
Prl| sup u Xvo>t|<9" "exp e

ueM, veN

For any 6, choose t = C3K (W ++/n + 4/log (1/6)), where C3 is chosen such that 9"*" exp (_CK2_§2) <6
(this is possible because (vm + \/E)z > m + n) we have with probability at least 5,
I1X]|<2 sup u'Xv<2C3K (\/E + Vi + 4/log (1/6)) ,
ueM, veN

which finishes the proof. O]

nx

{Xii}1<i<n are iid. N (0,2) (also independent from X;;) and X™ = X. Define Y = (Yj;),  ~such that

Example: (Wigner matrix) Let X = (X;))  beanxnrandom matrix such that {Xif}i<j areiid. N (0,1),

Yi=Xij Vi<j, Yi==% Vi<i<n, Y;j=0 Vi>]j,

then X =Y + Y. By triangle inequality, ||X|| < [|Y]| + [|[YT|| = 2]|Y]|. Clearly max;; ||Y1-]-||¢2 <C<o
(||O||¢2 = 0), then apply Theorem 10.4 we have that for any 6 € (0, 1), with probability at least 1 — 6

IX]| < C (\/E+ 1/1og(1/5)) :

10.3 Operator norm of sample covariance matrices

Now we consider sample covariance matrices: consider X € R?, EX =0, and sub-Gaussian Yo € $9°1,

KX, v}y, < ClI{X,v)||2 with absolute constant C. We want to bound ||% i XiX.T = Zllop-

Define effective rank of X as r(X) = % (the denominator is the largest eigenvalue).
op

Theorem 10.6. For sub-Gaussian zero-mean independent sample X1, ..., Xy,

1 v . (%) log(1/6)
||;;Xix,. —znopscnznop(\/ . +\/ . )

with probability at least 1 — 0 whenever n > C1(r(X) + log(1/6)).

Proof. Recall that from Lecture 7, we have the following lemma: Consider f(X, 0) for r.v. X, and
parameter 0 € © € R?. Choose the prior 7t on ©. Simultaneously for all measure p : KL(p||rt) < co. We
know Eg-,f (X, 0) < Eg~,log Ex exp(f(X, 0)) + KL(p||r) + log(1/6) with probability at least 1 — 6. We
use this lemma to get the following corollary:
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Corollary 10.7. Assume f(X,0) = Y1, f(X;, 0) for random vector X with i.i.d. X;. We plug it into the lemma
and have

KL(pl|m) + log(l/é).
n

% Z f(Xi, 0) < Eg~plog Ex exp(f(X, 0)) +
i=1

Since we are interested in bounding

1< 1<
I= > XiX[ ~Elloy = sup (; 2 (X, u)(Xi, v) —uTZv)
i=1 i=1

u,vesi-1

and we want to relate this to the Corollary:
We use two tricks. For the first trick, we consider m(0) with @ ~ N(0,3711;) where f > 0 is some
parameter that we can tune. Let p,(0), p > 0 defines the density as folows:

o [BIO =2
P 1py) T\ T2
On RHS, p in the denominator is a normalization factor because we restrict to the ellipsoid. The indicator
function also means putting it into the ellipsoid.

For the second trick, recall original 0 € © C R?. We let anew 0 € ®*,0 = (6, 6,) with 6, 6, both d
dimensional vectors. We have p,, » = p,(01) ® p,(02), 7' (0) = n(01) ® 11(02), and pair (60, V) ~ pu,o. Then,

po(6) = ) H{IIZ'2(0 - 0)ll2 < r}.

[E(QIV)NPH,U <X’ 9><X’ V> = <X’ [EQNPu,v6><X/ [EV’“Pu,vv> = <X/ u><X,U>.

Plug the following function into the corollary:

n n
Sup  E(0,)-p, (Zw,xixxi,w — 07| = A1 (XX = Z)llop,

u,vesi-1 i1 -1
we have

1 n
/\llg Z (XiX —Z)llop < sup ([E(QIV)NPM log Ex exp (A (¢0, X)(X,v) — 0T Zv))
i=1 u,vesi-1
. KL(puelln) + log(1/0
n

7

Consider the first term on the RHS as if 0, v are fixed:

E6,v)~p, , 10g Ex exp (A (B, X)X, v) —0TZv)) = (0, X)(X,v) — 0 Zv|ly,
< CoK0, XX, v) Iy,
< Col[€6, X [y, KX, vH g
< Cgmm
<C3(0TZO0+vTIv)
< CqllZ]fop-

Note that in above 07260 < 2((0 — u)"Z(0 — u) + (u"Zu)) < 2(r? + ||IZ|lop) (also applies to v Zv). The
last line comes from picking r? = 2[|Z||op, which will also be used to bound the normalization constant p.

Now what is left is to bound the second term on the RHS (i.e. W). O
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STAT210B Theoretical Statistics Lecture 11 - 02/20/2024

Lecture 11: Matrix Bernstein & Gaussian Comparator Inequalities
Instructor: Nikita Zhivotovskiy Scriber: Jessica Dai  Proofreader: Kota Okuda

11.1 Proof of sample covariance bound, continued.

We begin by finishing the proof of the result discussed last lecture, the bound on sample covariance for
random vectors. Recall the statement below:

Theorem 11.1. Let X, ..., X, be independent random vectors in R? with E [X;] = 0, true covariance ¥, and
subgaussian, i.e. for all v € S971, <X, 0)ly, < Cl{X, 0}||2. Then, with probability 1 -6,

1 ; r)  [log(1/6
II;Z; XiX; = Zllop < ClIZllop (\/T’(n)_i_\/og(n )),

n]

where r(X) = % is the effective rank of ¥. and C is some constant, as long as n > C’(r(X) + log(1/0)) for some

constant C’.

By the end of Lecture 10, we had shown

Eo-p,.| g (Ex[ exp (140, X)(X,0) - 6720)) ]
(A)

N KL(py,o|lm ® ) + log(1/6) ]
n 7

1
Al Z X; X[~ Zllop < sup

ic[n) u,veSi-1

(B)

where 0 € R? and p,(6) has density (with parameters p,  and r') given by
o [PIO =R
pnp )\ 2

allowing us to define p, (01, 02) = pu(01) ® py(62), and 1(O) ~ N(O,ﬁ_lld) for g > 0.
We had begun analyzing (A) by first looking at its 1) — 1 norm, showing that [|(A)|ly, < C1(67Z0 +v"XLv).

) ANIEYAO - o) < 71,

Analyzing the first term, continued. In Lecture 11, we continue with this term:

(A, < C1(0TZ0 + v Xv)
< C(|IZ]l + 7?)
< Gsl[Z]l,

where in the second transition we note that

0TLO+0 2o <20 —u)TZ(0 —u)+2u"Zu < 2(r* + ||IZ]))

1Note this r is not the same as the 7(X) in the theorem statement.
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and in the third transition we choose 72 = 2||X||.
Now, consider (A) as a random variable. By the above, we know that [|(A)||y, < C3||Z|. Then, as long as

A<

< —CSﬁZ” , we have by subgaussianity? (Def. 1 from Prop. 2, Lec. 2) that

sup Ex[exp(A(A))] < logexp(/\2C4||Z||2) = A2C4||Z %
u,o

Analyzing the KL term. We now move to analyzing 1n(B) := KL(p, »||t®m)+1og(1/6). We will proceed
in three steps.
Step 1: Computations. We can explicitly compute the KL divergence between p, and m as

pu(Q)l
7(0)

KL(pull7) = Eo-p, |log

1 110 = ul* + 1611
=Eo~p, llog (E exp ( 251
—[10117 = llull* +2¢0, u) + 11011
2871

= log(1/p) + Eo-~p, l
=log(1/p) + B/2,

where the final transition follows by noting that Eg-~,,[6] = 1 by symmetry and ||u* = 1.
Step 2: Converting to product measures. Using a property of KL for product measures, we have that

KL(pu,ollm ® 1) = KL(pull7) + KL(po|I7r) = 2log(1/p) + B.

Step 3: Dealing with the parameters p and . Recall that p is a parameter to the density of p that can
be interpreted as a normalization constant for a random variable Z ~ N(0, ﬁ_lld). Then, we have that
p = Pr[||Z1/2Z]|, < r|; we can find a lower bound for p by upper bounding as follows:

E[IZY2Z12] Te()p~'l; TrE) 1
PI‘[”Zl/ZZ”z > 1’] < [” ”2] _ r(X)B 14 _ r(X) .
r2 r2 B2|IZ] 2

where the final transition follows by choosing = r(X). Hence we have p > 1/2. Plugging this (and our
choice of B) into the result from Step 2, we have

KL(pu,vllmt ® m) = 21log(2) + r(X) < Cr(X).

Completing the proof. Optimizing over A, we will find that

A 1 \/r():) +log(1/0)

MATIST n /

plugging this in gives us the desired result. Note that this requires n > C(r(Z) + log(1/6)) for some
constant C.

Remark 11.2. None of these constants are any larger than approx. 20.

2Note that the randomness in the below expectation is due to (A), but the only randomness in (A) is due to X because we
are working inside an outer expectation over 6, which means we can take it to be fixed.
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11.2 Matrix Bernstein Inequality

Fun fact: this result is only around 13-14 years old. The statement is as follows.

Theorem 11.3. Let X ... X}, be independent, zero-mean, symmetric d X d matrix such that || X;||op < K for all i.
Then, for all t > 0, we have

—t2/2
Pr (|| Xillop = t| < 2dexp .
Z Zie[n] [E”Xizl'op + %

i€[n]

Rearranging, we get that with probability 1 — 0,

i€[n] i€[n]

2
1S Xillp < \/2” > ElIX2llp log(2d/5) + 2K log(24/5).

When comparing to the scalar Bernstein inequality, we see that we use the operator norm instead of the
exact variance; we have boundedness replaced by K; and pay an additional 4 term.

11.2.1 Useful facts for proof of Theorem 11.3.
We will use the following facts in the proof of Theorem 11.3.

Proposition 11.4. Consider X symmetric and a function f : R — R. SVD on X gives us X = Y jeq /\juju]fr,
where Aj are the (ordered) eigenvalues of X and u; are the corresponding eigenvectors. Define

fX)= D FApuju].
jeld]
Then, we have the following facts:
(a) If f(x) < g(x),V|x| < K, then f(X) > g(X) if | X|lop < K, i.e. f(X)— g(X)is PSD.
(b) If0 = X =Y, then log(X) = log(Y).
(c) If X = Y, then Tr(exp(X)) < Tr(exp(Y)).

For fact (b), note that log is monotonic in d > 1, but not all functions that are monotonic in one dimension
preserve monotonicity in the matrix sense—for example, monotonicity is violated even for d = 2 for
functions like exp(x) or x2. Fact (c), on the other hand, is true for any function that is monotone in one
dimension.

The fourth fact is known as Lieb’s Inequality and is nontrivial to prove for d > 1. We will be using a
corollary of Prop. 11.5, which applies the result to random matrices.

Proposition 11.5 (Lieb’s Inequality.). For symmetric H € R4, the function (A) = Tr(exp (H + log(A))) is
concave for PSD A. That is, Va € (0,1) and PSD A, B,

Y(aA+(1-a)B) =2 ayp(A) + (1 - a)P(B).
Corollary 11.6. Let Z be a random matrix and A = exp(Z). Then, by concavity (via Lieb’s) and Jensen, we have

E [Tr(exp(H + Z))| < Tr(exp(H +log E [exp(Z)])).
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11.2.2 Proof of Theorem 11.3.

We are now ready to prove Theorem 11.3.

First, define S := };¢(,) Xi- Then, IS]lop = Max(Amax(S), Amax(=S)), where the second term is to handle
possible negative eigenvalues. For ease of exposition, we assume all eigenvalues are nonnegative for
now. Then, we have?:

E [exp(A - Amax(S))]
exp(At)
E [/\max . exp(AS)]
- exp(At)
E [Tr(exp(AS))]
exp(At)
E |Tr(exp(A Zi5! X+ AX,) )|
- exp(At)

[Eie[n_l][Tr(exp()\ oy Xi) “Eizn[exp(AXy) | Xl...n—l)]]

- exp(At) ’ )

Pr[A - Amax(S) = At] <

(standard Chernoff in 1 dimension)

(property of exp applied to matrices)

(all eigenvalues are non-negative)

where the final transition follows by noting that all X; are independent so we can condition on Xj._,,—1 to
isolate the randomness in X;,. Then, with H = A };c(,,_1) Xi, we can apply Cor. 11.6 to get

Eicpn[Tr(exp(A 15! Xi +10g Eicylexp(1X,) | X111 )
exp(At) '

() <
Applying lines from the proof of 1-d Bernstein and property (a) of Prop. 11.4, we have that for a single X;,

E [exp(AXi)] < exp(g(/\)E [XIZ]),

where g(A) = 1_}\;—/;/3 and |A]| < 3/K.

Applying the conditioning trick and Lieb’s repeatedly for i € [n — 1], we have
() < TEPEWE [T, XF]))

= exp(At)

_ Pmax(exp(8WVE [Xi, XF]))

= exp(At)

_dexp(gMI 2y XPlop)
- exp(At) '

We can optimize over A; repeat these steps for Amax(—S); and apply the union bound to complete the
proof.

11.2.3 Extensions of Matrix Bernstein Inequality.

We briefly consider two extensions/applications of Theorem 11.3.

3Note the distinction between A the Chernoff parameter and Amax the max eigenvalue of S.
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Controlling E [||S ||0p] . Chernoft’s method would give us a bound of the form
E [llSllop] <1 log E [exp()\llSllop)]. In the setup of Theorem 11.3, we instead have

E [lISllop] < JZlog(Zd)H Z E [X?] llop + %Klog(Zd).

i=1

General rectangular matrices. Consider A € R**%. Then we can construct the block matrix
x 0 A
ol 4

and can proceed with analyzing A, noting that Amax(A) = | Alop-

11.3 Gaussian Comparator Inequalities

We finish with a preview of Gaussian processes.

Definition 11.7 (Gaussian process.). Consider the random process (X )ieq. A Gaussian process is one where,
for all finite To € T, the random vector (X¢)eg; is (multivariate) Gaussian.

Generally, we care about the behavior of sup, . X;, or E [sup reT Xt] . We now give a statement (to be
proven in future lectures) of the Slepian Lemma.

Theorem 11.8. Assume X; and Y; are zero-mean Gaussian processes such that E [th] =E [Ytz] and Vs,t € T,
E [(Xt - Xs)z] <E [(Yt — Ys)z]. Then, forall t € T :

1. Pr[sup,csq Xi > 7| < Pr{sup,.s Vi > 7| forall 7, and

2. E [SupteTXf] <E [Supte(]- Yf]
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STAT210B Theoretical Statistics Lecture 12 - 02/22/2024

Lecture 12: Gaussian processes
Instructor: Nikita Zhivotovskiy Scriber: Anthony Ozerov  Proofreader: Zach Rewolinski

12.1 Slepian’s inequality

Theorem 12.1 (Slepian’s inequality). Suppose (Xt)ter, (Y)ter are zero-mean Gaussian processes such that,
Yt,s € T, we have

E[X?=E[YY]  and  E[-X)| <E[%-Y)].
Then V1 € R, we have
1. Pr(sup;cr Xt > 1) < Pr(sup,cr V¢ > 1)
2. E [supteT Xt] <E [supteTYt]

Remark 12.2. When we say E [supt T Xt] , there are some concerns with measurability depending on what exactly
we mean. To avoid these, we use Talagrand’s convention, which states that

E [sup th = sup [E [supX;|.
teT TocT teTy
Tp finite
To prove this Theorem 12.1, we will first need to establish several lemmas.
Lemma 12.3 (Stein’s lemma). Let f : R — R be a differentiable function. If X ~ N(0, 1), then we have
E[f(X)] = E[Xf(X)].
Proof of Lemma 12.3. Assume for simplicity that f has bounded support. Define

gx)=—=exp (_xZ) .
\/—n 2

This is the probability density function of X, because we stated X ~ N(0, 1). Let’s find the expectation of
f(X:

E[f/(X)] = / (0800 = [F)g(01%, / F(0g'(x) dx.

In the second equality we have simply used integration by parts. Because f has bounded support, and
g(x) approaches zero as x — o0 or x — —oo, the first term is zero and we get

ELf(X)] = /R ()8 (x) dx.

Now we can notice that g’(x) = —xg(x), and rewrite the RHS as

E[f/(X)] = / xf(x)g(x) dx = E[X(X)].
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As Slepian’s inequality deals with Gaussian processes (such that any finite collection is a multivariate
Gaussian), we would like to have a version of Stein’s lemma which applies to multivariate Gaussians.

Lemma 12.4 (Multivariate Stein’s lemma). Let f : R" — R be a differentiable function. If X ~ N, (0, X), then

we have ,

E[Xf(X)] = SE[V(X)] = ZZZ,E[ <x>]
i=1

Note that the result is an n-vector. The proof is essentially the same as in the univariate case. Now that
we have the multivariate Stein’s lemma, we can get the Gaussian interpolation lemma.

Lemma 12.5 (Gaussian interpolation). Suppose X = (X1,...,Xy) ~ NO,ZX)and Y = (Y,...Yy) ~
N(0, ZY) are two independent Gaussian random vectors. Define

Z(u) = VuX + V1 -uy, u €[0,1]. (33)

Then if f : R" — R is a twice-differentiable function (with nice properties so that we can swap integrals and
derivatives, and hence expectation and derivatives), we get

E[f(Zw)] = Z(ZX—Z?, o (2w

Proof of Lemma 12.5. Under the assumptions of the Lemma, we get
o Of dZi(u)
L (zw)) -
Z S 2w =
n

- Y E| Ly 2|
i=1

d

E[f(Z(u))] = [—f (Z(u ))l

Now note that, by the definition of Z in Equation 33, we have

dzZ;(u) 1( 1 1
L = o [ =X - —=Yi].
du (WX Vi-u )
Thus we get
1 f 1
—E[f(Z(u))] =5 l—(Z( ) - ( )l
24, Vi Vica
Let’s work on the first term. Let 3
i) = 2 (z(w), en

where we think of Y (which is an additive term in Z) as fixed. We get that

ZZ Lz —XZ]- Z[E [ (O Y]]
= — E[E[h;(X)X|Y]]):
W;( [E [1(X)XIY]])
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1 n n
=>=)F sz —(X)|Yl
i=1 j=1
n
= L[E ZX Jhi ( )

The third equality is an application of Lemma 12.4. The final equality is by substituting h;(x) from
Equation 34. Repeating the same computation on the other term, we get

d _Ix | fZw) (1 v P2 (Z(w)
—E[f(z(”)]—zl;[Ela—xi (\/— \/— )l ZZ(Z i'j)Taxj’ (35)

which completes the proof. O

Corollary 12.6. Under the assumptions of Lemma 12.5, we have that if additionally, for all i # j:
1. ©X > 1Y
i,j ij
2. 4 =5

I*f

3. >0
axlaxj -

then E[f(X)] = E[f(Y)].

Proof of Corollary 12.6. We can see this by noting that E[f(X)] = E[f(Z(1))] and E[f(Y)] = E[f(Z(0))],
and Equation 35 with the assumed conditions tells us that the derivative of E [ f(Z(u))] with respect to u
is nonnegative for u € [0, 1]. ]

We are now finally equipped to prove Slepian’s lemma.

Proof of Result 1 of Theorem 12.1. Suppose (Xt )ter, (Yi)ter are zero-mean Gaussian processes such that,
Vt,s € T, we have

E [X?] =E [Y?] and  E[(X;—X.)?] <E[(Y; - Y)?].

By Talagrand’s convention (Remark 12.2), we can focus on a finite T, |T| = n, and compare the Gaussian
random vectors X = (X1,...,X,;) ~ N, Z¥)and Y = (Y3, ...,Y,) ~ N(0,ZY). Now instead of thinking
of a supremum over t € T, we can think of a maximum over i € [n].

By the assumption that E [th] =[E [Yf] and that the vectors are zero-mean, we have that Vi, foi = Zzi.
By the assumption that Vt, s E [(Xt - Xs)z] <E [(Yt - Ys)z] and that the vectors are zero-mean, we have
that Vi, j, Zf]. > ZZ]. (lower squared difference but same variances means higher covariances).

Assume WLOG that X 1L Y. We can make this simplifying assumption because, if X and Y are not
independent, we can replace Y; with its uncorrelated copy; all the tail bounds given in Slepian’s inequality
will be the same.
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Let g : R — [0, 1] be a twice-differentiable approximation of 1[x < 7]. This approximation can be made
arbitrarily good. We then have

1[ml_ax(xi) <1]=® (8r(x1) : gT(XZ) el gT(xl’l)) = fT(X)

Note that f; is also twice-differentiable. We would like it to satisfy Condition 3 of Corollary 12.6:

f. _ olx1) oo ge(xi) oo gelxj) s ge(xn) T #E ]
Ix;0x; Qr(x1) oo gl(xi) ... ge(xn) i=j

In the first case, the derivative is always nonpositive, hence the product of the two first derivatives will
be nonnegative. The second case seems like it could be negative, but it doesn’t matter to us as Condition
3 only regards i # j. Thus f; satisfies Condition 3 of Corollary 12.6. So this setup with X, Y, and f;
satisfies Corollary 12.6, from which we can conclude that E [ f:(X)] > E[f;(Y)] and therefore

Pr(max(Xi) < T) =E [l[max(Xi) < 1]

~E[f(X)] 2 E[fe(Y)] ~ E [1[miax<m) <1l

It then follows that
Pr(max(Xi) > T) < Pr(max(Yi) > T),
1 1

so we have shown result 1 of Theorem 12.1.

We have neglected result 2 of Theorem 12.1. For this we will need a different theorem.

Theorem 12.7 (Sudakov-Fernique). If (X¢)ier, (Yi)ier are zero-mean Gaussian processes such that Vs, t € T we
have
E[(X: - X SE[(Y: = Ye)?],

then

E [sup Xi
teT

<E lsqutl .

teT

Proof idea for Sudakov-Fernique. We can do the same trick applying Remark 12.2 to deal only with finite
Gaussian random vectors. As A — co, we can approximate

rlrel[a>]<(x i)~ % log (; eXp(Axi)) = fa(x).

Now we can apply Theorem 12.5 to this f) as we did for f;. f) is twice-differentiable, defining
Z(u) = VuX + V1 — uY as before, we get

_[E[fA(Z(u)) ZZ(Z Z)) o fA ) <o,

which implies that E [f1(Z(0))] > E[f1(Z(1))] and thus

E lrirel[%(xi)l ~E[1(X)] = E[fA(ZW)] < E[fA(Z(0))] = E[A(V)] ~ E [Iirel[%(lfi)l :

]

Proof of Result 2 of Theorem 12.1. Sudakov-Fernique directly proves the second result in Slepian’s Theorem.
O]
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12.2 Applications

Let X € R™" be a random matrix whose elements X;; are iid N (0, 1). We can show that

E [11Xllgp | < Vi + V.
Proof. Recall that, by the definition of ||-||,,

_ T
||X||op - Sup u XU/
uesm—l
vesn
where uT Xv is a Gaussian process indexed by t = (u,v) € T = §"™1 x §"71. Let’s try to satisfy the
condition of Theorem 12.7. Let u, w be in $™~!, and let v, z be in S"~1. We have

2
E[(u"Xv-w"Xz)*| =E Z u; Xijvj — Z Ww; Xijz;
ij i
9 2
=E ZuiXi]'Z)]' -2E ZM{XZ']'U]' ZZUiXi]'Z]' +E Zwixijzj
ij ] ij ij

At this point, any cross terms containing X;; Xy; where (i, j) # (k, ) will disappear, as E [Xinkl] will be
zero (recall that X;; ~ N(0,1)). Recall also that E [Xij] = 1. Hence we get
21 _ 2.2 2 2,222 2 2.2 2
E|u"Xv-w"Xz)’] = Zui viE [Xij] —2Zuiwiv].zj[E [Xi].] + Zwizj[E [XZ.].]
i, ij ij
_ 2,2 2,222 2.2
= Zui i —ZZuiwivjzj + Zwizj
1] ij ij
= Z(uivj - w,-zj)2
ij
=||luv" - sz||12:
2 2
< |lu —wlly +[lo - z]l5.
Note that uv™ —wz" is a matrix with the i, jth entry being u;v; — w;z;. Its squared Frobenius norm is
exactly the sum of the squared elements. The final inequality is nontrivial.
Now we can consider the process Y, , = (1, Z1) + (v, Z2), where Z; ~ N(0, ;) and Z, ~ N(0, I,). We

can compute that
E [(Yu,v - Yw,z)z] = lu - w”% +lo - Z”%

This process Y, » will act as the second, simpler, dominating process in the Sudakov-Fernique inequality,
as the condition is satisfied

E[(u"Xv—w"X2)0?] < |lu—w|l3 +lv - zl5 = E[(Yuo — Yu,2)’]-

Hence by the Sudakov-Fernique inequality, we have

E[IXllop| =B | sup u"Xo| <E| sup Yoo =E| sup (w,Z1) + (0, Z2)| = E[lIZill2 + || Zs]l]

uesm-1 uesm-! uesm-1
ves"1 vesn1 ves"1
< (E (11 B])"2 + (E [11Z2IB])/2 = Vi + V.
The second inequality is by Jensen’s inequality. O]
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As a corollary, if X is a square matrix, X € R™", then E [llelop] < 24/n. But what about a high-

probability bound on [|X]],,? Let’s think of X as a vector in R", and |IX1|op as a function from R" to R.
We have that
11X lop = 1Y llop | < 11X = Yllop < I1X = YIg = [Ivec(X) - vec(Y)ll,

where the function “vec” maps from matrices to vectors. This shows that ||-| |op is 1-Lipschitz. Thus by
Gaussian concentration, we get that with probability 1 - 6,

[1X]]p < 2E [||X||Op] + J210g(1/8) = 24 + [2log(1/0).

Let’s finish with a theorem which we will discuss more next time. Recall that N(T, d, €) is the covering
number of e-balls (under distance d) over set T.

Theorem 12.8 (Sudakov minoration). Let X; be a zero-mean Gaussian process. Define the distance

d(t,s) = VE[(X — X5)2].

Then there exists an absolute constant ¢ > 0 such that Ve > 0,

E |sup th >c-¢€- \/log(N(T, d, €)).
teT
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STAT210B Theoretical Statistics Lecture 13 - 02/27/2024

Lecture 13: Sudakov Minoration and Gaussian Processes
Instructor: Nikita Zhivotovskiy Scriber: Max Hirsch Proofreader: Michael Xiao

1 Sudakov Minoration

Theorem 1 (Sudakov minoration). Let X; be a zero-mean Gaussian process indexed by t € T and define
fort,seT,
d(t,s) = VE(X; — Xs)2.

ey/Iog N (T, d,e) < cEsup X,

teT

Then for all € > 0,

where ¢ > 0 is some absolute constant.

Proof. Let P. C T be such that P: is a maximum packing. In particular, for all ¢, s € P. we have d(t,s) > ¢.
Then
N(T,d,e) < |P-|,

and

Esup X; > E sup X;.
teT teP.

Now define the process Y; = \%Zt for t € P., where Z; ~ N(0,1) and Zy,..., Z\p,| are independent. We
have that for all t,s € P.,

E(X; — X,)? =d(t,5)? > &?, and E(Y; —Y,)? =&,
where the second equality is by construction. It follows by the Sudakov-Fernique theorem that

E sup Y; < E sup X;.
teP. te P,

Finally, observe that

E sup Y; = i]E( max Zt) 2 e Cy/log(|P:),

teP. V2 \ée{l,. | P}

where C' > 0 is an absolute constant, and the last inequality is an exercise used in homework. Combining
these inequalities yields

e\/Iog N'(T,d,e) < ey/log(|P.|) < C7'Esup ¥; < C'Esup X; < C 'Esup X;.
tEP. teP. teT

It suffices to take ¢ = C' 1. O

1.1 Canonical Gaussian Process Covering Number Examples

We now consider examples in which we use Theorem 1 to give bounds on covering numbers. The setup is as
follows: Let T'C RY and X; = (g,t) with t € T and g ~ N(0, I;). Observe that

d(t,s)* = E(X; — X,)* =E((g,t — 5))* = ||t = s]|3

so that d(t,s) = ||t — s||2 for t,s € T. Now consider the following examples:
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1. Let T = ©/2B4. By Theorem 1, we have

\/logN SV2BS, ||+ ll2,e) S cE - sup  (g,t) = cEl|g'll2 < e/ Tx(X),
tezl/zBd

where ¢/ = 2129 ~ N (0,%) and the last inequality follows from Jensen’s inequality:

Ellg'll2 < \/Elg'l3 = VTr().
It follows that
¢ Tr(X%)

IOgN(El/QBg7 H ' ||275) < £2

Y

with ¢; = 2.

2. Now consider 7' = B{ = {z € R%: ||z||; < 1}. Then by Theorem 1,

\/log./\/ Bf, Il 1l2,€) < cE sup (g, t) = cE||g|lcc = c]Emax|gZ| < c14/log(2d)
te Bd

for some constants c,c; > 0. It follows that for some cy > 0,

co log(2d
log N (B | - [2,) < 21820, (1)

Remark 2. The same proof works for polytopes with unit diameter and d vertices.

Now we compare this with a volumetric argument. As an exercise, it is easy to show that Bf C BY C
VdB¢{. Then we have

Vol(Bf + £B%)  Vol(B(1+ =4)) (14 =4)d /Vol(BY) d
VOl(ZBY)  © VoGBS | (/2 <Vo1< 2>) S( (7“))

where we used the fact from Wikipedia that
d
c
()

log N (BL, || - ||z, €) < dlog (c (1 + 67))

Combining this with the first bound (1) gives

N (B, [Ill2,¢) <

Vol(B{)
Vol(B$)

IN

It follows that we have

_ 2 c2 log(2d)
og N (BT, || [[2,€) < min [ dlog <C< +5\/E>>’ e?

~ o —

-~

7 I

Note that when € = 1/v/d, we have I ~ d and IT ~ dlogd. When ¢ < 1/4/d, the bound I is better,
while IT is better for € > 1/+/d.

65



2 Dwual Sudakov Minoration

Definition 3. Take T a convexr and symmetric (meaning T = —T ) set in RY. Then the polar set T° is

T° = {y e R?: sup(z,y) < 1}.
x€T
We list a few examples of polar sets:
1. (BY)° = BY.
2. (B]‘f)O = Bg, where Bg is the £, ball withp > 1 and p~t 4+ ¢~ ! = 1.
—1

3. If T is an ellipsoid with semi-axes aj,...,aq > 0 then T° is an ellipsoid with semi-axes al_l, cesay

In what follows, we will use the notation N (T, | - ||2,¢) := N(T,eBf), the minimum number of eBJ
required to cover T

Theorem 4 (Dual Sudakov minoration). If T is a symmetric convex body, then for all € > 0,

6\/log/\/'(Bg,€T°) < cIEffuzQ(g,t).
€

We will not prove this result. We further have the following conjecture:

Conjecture 5. For any T, K convez, symmetric bodies, there are c,C > 0 universal constants such that

clog N(T, K) <logN(K°,T°) < ClogN (T, K).

2.1 Euclidean Ball Covering Number

Let T = %'/2B¢ and note that

Esup(g,t) < /Tr(%).
teT

We have that
T° = {y e R : sup(z,y) <1} = {y e R?: |2/ 2y|]y < 1}.
xeT

Thus, we are covering BY with the sets {y € R? : |$'/2y||, < 1}. Defining
dZ(ta 5)2 = (t - S)Tz(t o S):
we then obtain by Theorem 4 that

cTr(X)

IOgN(Bg,dZ,S) < 2

£

3 Gaussian Width
Definition 6. Let T C R? and g ~ N(0,1;). Then the Gaussian width of T is

W(T') = Esup(t, g).
teT
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Figure 1: Gaussian width measures the width of T in the direction g and averages over g ~ N (0, I).

3.1 Properties of (Gaussian Width
We have the following properties of the Gaussian width:

1. W(T) is finite if and only if 7" is bounded.
2. If @ is an orthogonal matrix and y a fixed vector, then W(QT + y) = W(T).

3. WIT'+K)=W({T)+W(K) and W(aT) = |a|W(T), where o € R and we recall that T+ K = {t+k :
teT, ke K}.

4. W(T) = sW(T —T) = 3Esup, ,cr{g.z —y).

5. If T is a finite set then W(T') < ¢y/log(|T|) - diam(T").

3.2 Gaussian Width Examples
L. W(Bg) =Elgl> < Vd
2. W(ZV2Bg) < /Tr (%)
3. W(B{) =E|gllec < /2l0g(24)

1. W(BL) =Elgl: = dy/2

3.3 Gaussian Concentration Inequality

We conclude this section with the following result:

Theorem 7 (Gaussian concentration inequality). Let p1,...,¢4: R — R be 1-Lipschitz. Then
d d

Esup i iti SESUP Zt1=WT
teT;gsO( ) teT;g (T)
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Proof. For t,s € T, we have that

d 2 4 d 2
E(Z(m%(h)—m%(&))) = (wilts) — @ilsi) Szt—sz = (Zgz = )

so applying the Sudakov-Fernique theorem yields the result. O

4 Next Time

Next lecture, we will begin discussing empirical processes. As an example, consider X1,..., X,, i.i.d. random
variables and the CDF and empirical CDF

F(t)=Pr(X <t), Fyo(t) = %ilnd[Xi < 1.

To test whether this empirical distribution came from the distribution corresponding to the CDF F', Kol-
mogorov suggested the test statistic

sup | Fn (t) — F(t)].
teR

As n — o0, if the data are sampled from the distribution F', then this statistic converges almost surely to 0.
Our question is this: for a finite sample size n, what should we expect from the above test statistic?
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STAT210B Theoretical Statistics Lecture 14 - 02/29/2024

Lecture 14: Empirical Process Theory
Instructor: Nikita Zhivotovskiy Scriber: Xueda Shen Proofreader: Xueda Shen

1 Motivation

Last class we introduced the KS-test statistics to motivate the study of empirical process theory. Suppose
we observe X;,7 = 1,...,n sampled i.i.d. from a distribution. We would like to test whether X; ~ P a given
probability measure. Let F(t) := P(X < t) the population cdf function, F,(¢) := = >°" | 1{X; < t}. In fact,
the KS statistics is known as an instantiation of a wider class of process called empirical process.

Definition 1 (Empirical Process). Given F a class of functions with Xi., ~;.;.q. P. The process Ef(X) —
LN L f(X;) is called empirical process indezed by F.

Definition 2 (Gilvenko-Cantelli). The function class F is called Gilvenko-Cantelli with respect to measure
Px if supse |Ef(X) -1 (XZ)| — 0 almost surely.

n

2 Symmetrization

One of the central techniques used to analyze empirical process is to establish an expectation upper bound
via symmetrization.

Lemma 3 (Symmetrization upperbound). Letey,...,e, be i.i.d. Rademacher random variables, X1, ..., X5 ~i.;.q.
P We have:

1 & ] 1
EX sup EfX - — sz §2ExE sup | — 5Z‘f Xz
sup |BF(X) - 1 3 70%) sup {5 D e ()

Ex sup 1Zf(XZ)—IEf(X) <2ExE. sup lZ&f(Xz)

fer Mo | fer Mo ]
I I
Ex sup |= > f(Xi) —Ef(X)| < 2ExE.sup [= > f(X,)
feF|M i feF | M=

Proof. We only prove the first one, as the rest are identical arguments. Introduce ghost samples X i, e X,;
i.i.d copies of X;. We have that

n

EF(X) - = " f(X0)

E sup
fer

= Ex sup [%ZEf(X;) - %Zf(Xz)]

fer i—1

<ExE, sup [lZf(X;) — [(Xi)
=1

fer | =

The first inequality essentially follows from the observation that for f = f(X, 8), supg Ef(X, 8) < Esupgs f(X, )

Now observe that f(X;) — f(X,) 2 e(f(X;) — f(X;)) where ¢ is a Rademacher variable. This could be seen

(2
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via conditioning on the value of €. This leaves us with

1 n
ExE sup f(X X;)| =ExE,E.sup |— £ ( XZ)>
fer Z * fer | n z:z1 Bk
1 n

< ExE. sup e f(Xi)| +Ex Ecsup | — g f(X;

fer [ Z feF | 2:21 (%)
= 2Ex[E, sup 61

where in the first inequality we observed that ¢ f(X;) = —ef(X;). O

3 Desymmetrization

Alternatively, given quantity of the form ExE. supycx % S eif(X;), we can upperbound it via Desym-
metrization, essentially unwinding what we have done before.

ExE. =SUp | Zez = ExE. ?23[ z_; eif (Xi) + Ef(Xs) — Ef(Xz'))]
1 & :
< ExE. [;g%;ei (f(Xi)—f(Xi)) +E. =sup | ZezEf ]

We first analyze the first term on RHS.

1« ,
BXE: | sup )i (f(X0) -~ F(X))) | =Ex v E: up 2> e (£0x) —EF(X) + Ef(X)) f(Xi))]
= By o [ sup - (F(X0) ~EF(X) + EF(X)) — F(X)
fer i3

%' (f(Xi)—Ef(Xi)+Ef(X;)_f(X;)> ]

L =1
1 n n
< ExE. | sup |— f(X;) —Ef(X +Ey sup
E[mn;m (X)) E. | sup |- Z
1 n
:2EX]E€ sup (— f(Xz)_]Ef(Xz)]
fer nzzl

Recall our remainder term is yet analyzed. This is a great place to exercise Holder’s inequality.

E. Sup[ Zngf ]

feF
This allows us to immediately recognize |>._, &;Ef(X;)| as a 1-norm and apply Hoélder’s inequality with

1, 00 norm.
ZEiEf(X) < Zéi
i=1 i=1
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< E. sup
fer

[Ef(X




The last term to analyze is E| Y ", &;|. However, we have

Recollecting the pieces, we are able to bound the remainder

fer fer

E. sup[ ZsZEf ]Sn—%sup\EﬂX)r

Remark 4. The same conclusion applies to Esuppcx |+ > 7 € f(X;)|, whose proof we essentially estab-
lished.

4 Analysis of KS statistics

We analyze the KS test statistics by establishing expectation and high probability bound in turn. Via
symmetrization, we immediately have

< 2EX]EE

lil{Xigt}—P(th)

1 n
— X <t
nge { }

A naive union bound would not work since there are uncountably many events involved. However, a closer
inspection tells us that conditional on Xj.,, at most n + 1 values of 1{X; < t} is realizable. Hence if we
are able to find a random variable is sub-Gaussian, then this expectation could be controlled. Let’s find sG
constant for %2?21 1{X; <t} with a fixed t. A quick calculation suggests the variance proxy o < noz.
Hence by maximal inequality, we have

EX{Eg sup [%anl{XiSt}]}SQ\/Qlog(QgLnJrl))

teT,|T|<n+1 i=1

Next we establish the high probability bound by relating sup ;¢ » ‘E f(X ZZ L f(X | to its expec—
tation. We can readily establish such bounds if the function class in questlon is umformly bounded:
|| f|loo < 1. This leads to the following proposition

Proposition 5. Consider a uniformly bounded function class F, where ||f||co < 1. Then with probability at
least 1 — 9§ we have

n

Ef(X) - f(X)

=1

2log(6—1)
n

< Esup
feFr

Ef(X ——Zf

Proof. The main task is to ascertain the bounded difference constant for a suitably defined function. After-
which we can just apply the bounded difference inequality. Consider

Ef(X ——Zf

Let X, ,/ ,, denote the sequence of X1, ..., X;_ 1,X Xit1,y .oy Xy i.e. where 1—th element is replaced. We now
work out the bounded difference constant of g. Without loss of generality, suppose f* € F be the maximizer

sup
fer

9(X1.n) = sup
feFr
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of |[Ef(X) — 13" | f(X;)|. We have that

1< 1 :

;ggEf(X)_ﬁ;f(Xi)_fil;Ef( ) ;f( )+ f(X5)
< [Eff(X ——Zf* — [Ef* (X Zf* )+ X))

J#i

1 /., o 2b

< (re s <Xi>)\sg.

The first inequality follows from
X) = S+ ) || < swp [BRO - - [ + A(XD)
j#i fler J#i

since the maximizer with X; instead of X, is not necessary f*. The second inequality is an application
of |a] — |b] < |a — b|, and the final inequality applies boundedness assumption. Apply bounded difference
inequality. O

5 Vapnik-Chervonenkis Theory

Before we shift gear to discuss VC theory, we introduce some empirical process theory notations, and motivate
why we shift to discuss such theory. Let A denote a collection of events, and Xj., i.i.d samples on X. We
define Pf :=Ef(X),P,f := % o, f(X;). We are interested in the following quantity, also called Uniform
Law of Large Numbers:

sup |P,(A) — P(A)]
AcA

where P(A) = Pr(X € A); P,(4) = 23" | 1[X; € A]
Definition 6 (Growth/Shattering for a set of events). Let n € N. The shattering number of a set of events
A s

Sa(n):= max N | {(1{z, € A},...,1{x, € A}), A € A}|

L1yeeesLn

In words, the shattering number is the mazimum cardinality of set of binary vectors.
We finally introduce some basic properties of shattering function.

e Sa(n) <27
o If |A] < 00,54(n) < | A

e If A is induced by cylinder sets (—oo,t), then S4(n) =n+1
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STAT210B Theoretical Statistics Lecture 15 - 03/05/2024

Lecture 15: Shattering Function Bound & VC dimension
Instructor: Nikita Zhivotovskiy Scribe: Rita Lyu Proofreader: Xueda Shen

1 Notations

Let A denote a collection of events, and X, ---, X,, denote i.i.d. samples on X.

2 Growth function

Definition 1 (Growth function/Shattering function for a set of events). Let n € N. The shattering number
of a set of events A is

Sa(n):= max |{(1{xy € A},...,1{x, € A}),A € A}|

T1, -, Tn€X

In words, the shattering number is the maximum number of different values of n indicator functions that can
take on a set of events A.

For S 4, we know it has following properties:

e S4(n) < 2™ (this is because we have n binary elements and this inequality always holds, but is not a
good bound.)

o If |A] < 00,S54(n) < |A| (this is because of each A in A, we only have one vector with binary outcome.)
e If A is induced by cylinder sets (—oo,t), then S4(n) =n + 1.
Proposition 2. If the family of events A has the shatter function S(n), then with probability at least 1 —4,

oup [Pa(A) — P(A)] < 2/ 218l 2108 5),

AcA n n

where P, (A) = £ 3" 1{X; € A} is the empirical measure and P(A) = Pr(z € A).

n (2

Remark 3. We emphasize (i) this bound only holds when Xi,---,X, are i.i.d. samples; (ii) A is the
collection of events and can be infinite. This proposition indicates that even though |A| is infinite, the total
number can be bounded by Sa(n), which is the projection to indicators; (iii) This bound holds simultaneously
for all events in A. (iv) For the bound, the first 2 (outside of square root) comes from the symmetrization,
the other 2s come from the bound; (v) The typical example is that when S4(n) = n + 1, then the bound

becomes O < % (see Big O notation for more detailed explanation for this notation), and we can see
as n — oo, the error converges to 0.

The general idea is that the “uniform law of large numbers” holds if S4(n) < 2", because otherwise

log(SA(n :
\/7 w will not converges to 0, as n — oo.

Example 4. Let A be the collection of all subsets of R, then S 4(n) = 2™, and the first term in error bound

turns to be 24/ w, which is the constant bound and does not converge to 0.

Now the question comes when can we have S4(n) < 2"7? The answer is that we can infer whether
S4(n) < 2™ by looking at the Vapnik-Chervonenkis dimension (VC dim) of the set A.
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3 VC dimension

Definition 5 (VC dimension). The VC dimension of A is the largest integer d, such that S4(d) = 2.
Remark 6. We can regard VC(A) = max{i|Sa(i) = 2'} and it characterizes the richness of the class A.

We introduce the following examples to characterize the interplay between the shattering function and
the VC dimension.

Example 7. Let A be the set of all closed intervals in R. We determine the VC dimension by working
through the shattering function with d = 2 and d = 3. We claim VC dimension is 2, so we need to show
when d = 3, we have less than 8 patterns. From Figure 7, we can see

1. When there are just two points, S4(2) = 2.

2. When there are three points, S4(3) is at most 23 patterns. However, the pattern in the Figure cannot
be realized. Thus, VC(A) = 2.

R O [ Ji
2 3 ) 1 ' A )
L Aa N Ky Ry
1 O ]
\ 0 Connot be reoli zed
o |

Figure 1: VC dimension for Example 7.

Remark 8. For A, VC(A) = d means (i) Yn < d, we are able to have 2™ patterns by the definition 1, (ii)
when n > d, the 2™ patterns cannot be realized.

Example 9. A is induced by half spaces in R?, then VC(A) = 3. From the left panel of Figure 2, we can
find a shattered set of size 3, satisfying S 4(3) = 23. However, we cannot find a half space such that the right
panel is realized, because the convex hulls of between points with label 1 and points with label 0 intersect.
This would work for any 4 points, not only for those on the picture.

. . . . ?
\ Cannot be realided

Figure 2: VC dimension for Example 9.

More rigorously, we provide the following theorem without proof (see more discussion in Radon Theorem).
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Theorem 10 (Radon). If we have p+ 2 points in RP, then we can split these points into two groups Al B
(no intersect), such that their convex hulls intersect.

Thus, in this example, with p = 2, we can always separate 4 points into two groups with their convex
hulls intersecting. Then, we cannot make S4(4) = 2%. Based on Theorem 10, we have the following corollary.

Corollary 11. For A induced by half spaces in RP, VC(A) =p+ 1.

For example, a simplex in R3, we can find 237! binary vectors, thus VC(A) > 3 + 1. But because

of Theorem 10, if we take any 3 + 2 points, there are 2 groups with intersecting convex hulls. Thus,
VC(A) < 3+ 2. Finally, VC(A) = 4.

)

TR cooo o100 elio
Py
- .-f’l_"
do0D| Plo] !l oo dolo
Ito lolo 1ot laol
} i i i
J01| lobo alll I o]

Figure 3: VC dimension for simplex in R?.

We claim that for A, if VC dimension is small, then the shattering function is also small.

Theorem 12 (Sauer-Shelah-Vapnik-Chervonenkis). If VC(A) = d, then

sa=3 (1)< () 0z

Proof for the second inequality can be found in Lecture 9 Section 2 of Sparse Linear Regression.

Remark 13. From Theorem 12, we can see if d = 0o, then S 4(n) = 2™, which is the naive bound. If d < oo,
Sa(n) = O(n?), which is the polynomial bound.

Corollary 14. If VC(A) = d, by applying Proposition 2 and Theorem 12, then with probability 1 — ¢,

sup |Po(A) — P(4)| < 4\/% N \/210g (5)

AcA n n
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If d is finite, we can see

sup |P,(A) — P(A)| =0 ( dlo*g(n)) — 0, as n — 0.

AeA

Remark 15. This corollary result indicates the relationship between the VC dimension, the shattering func-
tion, and the uniform law of large numbers. We can bound the distance between the empirical measure and
the true probability measure using the shattering function. Moreover, the shattering function can have an
upper bound induced by the VC dimension. Then, we can characterize whether the uniform law of large
numbers holds by looking at the VC dimension of the class A.

Corollary 16. From Corollary 14, we can see that set system with finite VC dimension satisfy the uniform
law of large numbers.

4  Proof of Proposition 2

Proof. Because our 1{x € A} is an indicator function, it is bounded by 1. Apply results in Lecture 14 Section
4, we observe that conditional on X7.,, at most S4(n) values of 3" | 1{X; € A}, VA € Ais realizable. Then
by symmetrization and the maximal inequality, we have

2log(254(n))

E sup |P,(A) — P(A)|§2\/

AcA

Because the function is bounded by 1, we apply the Proposition 5 in Lecture 14 with [ = 1, then we have,
with probability at least 1 — ¢,

/21 (5) 21log(2 91log (1
sup |P,(A) — P(A)| < E sup |P,(A) og 6 \/ og( SA Og(é)
A€A AcA

5 Proof of Theorem 12

Proof. Our main idea is that in the definition of shattering function, we just care about the binary function
(fix z1, ..., 20, (1{z1 € A},...,{z, € A}) € {0,1}")!. Thus, we reduce our problem to counting the size
of V, where V' is the matrix whose row vectors are realized values of indicator vector with n columns, (from
set system to the matrix), such that, by VC dimension definition, (i) we can find d columns in V| such that
all 2¢ vectors are realized, (ii) Vd + 1 columns, we have smaller than 2¢+1 different vectors.

o1 -+ 00
V=10 1 --- 1 1

~\~
n

E.g. For VC dimension 2, for the first two columns, we find 22 distinct binary row vectors, but for the first
three columns, we cannot see full 23 row vectors.

—_ o = O
_—_ 0 O
OO O

1We do not fix arbitrary z1,...,zn. We fix x1,...,zy, that satisfy the VC dimension.
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We use shifting-based proof here. Shifting allows us to change the original set of vectors without changing
its size. Induction-based proof can be found in [Vershynin, 2018]. Before moving on, we first introduce the
shifting operator S. For v € V, take i € [n], we change 1 to 0 iff this does not cause copies of the same
vector.

S(U) - ("Ul,.. .,"Ui_l,O,UH_l,. ..,"Un), lf (”Ul,...,Ui_l,O,UH_l,... ,Un) ¢ V
’ V=(V1,. Vi1,V Vit1,---,Vpn), Otherwise '

If we apply S; to every vector in V', then by construction
1S:(V)| = V],

meaning that the size will not change after shifting. More importantly, if a subset of columns is shattered by
S;(V), then it is also shattered by the original V' ( “shattered by ” here means if we project these columns
to indicator and we can see all patterns of 2 taking power to the number of columns). E.g.

[(1) (ﬂ — shifting on the first column [8 (ﬂ all two combinations are possible.

We then prove this claim.

Proof. W.L.G, take i = 1, columns are first K columns, 1,..., K, by definition of shattering, Vu € {0,1}¥

(for all possible patterns in K columns), Jv € S;(V), such that u; = v;,i = 1,--- , K. The previous claim
holds because our condition is that the first K columns are shattered by S;(V'). We next want to show there
is v' € V, such that u; =v},i =1,--- , K. Assume u = [1,ug, -+ ,ug,---|,3v € S;(V),u; = v;,i € [K]

1. one pattern v = [1,ug, -+ ,uk, -], is a vector starting with 1 after shifting means [0, uz, -+ ,ux] € V
(because shifting will lead to [0,ug,- - ,uk, -] when the vector does not in V', but now the vector
starts with 1, meaning [0, ug, - ,uk,---| is already in V.)

2. Since 1 does not be changed, meaning that [1,us, - ,uk, -] is also in V.

=, Vu € {0,1}%,F" € V, such that v} = u,i € [K]. d

Then, we apply S;(V) in a loop for all i, in any order until we reach such a set V*, so that for all 1,
S;(V*) =V* Vi,

meaning that shifting will not change the element anymore. We know that by construction, |V*| = |V|.
Finally, we need to compute |V*|, for v € V*. W.L.G., we assume all ones are stacked at the front, that is,

1,1,1,---,1,0,---,0,0.

If we assume there are more than (d 4+ 1)—ones at the beginning, as shifting will not change the size (it is
already stable), then

051517"' 71707"' 7070
170717"' 71707"' 7070
071717"' 71707"' 7070

should also be in V*. Finally, the more than (d + 1)—ones by shifting will result in more than 2¢*! patterns.
However, this contradicts the VC dimension. This is because if the subset is shattered by S;(V'), then it
should also be shattered by the original V. We conclude that no vector v € V* contains more than d-ones.

So the vector in V* contains at most d-ones. Therefore, by taking the number of ones to be 0 to d, we

have .
. n
vi=m=3 ()
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6 Proof of Corollary 14

Proof. Based on Proposition 2 and Theorem 12, we know that

Y

sup | Py(A) — P(A)] < 2\/ 210g(294(n)) 2108 (5)
AcA n -

log(25.4(n)) < oz (2(5)") < 10w ((5)") = 24102 ()

— sup |Po(A) — P(4)] < 4\/d10g () | \/21°g ().

AcA n n
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STAT210B Theoretical Statistics Lecture 16 - 03/07 /2024

Lecture 16: Empirical Risk Minimization & Dudley Integral
Instructor: Nikita Zhivotovskiy Scriber: Jingxi Wang  Proofreader: Jinglin Yang

16.1 Example: Statistical learning (classification)

16.1.1 Definitions

We will start by introducing some definitions. A set of classifiers is as follows ¥ = {f : X — {0, 1}}.
(Xi, Yi)?zl is an i.i.d sample from some unknown distribution Px y, where X € X, Y € {0,1}. Given
f € ¥, the empirical error is defined by

Ru(f) = - 3 Ind{£(Xi) # Yi},
i=1

and the population risk is defined by

R(f)= P (FX) ).

Next we introduce VC-dimension of ¥. The following two definitions are equivalent: (a) We
say ¥ has the VC-dimension d, if d is the size of the largest shattered set; (b) Define S#(n) :=
maxx,,..x, H{(f(X1),..., f(Xn)) | f € F}, then the VC-dimension of ¥ is the largest d such that
Se(d) =24,

denote f* = argrlrlilnfe(lr R(f), and f = argminscg Ry(f), i.e. f*is the minimizer of R(f) and f is the

minimizer of R, (f). Then we define the generalization error to be |R,( f ) — R( f ).

16.1.2 Empirical Risk Minimization

Utilizing results about VC-dimension from previous lectures, we can bound R( f ) — R(f7).

R(f)_R(f*)SC(\/dlog;en/d)+\/log(Z/é)).

Proposition 16.1.

n
Proof. By definition of f, we have R,(f) — R,(f*) < 0. It follows that

R(f) = R(f") = R(f) = Ra(f) + Ru(f) = Ru(f") + Ru(f7) = R(f*) < 2sup [R(f) = Ru(f)].

fer

Now our goal is to bound 2 SUp (e IR(f) = Ru(f).
Step 1: Let Ay := {f(X) # Y}, Ay = {Af|f € F}. We want to show S#(n) = S, (n). Verify that the
value of

sup  #{(Ind[f(X1) # Yil,..., Ind[f(X,) # Y, ) : f € F}
Voo
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is invariant of the choice of Y7, ..., ;! (Since after changing a single Y;, it either remains unchanged or
flips the bit in a column) Therefore we can choose Y1 = Y, = --- =Y, = 0. Observe that Ind[t # 0] = ¢
for t € {0,1}. Since f is {0, 1}-valued, then (Ind[f(X1) # 0],...,Ind[f(X,) # 0]) = (f(Xi), ..., f(Xn)),
indicating that Sz (1) = S, (n). It follows that VC(A¢) = VC(F).

Step 2: By Sauer-Shelah lemma from previous lecture, with probability at least 1 — 6, we have

R(f) = Ra(f) = Pr(f(X) # ¥) - — Z Ind{f(X;) # Y;}

( /log Sﬂf(n) /10g(2/6 )

<c ( \/dlog(en/d) N \/log(:/é)). (€ < 10

n

16.2 Sub-Gaussian Process

Definition 16.2. (Sub-Gaussian process) The following two definitions are equivalent: (a) We say (X¢)ier is a
sub-Gaussian process wrt. the metric d(t,s) on T, if it is 0-mean, and forall t,s € T,

Eexp(AM(X; — Xs)) < exp (M) ;

2

(b) Say (X¢)ier is a sub-Gaussian process wrt. the metric d(t,s) on T, if it is O-mean, and 3C > 0 (absolute
constant), such thatVt,s € T,
1 Xt = Xslly, < Cd(t, ).

16.2.1 Examples
Example 1 Suppose T € R?, ¢ ~ N(0,1;), X; = (g, t), the distance d(t, s) = ||t — s||». Then

A2t = sl
Eexp(A{g,t—s)) < exp — |

Example 2 (Rademacher Process)
Suppose T C R%, e = (e1,...,&,), where ¢;’s are i.i.d Rademacher random variables, X; = (¢, ), the
distance d(t,s) = ||t — s||2. Then

2

A2t = sl
Eexp (A(X; - Xs)) < exp | ———| -

16.2.2 Definitions
Definition 16.3. We introduce some definitions.

* Gaussian width is E sup, (g, t);
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The Rademacher average is Esup, (¢, t);

Gaussian complexity is Esup,; [(g, t)|;

Rademacher complexity is Esup, . [{¢,t)];

(Empirical) Rademacher complexity of class of functions ¥ : {f : X — R} is

L ()

i=1

n

> e

i=1

Rn(F) =Es {sup
feFr

Rademacher complexity is

=

R(F) = Ex,,...x,Ec {sup
fer

} |

LS )

i=1

By symmetrization, we have

Ex sup =2R(F).

feF

< 2Ex,,.  x,E¢sup
feF

EF(X) - - > F(X0)

i=1

16.3 Dudley Integral

16.3.1 Statement

Theorem 16.4. Assume that (X)ier is a sub-Gaussian process with metric d, diam(T) := sup, . d(t, s), then
forany 6 > 0,

diam(T)

2
EsupX; <2E sup (X;—X5)+ 16/ \/log N(T,d,e)de,
teT t,s€T,d(t,s)<b %
diam(T)
where ﬁ) > Jlog N(T, d, e)de is called Dudley integral.
1
Proof. This is left for next lecture. O

Remark 16.5. It can also apply to absolute value.

16.3.2 Application

Consider Esup, (g, t), where T = Bg, d(t,s) = ||t —s||2. Then diam(T) =2, and ¢ < diam(T)/2 = 1. We
can let 5 = 0. Recall that N(B?,d, ¢) < (1+2/¢)? < (3/¢)?, then

1
Esup(g,t) < 16/ dlog (é)ds
teBd 0 €
! 3
= 16\/3/ log (E)de < CVd,
0

Since f01 vlog (3/¢)de is a finite absolute constant.
Comparison: Recall [EsupteBg (g,t) = E|lg|l < Vd.

From theorem 16.4, we can bound [E sup, . X; using covering number. We know that for different norms,
the covering number may not be the same. Next, we introduce two useful norms.
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Definition 16.6. Given the i.i.d sample X1, ..., X, ~ P, define Ly(P)-norm is || f||?

Ly(Py,)-norm is ||f||%2([pn) = %Z?zl f2(X;), then the covering number wrt. Ly(P,,) is
N(T/ || : ||L2([F°n)/ 6)'

Corollary 16.7. Given x1, ... xy, the Lo(P,,)-distance is defined by

L (P) - I]EX~Pf2(X)/ ﬂnd

If = 8l2 ., = Z(f(x ) - g(xi).

Define the zero-mean random variable Zy : ¢if(xi), and the sub-Gaussian process {Zf}feg. Sub-

=Ly,
stituting the Ly(Py)-distance into the covering number in Dudley integral, we can obtain following upper
bound

diam(F)
1 v 1 16 2
E sup gif(x))|<2-=6-n +—/ log N(F, Lo(Py), €)de.
fe?r( Z‘ o n Vi Js \/ '

Proof. For conciseness, we denote condition M = {f, ¢ € ¥}, and condition N = {||f — gllr,@,) < 0}. By
theorem 16.4, we only need to show that E sup,, \ i €i(f(Xi) — g(Xi)) < n6. In fact,

[EsupZ il f(X0) - g(X1)

M,N 3

(Cauchy-Schwarz) <E sup ||¢|| J Z(f (Xi) — g(Xi))?
M,N —

1 n
:\/E[Ei/};}\)] ]| J - ;(f(Xz) - 8(Xi))?

(If = gllL@,) < 6) <SVRE ||

1
(Cauchy-Schwarz) <&vn [E ||e ||2] ?
=0 -n.

Definition 16.8. We say that ¥ is a parametric class of functions if

C p
SUPN(T/ ” : ”Lz([FDn)l 8) < (g) ’
P

where p plays the role of dimension.

For parametric classes # such that || || < 1, applying theorem 16.4, we can derive

[ESup(1 Z eif(x; )) < T/ \/logN(T |- ll,e,), €)de

fer i=1
/ ,fplog de

_Ciyp
Vi

where C, Cq are absolute constants.
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Proposition 16.9. (Dudley) If F is a class of {0, 1}-valued functions with VC-dimension d, then

C 4d
sup N(F, | - iy, €) < (:) .
Pn

Proof. This is left for next lecture.
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STAT210B Theoretical Statistics Lecture 17 - 03/12/2024

Lecture 17: Proof of Dudley’s integral

Instructor: Nikita Zhivotovskiy Scriber: Zora Tung Proofreader: Weijie Zhao

1 Dudley’s Lemma

Lemma 1. Assume that F is a class of binary-valued functions/classifiers with the VC dimension d. Then
de > 0 (an absolute constant) such that for any empirical measure P,,

supN (F, L (P,) ,¢) < (E)4d
P,

€

As per Lecture 14 (VC Theory) P, is understood to be parameterized by z1,...x, € X (we are, more
precisely, taking the supremum over these z;), and more exactly defined as P,, (A C X) = % S ;€ A}
For a real-valued function f, we can P,f = 13" | f(X;).

Proof. We think of a subset V' C {0,1}" where V has VC-dimension d; i.e. there is a subset of d “columns”
which are shattered (see Lecture 16), and there is no subset of d + 1 columns which are shattered.

We will bound the packing numbers instead of covering numbers, which works because the packing
number is always greater than the covering number (see Lecture 9),

N (K,p,e) <P (K, pe).

Our distance measure will be,

1< 2
If = 9||L2(Pn) ~ | Z \(9 (@) — f(ilfi))/-
=1 for binary }rcn’s, Oor1l

If we write these functions as vectors in V', such that u; = g (z;), then we get an equivalent distance metric
on V,

1 n
) = |1 321 (o) (o)
Recall V' is a packing of V if Vu,v € V° (u # v),
p(u,v) >e = Zl{ui%vj}>n62. (1)
i=1
Fix a u,v € V° and consider a fixed
Ay ={i€n|;u; #v;}.
Consider Y7, ..., Y} iid random variables distributed uniformly on [n] = {1,...,n}. Then
Pr(Yi ¢ Ay,) <1—¢€ (2)

since (1) implies that on average the ith coordinate is > € apart for u # v. We want to bound,

Pr (Vu,v € VO u % v,3j € [k] such that Y; € Auw), (3)
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so we can apply the union bound to all pairs u, v (there are < |V° |2 pairs) and from (2) that Pr (Vj € [k],Y; ¢ A,
(1—¢2)", this is
o1 Vo (1 )

>1— ’VO‘Zexp (—62]{7> .

0
k:{mLJVWH,
€

We can choose

then (3) becomes

> 1|V exp | log (V0] %) = 22 | =1-exp (-2¢%) 2 0
from ceil

(replace 2¢2 with € when the ceiling doesn’t change the expression in k). Then because (3) is greater than
0, there is a realization of the random variables such that the event is true, i.e.

Y1, -, Y& € [n] such that Yu,v € VO u # v,3j € [k] such that y; € A, .

As an illustration, we can pick a set of indices where for any u and v, at least one of the indices picks up on
one of the the difference between the vectors; yo in the figure below,

u: 001001001
v: 001/0/111000
Y1 Y2 Y3

Therefore, if we project V° on only columns corresponding to indices 1, ..., Y, then the size of the newly-
obtained set V' C {0, 1}k is the same as V°: we cannot project any u # v to the same point, because one of
the y;’s will distinguish them.

Then the Sauer-Shelah-Vapnik-Chervonenkis Lemma tells us

d
0] _ ! %
v =i ()

and since 4z > [2x] 4+ 1 for x > 1, assuming log ‘Vo‘ > €2,

- {QIOg‘VO‘—‘ L < Hog (V)

then we can plug this in to get,

d
0
Vo = v < <4elog(|V |)>

de?

log (|V°]) < dlog (g) + dlog <—1°g <LVO|)> ,

use the fact log (z) < £, and get,

0
log ([V°]) < dlog<§>+—log(|v )

(&

0 N (e
log(‘V ‘) < (1 e) dlog(€2>.
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Now taking the exponential again

2 Applications

If F is a class of {0, 1}-valued functions with VC-dimension d, then

1 < d
s (13 s )| <! “
We showed this last time, deriving the bound

feF i—1
16 [t /
7/ ud log <C—)de,
n 0 €
which is < C\/g.

Corollary (Dvoretzky—Kiefer—Wolfowitz inequality) Let F' (x) be the true CDF, F,, (z) be an em-
pirical CDF. Then we are interested in achieving a tail bound for,

sup | I, (t) — F (2)],
teR

where F), is the random variable. We just apply
e symmetrization
e bounded differences
o the bound for Rademacher complexity of a {0, 1}-valued function with VC-dimension d (4)
o the fact that the VC dimension of the class of intervals {(—o0,t);t € R} used to define the CDF is 1
to get with probability 1 — 4,
sup |F, (t) — F (t)| < C L%— %

teR - ~— Vn n

absolute const

More specifically, this is

Remark 2. This is not the sharpest possible constant; Massart’s version of DKW tells us that
log (2
sup|F, (1)~ F (0] < 1 22
teR 2n

but this is optimal (we cannot make it sharper for all CDFs).
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3 Dudley integral proof

Let’s return to the Dudley integral bound proof.
We want to show: If X} is a sub-Gaussian process indexed by 7 (with canonical distance d), then

Diam/2
E [sup th <2E | sup (X;— X,) —l—16/ Vog (N (T, d, €))de
teT d€286)25 5/4

where Diam = sup, ;.7 d (t, s).
We generally analyze the first term case-by-case (see previous lecture for Rademacher process, for exam-
ple), and we can always take 0 = 0 to just have the integral.

3.1 Part 1: Finite net bounds

In this part, we work with a “single-shot” approximation of 7. Assume that 79 C T, where T is finite.
Then we can say

E

sup (X —XS)] <2 max d(t,s)+/log (|T°]).

t,SGTo t,SETO

We know that since X; is a sub-Gaussian process, then by definition / equivalent properties,

A2 (d(t, s>>2> |

E[exp (A (X; — X;))] < exp ( 9

and max; sero d (t,s) is the upper bound on the sub-Gaussian process. Then

sup (X¢ — XS)] < max d(t,s)4/2log (]T()]Q).
t,s€TO t,s€T0
because if Y7, ..., Y, are SG with parameter o4, ...,0,, then
E [maXYZ} < maxo;y/2log (n),

where we are using 7 being finite. Here we can think of ¢ indexing pairs in T° x T, so YViesr = Xs — Xy
which is mean-zero and sub-Gaussian.

E

3.2 Step 2

E lsup Xt] = E lsup (X — Xs)] (for any s since E [X] = 0)
teT teT

< E [sup (X —Xs)] :
t,seT
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Let N be a covering of T at scale 6. Given t, and let £ be the closest £ € N to t, the same for § (just choosing
the closest points in the net). Then this is

<E | sup (X; — Xs +X; — X; + X — X;)
Lt,s€T

= E|sup (X;: —X;+X:; — X, +X;—X;
reorder 't’selz;-( t t t )1

< E |sup (X; — X;) +sup (X — Xs) + sup (X; — X;)
\t/f teT seT £,3eN
property of sup -

=E | sup (X;— X;)| +2E [sup | X; — X;
| £,5eN teT ~—~

- closest to X

<E | sup (X;—X;3)| +2E| sup (X;—Xs)
t,8eN t,seT
- - | d(t,s)<d

we’ve basically used the net to make it so we are taking the supremum over a finite set.

3.3 Step 3

We now want to use a trick of “chaining”, where we look at the sequence where we “zoom in”, and improve
the granularity. We are analyzing the first term from Step 2,

E | sup (X; —X5)| .
t,5€ N
For j = 0,1, ..., consider the cover/covering number
N; C T at scale / using balls of radius 277 - Diam (7).

Visually,

j=0 j=1 j=2

Let m be the first integer such that
27 . Diam (T) < 6,

so we only have to bound

Bl s (X, - X) (5)
tmasmeNm
Chaining We can write
Xtm - Z (th Xﬂ'i_l(ti)) + Xto?
=1



where we recursively define
ti—1 :=m;—1 (t;) is the closest element inN;_; to t; € N;.

Relating this back to our supremum (5), we write

m m

Xtm - Xsm = Z (th - Xm_l(ti)) +%o_ Z (st - X7ri_1(si)) _%'
i=1 i=1

Pictorially, we follow the path to the coarsest cover, which is a single point ty = sg,
o\./. T
t,, <0 °®
tm—1 t

e — 5

_ . <o
lo = So \ o .
./S
Sm—1

m

. So (b) is

2F Xi — X,
B ~<tz>>]

m

<9E X, —X.
< ;fg@i( ' z_1<t1>)]

<2 Diam- (2—“—1)) V/2log (N (T, d,2— - Diam))
=1

Diam/2
§16/ V1og (T,d, €)de.
5

/4
where the third step uses the expectation bound from the Step 1 (for a single shot). The last step comes
from using the integral as a smooth upper bound of the summation; it is not hard to derive.

Remark 3. This is a very useful bound for empirical processes; you can see papers on Arziv using it every
day.

4 Remarks about covering numbers

There is a L, norm
Ly (P) defined as || X[l =Ex.p[|X["]"/",

d 1/p
ol = (z w) |
=1

The “order” of p for these L, norms is reversed from the geometric sense. For 1 < p < ¢ < oo,

« N(F,Lp(P),e) SN(F,Ly(P),e€)

where for vectors

« NV (7', ||-||p,e> >N (7', ||-||q,e) for 1 < p < q < oco. ie. it is harder to cover a space with ¢! balls
than ¢°° balls.
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STAT210B Theoretical Statistics Lecture 18 - 03/14/2024

Lecture 18: Nonparametric classes, Contraction, Bracketing
Instructor: Nikita Zhivotovskiy Scriber: Vilas Winstein ~ Proofreader: Zekai Wang

18.1 Nonparametric classes

We start with a motivating example.

18.1.1 Example: Lipschitz functions
Let ¥ denote the class of 1-Lipschitz functions f : [0,1] — [0, 1]. We are interested in
n

1
sup— > &if(Xi)
ror 1 lz:; i i

(+)

|EX,8

for some i.i.d. random variables X; € [0, 1]. We wish to apply the chaining argument (Dudley’s integral)
to bound (*), but for that we need to get a bound on the covering numbers. First notice that since the L,
norm of a random variable is bigger than the L, norm, the L, balls are smaller and so the L., covering
numbers are bigger. In other words, we have

N(F,La(Py), €) < N(F, Leo(Py), €).

In order to get a bound on the Lo, covering numbers, we need to be able to find a net of functions which
approximate 1-Lipschitz functions uniformly on the interval. For this, draw an e-spaced grid on the unit
square [0, 1]? as in the figure below.

Step function
Lipschitz function

Since a 1-Lipschitz function (shown in red) cannot cross two different horizontal grid lines in between
two of the vertical grid lines, there is always a horizontal segment of the grid which stays within ¢ of the
1-Liptschitz function between any two vertical grid lines. Taking the step function consisting of these
horizontal segments (shown in blue), we see that the L., distance between the step function and the
Liptschitz function is at most ¢.

So, the set of all of these step functions is an ¢-net of ¥. Note that this is an example of a net which
consists of functions that are not in the set to be covered, since the step functions are not 1-Lipschitz. It
remains to count the number of possible step functions. A generous overcounting, noticing that there
are at most 2 horizontal intervals and at most 2 segments to choose from yields

(2)
N(F,Lo(Py), €) < (%)
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In fact, since the next segment is constrained to be not too far away from the previous one, we could
probably get away with an upper bound of the formalism C'/¢, but on a logarithmic scale this only
differs by a logarithmic factor from the previous bound.

Now we apply the Dudley integral to obtain

16 ' 2. 2
) < — Zlog Zde.
) vz/o \ 2 log 2 de

. 1 . . .. .
Since /0 % de converges when g < 1, the integral above is a finite constant, and we obtain () < %

Note that this is the same rate as for a single function in ¥ ; by Hofding’s inequality, for any fixed f € ¥,
we have

E S

LS pe) ~Ef(x)
i=1

But we have gotten the same rate uniformly in F .

18.1.2 General nonparametric classes

Recall that for parametric classes ¥ we had
C
suplog N(F, La(Py), €) < plog (?)
Py,

for some p, and thus that we got the order in bound uniformly in such classes.

\/_

The covering number bound for parametric classis is much better than the bound we obtained for the
1-Lipschitz example above, which is polynomial in 1. Nonetheless, we were able to obtain the same
order of uniform bound on (x). We would like to be able to understand when we can get this kind of
bound for somewhat worse classes than parametric classes, like the 1-Lipschitz functions, in a more
systematic way. This motivates the following definition:

Definition 18.1. A nonparametric class ¥ is one for which
c\’
suplog N(F, La(P,), &) < (;)
Py
for some p.

Let’s calculate the Dudley integral for nonparametric classes. First, as long as p < 2, we have

1 P p/2 1
1—6/ (g) de = 16€ / e P2 de
vV Jo € vV Jo

16CP/2 l el-p/2 ll
e=0

Vi [1-p/2
16 Cr/?
CNnl-p/2

ol
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In other words, as long as p < 2, we get the same bound uniformly as for a single function. For p > 2
the above integral does not converge, and so we need to use the full form of the Dudley integral bound.
Let’s also assume for simplicity that || f|| < 1 for every f € ¥. The bound is then

p/2 pl pl2 [ o1-p/2 1
26 + 16C eP2de =26 + 16C [ € l
Vi Jsa Vi [1-p/2] .5
o5+ st

n

possibly changing C and using the fact that 6 < 1. Taking 6 = 1”7 we then obtain

again changing C. In conclusion, for nonparametric classes, we have

L whenyp <2,
<C- {‘/_ g
W when p > 2.

Finally, we did not prove it in class, but for p = 2 there is an extra logarithmic factor.

sup( Zf(X)—[Ef(X)

feF

18.2 Contraction for Rademacher averages/processes

We start by stating a theorem which states that we can “erase” Lipschitz functions when taking
Rademacher averages to get an upper bound.

18.2.1 Theorem statement and proof

Theorem 18.2 (Ledoux-Talagrand). Let ¢1, ..., @, be L-Liptschitz functions R — R such that ¢;(0) = 0.
Then for any T C R", we have

For this theorem, unlike many of the results previously discussed in the course, the absolute values make
a big difference, in terms of the difficulty of the proof. We will only prove a much easier version without
the absolute values (and without the assumption that ¢;(0) = 0).

n

% Z €ii(ti)

i=1

n

%Zeiti

i=1

E |sup <2LE

teT

sup
teT

Theorem 18.3. Let @1, ..., ¢, be L-Liptschitz functions R — R. Then for any T € R", we have

n

1
sup — Z eipi(ti)

teT i=1

n

sup — Z &iti

teT i=1

E < LE

Proof. Without loss of generality, assume that L = 1. Then, expanding the expectation over ¢, only,

[ n-1 n-1
su%) Z eipi(ti)| = Stug (Z eii(ti) + %(tn)) + Sujp (Z ipi(si) — %(Sn))]
te € i=1 s€ i=1
n—-1
< %[E su}; (Z eilpi(ti) + @i(si)) + |tn — Snl)]
»t,se i=1
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1
= ZE
2

n-1
sup (Z eipi(ti) + i(si) + ty — Sn)]

t,seT i=1

n-1
sup (Z eipi(ti) + entn)] ,

teT i=1

=E

where in the second equality we used the symmetry between t and s to remove the absolute value. The
result follows by induction. O

18.2.2 Application: excess risk in general

We will apply the contraction theorem to excess risk. First, we define a few different loss functions to
which the next computation applies. In general, we may have an i.i.d. sample of (X;, Y;), and hypothesize
that Y = f(X) describes the data. We can measure the loss of this hypothesis in a variety of ways, using a
loss function ¢(f(X), Y) which represents the “price” for predicting Y = f(X). For example, we could
take

Ind(f(X)=Y) (binary loss)
(Y = f(X))? (squared loss)
(), Y) = Y - f(X)] (absolute loss)

max{0,1-Y - f(X)} (hinge loss).

Note that hinge loss generalizes binary loss, in the case where Y € {+1}. From a loss function we can
define the population risk R and the empirical risk R,, of predicting Y = f(X) as

R(f) = E[6F(0), V)],
Ru(f) = - 3 HF(X0), Y.

i=1

We may prefer to choose the estimator f which minimizes the empirical risk. Then the excess risk & is

& = R(f) - inf R(f), where  f = argmin R, (f).
fer feF

Now we calculate, using the version of the theorem which we have proved, that

+E |sup(Ru(f) = R(f))
| feF

E [é] < E [sup(R(f) = Rx(f))

feF

n

sup % Z eib(f(Xi), Vi)

fer i

<4E

n

1
sup — i f(Xi)
fer M3

<A4LE

18.2.3 Application: hinge loss
Suppose that Y; € {-1, +1}, and define 1(t) = max{0, 1 — t}. Itiis easy to check that ¢»(0) = 0 and ¢ is
1-Lipschitz. So we have

n

sup % Z e (Yif(Xi)

feF i

n

sup % Z & Yif(Xi)

feF i

E <E
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sup % Z i f(Xi)

feF i

=E

7

where in the last step we used the fact that (¢;) has the same distribution as (&;Y;), since the Y; are
independent and +1-valued.

18.2.4 Application: Rademacher complexity of a linear class
Let Bg be the Euclidean ball in R?, let b > 0, and let
F={X (X, w):web- B}
Further assume that || X;||> < r almost surely for all i. Then we have
n

E| sup %Z&‘(Xi,w) =%E

web-BY " =1

n

Z &i X;

i=1

< %\/nr2
_br
\/ﬁ'

Note that we could have used the Dudley integral to bound the left-hand side, but this would have
resulted in an upper bound which depends on dimension. Here we have used the linear structure
present in the family, and avoided the dependence on dimension.

18.3 Bracketing entropy

This section just contains some definitions that we will use in the next lecture.

Definition 18.4. For a class F of functions on X, the bracket between two functions u,l : X — R is defined to
be the set

[u,l]={f € F : l(x) < f(x) < u(x)forall x € X}.

Definition 18.5. For a fixed distribution P on X, and a fixed number q, a bracket [u,[] is an e-bracket with
respect to Lq(P) if [lu — 1| p) < €.

Definition 18.6. The ¢-bracketing number of ¥ with respect to Ly(P) is
N |(F, Ly(P), €) = minimal number of e-brackets covering F .
Exercise 18.7. Show that N(F,Ly(P), €) < Nj(F, Ly(P), €/2).

In light of the above exercise, it may seem pointless to introduce this notion. Indeed, we will see that
many results about NV can be extended to A |. However, importantly, V] | depends on P, whereas N in
principle does not (since we typically take the supremum over P;).
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STAT210B Theoretical Statistics Lecture 19 - 03/19/2024

Lecture 19: Bracketing, Sub-Gaussian Mean Estimators
Instructor: Nikita Zhivotovskiy Scriber: Xiyuan Zhang Proofreader: Xiyuan Zhang

1 Bracketing

1.1 Recap from last lecture

The bracket [u,l] is formed by f € F :i(z) < f(z) < u(x) for all z € X.

[u,[] is an e-bracket with respect to L,(P) if [u,!] is a bracket and [lu — ||z, p) < €.

For a fixed distribution P on X, V| |(F, Ly(P),€) is a bracketing entropy.

The power of bracketing is that we do not work with the sup with respect to empirical measures.

1.2 Theorem

Theorem 1. Assume that F is a class of functions such that || f||r.(py<m. Then if Xi--- X, is an i.i.d.
sample of copies of the random variable X which distributes to P, there exists an absolute constant C such
that

C
Esup|—Zf )|<7/ \/logN (F, La(P), ) de.

fer M

To sum up, if we want to bound Esupf6;|%2?:1 f(X;) — Ef(X)|, one method is to bound it as
above. Another method is to bound it through standard symmetrization and chaining. Then we can get
supp N(F, L2(P,),c) < supp N(F, La(P),¢), where P denotes all measures.

Remark 2 (Koltchinskii-Pollard entropy). supp N(F, L2(P,),c) < supp N(F, L2(P),c), where P denotes
all measures.
2 Sub-Gaussian mean estimators

Let’s start with an example. Let X1,---, X, be i.i.d. Sub-Gaussian random variables with parameter ¢ and
mean u. For non-asymptotic regime,

1 2log(})
=Y —ul <o o,
Compare this with CLT with Var(X;) =1,

Z X; —p) S N,1).

The difference is that the non-asymptotic method requires all moments while CLT only requires 2 moments.
There is a fix in the non-asymptotic regime.
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2.1 Median-of-means estimator (Mean estimator in R)

Let X1,---,X, be iid. random variables with mean p and Var(X;) = o2. Split n points in to K non-

intersecting blocks By, -+, Bk where |Bj| = & =m, and X; = L >_icp; Xi- Then the median of means
estimator is Xj = Med(X1, Xo,- -+, Xf), where the median is defined as Med(yy,--- ,yn) = y; such that

' K . K
‘JE[K]:?JJ'SZMZEand\]E[K]:ijyi\ZE.

Theorem 3. Fix the number of blocks K = 810g(%). Assume without loss of generality that K is an integer
and 7 is an integer. X1,--- , X, are i.i.d. copies of the random variable X with mean p and Var(X;) = o2,
Then with probability 1 — ¢,

32log(3)

i—pl <o
n

Proof. First fix the j-th block B;, where |B;| = m and X; = |§j| Ziij X;. By Chebyshev’s inequality,

- Var(X;)  o?
Pr(|X; —pul>t) < = .
I'(’ J :u’ = t) — t2m mt2

_ . o1 3
Choose t = Then the good event happens with probability at least 7,

b

_ 20
X -l < —Z.

vm

Since the good event for a block has the probability > %, and these events are independent, the probability
that there are more than % blocks corresponding to a good event can be interpreted as

K 1 1 K 2 x &2
Pr(Binom(z,K) > 3) & Pr(Binom(Z,K) --K< Z) >1—exp(———) =

with K = 8log(3). )
Thus, with probability at least 1 — ¢, there are more than K /2 blocks Satisfying | X; —pl < 2—‘;1, and the
median should pick one of those good X; = fi. Therefore, with probability 1 —

. 20 /321og 1)
|M—M|§\/m: 6

810g( )

Remark 4. The form of the bound as if i is a sample mean and the distribution is Sub-Gaussian.

2.2 Multivariate extensions of Median-of-means estimator
Let By, --- Bk be the blocks, for a function f,
_ 1
MOM = Med ce =M d — X
(f) 6(f17 7fK € 1€ZBf 7mi§ f(

Proposition 5 (uniform bound for Median-of-means estimator). Fiz K = 8log(3), and let &; be Rademacher
random sign. Then with probability 1 — 0,

)

=

Zé‘z \/128supf€]_- Var(f(X)) log(

sup(MOM(f) —Ef) < 32E sup(— .

ferF feF TLZ 1
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)

S|

sup(Ef — MOM(f)) < 32E Sup(l Zn:Eif(Xi)) 4 \/128supf€; Var(f(X)) log(
fer feF N pet n

Remark 6. The nice thing about this uniform bound is that it only requires 2 moments as in CLT.

Proof. We want to control

sup(MOM(f) — Ef) = sup(Ef — MOM(f)) = sup(MOM(Ef — f)) <t
fer fer fer

It is enough to show that Vf € F, there are more than 1/2 of blocks satisfying Ef — fj < t,

K
- 1
— sup IndEf - f; >t < =,
Kfe]—"; [ J ] 9

where f; = 157 3 e, f(X0).
Let ¢(t) = (t — 1)Ind[1 < ¢ < 2] 4+ Ind[t > 2], and by construction, we have

p(t) > Ind(t > 2),

and
o(t) <Ind(t > 1).

Now we bound the probability of the bad event.

upZIndEf fj>t] lSUPZInd (]Ef fJ)_ 2]

fE]-'
K

< sup—Zgo ]Ef fj))

fe]—‘

= sup 1 ZEQO(M) (%)

=1

For the first part,

=sup Pr(Ef - f1 > 3)
fer

< sup 4Var(f(X)) .

5 (by Chebyshev’s inequality)
fer mt

For the second part,
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K K
1 1 1 1
sup = h(Y;)—sup | — h(Y;) + h(Y/ < =) h(Y;) - — h* 5+ h(Y;
j#i J#z
= (0" (V) (7))
1
< —|h*(Y;) — h*(Y/
< (V) — b ()
1
< —.
- K
Then by bounded diffenrence inequality,
2
Pr((xx) —E(xx) > y) < eXp(—K/Kz) = exp(—2y°K).
With probability at least 1 — exp(—2Ky?),
K
1 2(E 2(E
(%) < E(sup — ng f fj — sup Z]Ego f fj))) ()
fEJ'" J=1 fe]—“
+y
By symmetrization,
Ef— f.
(x % %) < 2E sup — Zajgp M) (sup(a — b) < sup(a) + sup(b))
fe]—‘
K —
Ef_ f.
< 2E sup — Zaj M) (p(t) is 1-Lipschitz)
rer K = t
= —E sup — e;(Ef — — f(X
rer K £ Z ’ EEB:
1 & 1 1
= —E;gg = Zgj(E’E Z f(XH - = Z (X)) (X! is an i.i.d. copy of X;)
j=1 1€B; 1€B;
1 S
< —FEE sup » &;(— f(X)) — f(X; Jensen’s Inequality
R s 3 i UKD = £00) ( )
4 K
= ——FEE sup Y ¢, (f( X)) - f(X;
R 3 e 3 ) 1)
K
< —EE' sup ejei f(Xs)
LD 2
= —[Esup i f(X5). 6'8; ~ &
. fe}—izzl (Xi) (5 )
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Then with probability at least 1 — exp(—2Ky?),

sup — ZInd[]Ef fi>1< —IE sup Zgz | Asupser Var(f(X))K

(o)
fer KK feF = nt?

+y

To ensure this bound is less than 1/2, set y = 1, and let K = 8log(3), yielding 1 — exp(—2Ky?) =1 —4.
When

t:32Esup< Zglf ) \/128supfefval"(f(X))log(%)7

fer n

it follows that (x * *%) <

N
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STAT210B Theoretical Statistics Lecture 20 - 03/21/2024

Lecture 20: Applications of the Median-Of-Means Estimator
Instructor: Nikita Zhivotovskiy Scribe: Jianzhi Wang

In this lecture, we apply the median-of-means (MOM) estimator to two examples: estimating the mean of a
random vector and estimating the higher moments of a random variable. In both examples, we only require
the first two moments. We conclude by proving a one-sided lower tail bound under the same conditions
(having only the first two moments).

1 Estimating the mean of a random vector

1.1 Motivation
Let X ~ N(u,X). From both Gaussian concentration and bound for the concentration of norm, we have

1
H% S X — uHQ < @ + 24/ %' However, can we get an estimator which has a similar bound
given that we only know the first two moments E [X] = p and E [(X — p)(X — p)T] = £7 After all, Central
Limit Theorem, which only requires the first two moments, seems to suggest it is possible.

The idea is to construct an estimator using median-of-means. Last time, we proved that given k£ >

8log (%) where k is the number of blocks, then:

Jsclelg {% zn:elf(xz)}] n 2\/128supf€f {Var [f(z)]}log (2)

. n
=1

sup {|E [f] - MOM (f)|} < 64E
fer

1.2 Set-Up and Derivations

Consider F = {f, : v € B§} where f,(z) = (z,v) for z € R%. Let fi be an estimator for the mean and x be
the true mean (i.e. p=E[X]). Then [|4 — plly = sup,epa {[{(2 — 1, v)}-

We construct our chosen estimator fi := argmin,cga {SUPveBg {|{v,v) — MOM ((X,v>)|}} Intuitively,

we are finding the vector v* that best approximates the median-of-means estimator, as measured by the
worst difference in the projection along any direction v € BY.
The L? difference can be bounded as follows:

12— plly = sup [{ft — p,v)]
vGBg

< sSup |<:&7U> —MOM((LL’,’U>)| + sup |</L,’U> _MOM(<I7U>)|
veBY veBY

< 2 sup [(u,v) — MOM ((z,v))|

veBg

=2 sup [IMOM ({z — p1,v))|
veBY

= 2 sup [MOM (f (z — p))|
feF

The first inequality is due to the triangle inequality and sup {a + b} < sup a+supb. The second inequality
is because [i is the minimiser of the objective. The second-to-last equality is due to the translation equivariant
property of MOM (-) estimator.
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Now, note that E [f, (X — )] = E[(X — u,v)] =0 Vo € BY. Applying the uniform bound for median-of-
means inequality, we get:

2 sup [MOM (f (z — p))| = 2;1613 IMOM (f (z — ) — E[f(z — p)]]

fer

n
fer "z

The first term can be bounded directly by optimisation.

128K

fer i—1

Sup {%ZEJ(%)}] = %E Sup {Z€z<$uv>}

A
e
o
E)
|
=

=1 2

tr (X
n

~—

<128

The second term can be bounded by direct optimisation as well:

4\/128 sup e { Var [f(z)]} log (%) _ 4\/128 SUP, ¢ pd {Var [(z,v)]} log (%)

n n

B 4\/128 SUP, ¢ {E [{x,v)?]}log (%)

n

» \/ 128, log (3)

n

) tr () 12]]op 10g ()
_ < 2\ 17 Wop "> \0/
i —plly <C |\ — =+ \/ -

Thus, we recover a similar bound for £ compared to the sample mean % Z?:l X,;. The upshot is that this

estimator works for a larger class of distributions, including the heavy-tailed Student’s t-distribution.
101
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Remark 1. We are assuming that there is an efficient algorithm to calculate the median-of-means estimator.
There is an algorithm that does so in polynomial time.

2 Estimating higher moments of a random variable

2.1 Definitions

Definition 2. ((p,q) Hypercontractive) Let X be a random variable. Then, X is (p,q)-hypercontractive
if there exists a “nice” function Ly 4 such that ¢ > p implies || X||, < Ly ¢ | X][ -

For example, take X ~ N(0,02). Then, for p > 2, X1, < CyplX|ly, where C is an absolute constant.

Hence, the higher L? norms are controlled by the lower L? norm, implying that X is (2, p)-hypercontractive.
We can extend the definition of hypercontractivity to the high dimensional case. If X € R? is a vector,
then X is hypercontractive if it is hypercontractive in all directions i.e. (X,v) is hypercontractive Vo € S4~1.

2.2 Set-Up and Derivations

Theorem 3. Let p be an even integer. Assume that X is a zero-mean random vector in R% such that Vv €

1
S E [(X,v)?P] % < L]E[(X,v>p]% where L is some “nice” function (i.e. X is (p,2p)-hypercontractive).
Then, with probability 1 — 6, Yv € S%1:

dlog p + log (%)
n

|MOM ((X,v)P) — E[(X,v)P]| < C2v2LPE [(X, v)?] \/

This works simultaneously for all v, with C' being an absolute constant. Before proceeding with the proof,
we first require two lemmas.

Lemma 4. (Warren) The VC dimension of a binary class induced by polynomials of d variables and power
at most p is less than 2dlog (12p).

In other words, let X € R? be a vector of d variables. Then, the binary class induced by polynomials
of d variables and power at most p consists functions of the form 1 {P(X) > 0} where P is a polynomial of
degree at most p.

The proof of the lemma, which requires machinery from Algebraic Geometry, is omitted. As an example,
this lemma says that the VC dimension of {(X,v)?" : v € $%7!} is small, since it is a polynomial of d variables
and degree at most 2p when expanded. Furthermore, note that this lemma concerns only the degree and the
number of variables in the family of polynomials, giving no regards to their coefficients.

Lemma 5. Assume that Y1, ..., Yy are independent random vectors and F is a class of {0, 1} valued functions
with VC dimension d. Assume also thatVf € F, P[f(Y;) = 0] > L Vi. Then, if k is chosen as C' (d +1log }),

then with probability 1 — 5, Vf € F, %Zle f(¥3) < 1.

The constant C’ is adjusted for the other constant %; otherwise, it is absolute. This lemma allows us to
conduct block-level analysis first, then merge them into an overall statement.

Proof. By the VC bound for empirical processes, with probability 1 — 9§, Vf € F:

k

k 1
1 1 d + log 5 1 1 1
- V;))<E|= Y; Ml——=0 <24 2 <=
k;ﬂ ) < k;f( |+ =% <3+t55
The second inequality is due to E[f(Y;)] = P[f(Y;) = 1] < 1 and our choice of k. O
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Proof. (of Theorem 3) To set up the problem, let there be n observations, k blocks for median-of-means and

Lsm (g 0)P—E[{x,v
m = 7 elements per block. Consider the mapping (T1y ey Typy) — 1 |5 ZZ:leW’gp]EK il > QﬂLpﬁ

Intuitively, it maps elements of a block to an indicator, denoting whether the block is “bad”. Denote the
mapping by f,, where v is just a particular direction.
By Chebyshev’s inequality, we bound the probability of a “bad” block:

[ Sty (@i, 0)” —E(z,0)7) , 1 E [(z, )] 1
E [(z, v)?] > 221 Tl = o (E [(@, o)) TSI L 8

where the last inequality holds by hypercontractivity, which gives E [(z,v)?] < L?’E [(z, v)P)2.

We repeat the above process for each direction v € S9! obtaining a class of {0, 1}-valued functions
defined on each block Y; = (Xiy—(m—1)---» Xim) for i € {1, ..., k}. Mathematically, our function class is F =
{f,:ve 8?1}, each satisfying P [f,(V;) = 0] > £ Vi € {1,...,k}. It suffices to check that F has a small VC

dimension, which is guaranteed by Warren’s lemma. To see this, note that o 0 1<m[2’;z)>;}E 2,0)"] —2v/2 Lp 1
is a polynomial of degree p and has d variables. By Warren’s lemma, F has VC dimension less than C""d log p.
Thus, by Lemma 5, we choose the number of blocks £ = Cy (d log p + log ( )), it implies that the

L T;,v x,v)
condition [ 20 T, 3;; ]E< il < 2\/_Lp\1F Yo € S41 is violated in less than < of the blocks with high

probability. In the case where the condition is not violated, the median block satlsﬁes the condition (since
the condition must be violated consecutively starting from the tails). Hence, the median block satisfies the
condition with high probability.

dlog p+log (1)
n

—_

P

. . 1 - .
In conclusion, with T = , we have:

dlogp + log (%)
n

IMOM ((X,v)P) — E [(X,v)?]] < C2V2LPE [(X,v)?] \/

O

The upshot is that the median-of-means estimator allows you to estimate the moments of hypercontractive
distributions while only knowing the first two moments.

3 One-sided Lower Tail Bound Under Few Moments

3.1 Motivation

Many statistics, such as variances and singular values, are always nonnegative. For example, we care about
the smallest singular value because it appears as we invert a covariance matrix in regression problems. In
those scenarios, we can still give a non-asymptotic, high probability, one-sided lower tail bound with only
the first two moments.

Lemma 6. Let Xy,...,X,, be i.i.d. random variables such that E[X;] = p and E [X?] = 02 and X; > 0
Vie{l,...,n}. ThenVt>0,Plp— 15" X, >t] <e” 302
Proof. Take A > 0. Consider E [e=*¥1].

E[e ] <E|1-\X; + %)\QXE

1
=1—-\u+ =\%0?
2
< e—)\,u,—l—%)\202
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2 _2

Thus, E [eAMr=%X0] < ezN'o

P[u—%i)(i>t
=1

Optimising over A yields \* =

<

tn

o2

E[AaZia X)) mp B fent-Xo] s
e - et < oAt
—t2n
and P [pn— £ >°7 | X; > t] <e2? as desired.
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STAT210B Theoretical Statistics Lecture 21 - 04/02/2024

Lecture 21: Scribe template
Instructor: Nikita Zhivotovskiy Scriber: Jimmy Chin

1 One-sided Lower Tail Bound Under Few Moments (cont.)

From the last lecture, we can derive a one-sided tail bound for the sample mean.
Proposition 1. Suppose X1, ..., X,, are iid with X; > 0, EX? = 0%, and EX; = . Then Vt,
Pr( 1Zn:X > 1) < exp{— Ly
r(p— — i >t) <exp{l—=—=}-
B 17552
Note that the right-hand side of the above looks sub-Gaussian. The “magic” of this bound is that we
only require two moments.

2 Least Singular Value of the Sample Covariance

Let X be a zero-mean random vector in R%.

Assumption 2. Assume there exists ¢ € (0,1), 8 € (0,1), and for all v € ST,

Pr(|[(X,v)| > cv/E(X,v)?) > 8

Note Amin(2) = inf,cga-1 vT X, where X is psd. Then for all v € 9~

> CEX O e ) (X )] 2 eV B0 |, 0

where we have used Assumption 2 to obtain the lower bound. We also have

E(X, v>22§ cav/n(d + log(1/6)), (2)

ZInd V)| > ev/E(X, 0)2] — Pr([(X;, )]

which follows by either applying properties of the VC dimension for half spaces or Warren’s lemma, (which
implies the VC dimension < ¢1d).
Inequalities (1) and (2) imply

TS x> T g fa Tos(170)
= CE(X,0)? [ - ea) T8y
§ J
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Assume that n is such that (x) > g & ca\/ %(1/5) < g Sn > (%)Q(d + log(1/6)). Then it follows
that
1 — 2B
)\min - XZXT > _)\min ) )
(3 22X = 5 A ()

where ¥ = EXXT.
When does Assumption 2 hold?

Lemma 3. Paley-Zygmund Inequality. If Z > 0 is a random variable and ¢ € (0,1), then

(EZ)

Pr(Z > cEZ) > (1 — ¢)? TR

Proof of Lemma 3.

EZ =E[Z -nd[Z > ¢BZ]]| + E[Z - Ind[Z < ¢EZ]]
<VEZA/Pr(Z > cEZ) + cEZ

EZ)?
= Pr(Z > cEZ) > (1 —c)? (EZZ :
where we have used Cauchy-Schwarz in the first inequality. O

Now we can apply this to (x). Assume that
Yo e S (E(X, v))* < L(E(X,v)?)"/2, (hypercontractivity).
Apply the Paley-Zygmund inequality to obtain

Pr(|[(X,v)| > cv/E(X,v)2) = PI‘(<X,U>2 > c2E(X, v>2)
2 (E(X, v)?)?

= (= 5% oy
> (1- P
— 3.

3 Nonparametric Least Squares
The setup is
Y = f(Xe) + &,

where X7, ..., X, are fixed design vectors, £ ~ N (0,1), and &1, ..., &, are independent. Previously, we studied
linear regression where f*(X;) = (5%, X;). Here, we only know that f* belongs to some class F, which we
could estimate via least squares

f = arg min 1 Z(f(XZ) -Y;)%

n
fer o

We define the following norm
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Definition 4.

1Y 2= 1§3ﬂx> ¥)2.

=1

Our goal is to bound || f — f* ||2. By definition we have
I =YIa=lf-YI;

| F= RS =Y B A otf =)
—
-

& f—r
T
N F=f
where in the second line (f — f*, f* —=Y) = S0 (F(X;) — f(X0)(f*(X;) — V7).
For the next trick fix ¢ > 0. Then
N F=F A=l f=f Nl d{|| f = f* o< 3+ 1| f = £ [l Wd{|| f = £* [|> t}

=S| F=f 0 <

Sl f =1 lln< 2(E

:Iw ;ilw

2 f=rf
<t Ty
= e e T

(+%)
In what follows, we will make use of the following definition.

Definition 5. F is star-shaped around f* if Voo € [0,1] and f € F, a(f — f*) € F — f*.

The left side of the above is an example of a star-shaped class. The right side is an example of a class
that is not star-shaped.

Remark 6. If F is conver, then it is star-shaped. A star-shaped set is not necessarily convex.

We claim that if F is star-shaped around f*. Then the supremum in (x*) is achieved at some f such
that ||f — f*|| =t. Let f — f* be a maximizer with ||f — f*[|, > ¢. Then

f-f L
e
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Moreover,

() St s (6 f - ) =Gle),
FEFNf=1*1In

where G is the Gaussian width.
Consider %supfe}-,nf_f*“g(g,f — f*) =G(&). Then

G(€) — G) < Llsuplé, f — 1*) — sup(v, f — £*)]
n fer feF

1
< —[&—vllll f= "2
n
t
NG IRSCHIE
By Gaussian concentration, we have

2

1 _ (P
Pr(nfef’”?g*”n;&f F) 2 EGE) + ) < exp(=5),

for all p > 0.
Let W, = EG,(€). Before we had (xx) <t + 2(W, + ) with high probability.

Check that since F is star-shaped around f*, the function W;/t is non-increasing. We want to find the
fixed point t,, such that ¢, = %th (see figure above). Moreover, by the non-increasing property, we have

for all ¢t > t,, that %Wt < t. Choose t > t,, such that (xx) <inf;>; 2t+ %’i To sum up, we have
Proposition 7. If F is star-shaped around f* and & is Gaussian noise, then for all t > t,
£ * 2:“‘
17— f7 1B 2 292

2n

with probability at least 1 — exp(—5;z).

108



STAT210B Theoretical Statistics Lecture 22 - 01/16/2024

Lecture 22: Applications of Localization

Instructor: Nikita Zhivotovskiy Scriber: Yichen Xu Proofreader: Shunan Jiang

1 Proposition revisit

In last the lecture, we investigated the Proposition related to the localization methods, approaches in statistics
working with Gaussian width/Rademacher averages of localized sets of functions.

Proposition 1. Suppose F is a star-shaped function shape. The model isy = f*(x;)+&;, where xy,- -+ ,x, €
R?, & ~ N(0,1), € = (&1,---,&)T. Let f* € F and F star shaped around f*. Let f be the least squares
estimator, i.e. f = argmz’nfef% S (f(X;) = Y;)2. Let t, be the solution of the equation

2 *
t= Esuprer,|f-rolla<tl& f = f7)

n

Then for any u > 0 with probability 1 — e:rp(—%), we have

A * (12 2 ?
1F -7 < (24 2

Remark 2. In the proposition, we do not care about the complexity of the whole class, but those f close to
f*. The uniform convergence tells us that for all f, ||f —Y||n = E||f — Y ||, while in the localization, we do
not care about f faraway since they do not affect the empirical minimizer a lot.

2 Example 1.

We explore the application of Proposition 1 by examples. Suppose we are interested in the case v = t2.
Then ||f — f*||2 < (2t 4 2¢)% = 162, with probability 1 — exp (—2—) First we bound the Gaussian width

of {f:||f — f*|> <t}, by Dudley integral.

%EsupfeF,||f—f*||§t<§>f_f*> <c oz~|——/ V9og N(F — f*, Ly(P,), €)de)

J/

Denoted as (%)

’

For nonparametric classes, we have supp log N(F, La(P,),€) < ce P. Here, we assume p € (0,2).
Choose a = 0, we have
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c fot e~ 5de -
vnooo T

o
o
§‘ SIS
+
=

(%) <

Then we reduce everything to solving
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Remark 3. When we want to apply Proposition 1, we can solve the equation by substituting the upper bound
of the ”Gaussian width term” since the we are guaranteed that t > t, and the inequality holds for t > t,.
When t = t,,, the bound is the tightest.

Plug in the solved t and continue with Proposition 1, we have

If = f*|| < esn~ 72

Note that in uniform convergence, ||f — f*||2 — E||f — f*|2 ~ n=2. When p € (0,2), - < \/Lﬁ
npt+2
/loa(L 1
More concretely, we can choose t = czn_ﬁ + L\é(‘;) > t,, since L\é(‘;) is a positive term. Dropping
/ 1
czn_ﬁ from t and plug L\/g(‘;) into the probability estimator 1 — exp(—%), we obtain the conservative
high probability 1 — §. On the other hand, observing that

2
2y/log(5) 4log (L L
_ 1 5 _ 2 og(%) 1 log(=)
E=en e e 32@” "“+T5)<<C N S

we make the bound tighter than uniform convergence.

3 Example 2.

Consider the parametric cases. Let H, = {f : ||f — f*|l» < t}, f*(z) = (2, 8), N(Hy, L2(Py), €) < ca(142L)P,
where p is the dimension. It is expected that the covering number of the localized set scales with the radius
t. Plug this upper bound to Dudley integral, we obtain obtain the upper bound for the Gaussian width

I 2t 1 [t 2 c5/Pt
— log(1+ = — log(1 + 2)de <
= [ Vi1 Zhae = =t [y flog(1 + Zye <

where we use change of variable in the first equality. Again, by solving ¢ = 20\5/%]9 , we obtain t,. We
1
choose t = cg/ %g(‘s) so that t > t,,, and we have

. log(L
If = fII2 < e <p++g(5)) with probability 1 — §
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4 Example 3. (Non-parametric regression with random design)

Now, we study the non-parametric regression with random design. Let F be the class of function and is
convex. Suppose |Y| < m, Vf € F, |f| < m bounded. We use notations as follows

. 1 —
The least squares estimator in F, f = argminfe}-ﬁ Z(Y; — f(X))?
i=1

A~

The goal is to bound R(f) — infre 7 R(f).

Remark 4. Here we do not assume that the model is Y = f*(X) + &, with £ independent with X (called
mispecified model), opposite to assuming that f5,,..(X) =E,[Y|X =z, f5 € F and § independent noise.

Previously, we used the trick Ry, (f) < Rn(f*). Here, we use the claim that

n

Z(f(Xi) — f(Xy))?

=1

Ru(f) — Ru(f) >

SHE

This claim is due the convex nature of F as can be demonstrated by Figure 1.

Figure 1: Visualization of the claim.

Recall the notation of 1 S°" (f(X;) — f(X;))? = Pu(f — f)? and E[Y — f(X)]> = P(Y — f)®. By
substituting the above inequality,

A

R(f) = R(f*) < P(f =Y = P(f* =Y + Pu(f* = Y)? = Pu(f = Y)* = Pu(f = [*)?

Write P(f —Y)? =P(f — f*+ f*—Y) and Pn(f ~Y)? = Pn(f — f*+ f* —Y)? and expand them, the
above becomes

(P=P)(f = [P +2(P = P)(f = f)f* =Y) = Pu(f = [7)° (*)

Let £ =Y — f*(X), we further write equation (*) as
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(*) = 2(Py = PYE(f = £*) + P(f = f7)° = 2Pu(f = [)?
=3Py = P = f)+ O P(F = £ = (P = [ = L Palf = ) = Palf = 17
I Y T m N v

Group I, III, V together and II, IV together and take sup, we have

A % 1 * 1 *\ 2
BIR() ~ RO < Bsu (2P =PI~ (PG~ ) = {PlF = 1)

N J/

M

+E§1€11;( P(f—f)% - Pn(f* —f)z)

J/

(H)

We first analyze (I). Let (X Y; ) be independent copies of (X;,Y;)?"_, and P, be corresponding empirical

R R

measure. Note that P = E’ Pn. By Jensen’s inequality
! * L *\ 2 1 *\ 2
() <Esup | 2(P, — P)S(f = f7) = 7P (f = )" = 7 Pu(f = f7)
fer 4 4

Applying symmetrization on

(Pa = POET = 1) = 30 (600X = 17(X0) = € (X)) = (X))

We obtain

< 2E(x;,v)) e ;’1612 (% Z €& (f(Xs) — f1(Xy)) — ipn(f - f*)2> (**)

1=1

Remark 5. Here we can apply symmetrization safely because both terms in — 4 n(f f*)? iPn(f — f*)?
have the same negative sign.

In (**), the term %Pn( f— f*)? can be bounded using Rademacher average with offset shown in the next
lecture. For the another term, given |£| = |Y — f*(X)| < 2m, the contraction inequality tells (repeating the
contraction proof), with Lipschitz constant 2m

fer\n i—1

(%) < 2B sup (z S @m)al(f(X0) — f1(X0) ~ ;Palf - f*)?)
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STAT210B Theoretical Statistics Lecture 23 - 04/09/2024

Lecture 23: Random Design Regression
Instructor: Nikita Zhivotovskiy Scriber: Anish Muthali ~ Proofreader: Yanbo Feng

23.1 Random Design Regression

Recall the setup of random design regression from last lecture. Suppose the pair (X,Y) ~ Px,y, where
Pxy is an unknown distribution. We observe n IID copies of (X, Y), i.e., we observe (X;, Y;)?_; ~up (X, Y).
We would like to estimate a function that maps X to Y, by searching over a convex class of functions ¥ .
Assume that |Y| < m and |f(X)| < m, Vf € F. The least squares estimator is given by

f = argmin — Z(Y F(X0)? (36)

feF i=1
We would like to analyze E [R(f)] —infreg R(f), where R(f) := E [(Y - f(X))2].

Proposition 23.1. For the random design regression above, for any «,y > 0 such that a <y, we have

mlog N (7, La(Py), 7/))] 37)

n

[R(f)] inf R(f) < E lCm (oc v / JIog N (F, La(Py), ) de +

where C is an absolute constant.

Proof of Proposition 23.1. Define P,(f)* := 1 37| (f(X;))* and P(f)* = E [f(X)?|. From last lecture, we
were able to write

[R(f)] - inf R(f) < E

sup (Z(P - P)(E(f - f*))——P(f f*)z——P (f - f*)z)] (38)

feF
Term (I)
+E [sup (ZP(f ~fP - TR - f*)z)] (39)
feFr

Term (II)

We can upper bound Term (I) using symmetrization. Define (¢;)7_; to be IID Rademacher random
variables. Hence, we upper bound Term (I) following the steps from last lecture:

2E ?ug( Z4ma (F06) = FX0) = 1Palf - f)Z)] (40)
= 8mE iug(lze(f(X) FrXi) = ¢ P(f f*)z)] (41)
€ i=1
Term (II) can be simplified as
sup( P(f - f*)z——P (f - f*)z)] (42)
feF
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- Z[E sup (P(f 2= Lputy - f*)z)] (43)
fe?'
-2 sup ((1 ; —) P(f ~ 4 = SPu(f = F*)2 = £Pulf — 2~ 1 PUf —f*)z) (44)

We can bound eq. 44 by defining an IID copy of the initial data (X7,Y/)”, ~mp (X,Y). Define
Z = (X;, Y, and Z’" := (X],Y/)" . Using Jensen’s inequality, we obtain

€ |sup ((1 + _) P(f = F*) = gPulf = F*) = gPulf = ) = 1 P(f —f*)z)]
feF
<362 |Ex jug( Pi(f = F* = 15 Pu(f = f*F = 6Pulf = f*V = 2Palf - f*)z)”
< 26, [Ex e sup (2 37 Les (1700 - £ 002 - (FX) - Frx00?)
4 rer \10 & n i i
— o Palf = f = T Paf f*)z)” 5)
< TEze g(ié}l}—e(ﬂm FHX0P = Pulf ~ f ))] (46)

where P/,(f)? = % i (f(X ))>. We obtain eq. 45 using symmetrization. Notice that | f(X) — f*(X)| <
2m, so eq. 46 can be bounded as

10 11

i j’fzg(lo;_&(f(x) X)) - P n(f = f )2)] (47)

< JE ;gg(iézlez am(F(X) — F*(X)) = 6Pl - f*>2)] (48)
10 11 1 v N 1 10 .

=TT -4mE ?lelg (E;&'(f(xi)—f (Xi))—ﬁ'ﬁ'4 Pu(f - f )2)] (49)

Combining the bounds for terms (I) and (II), we have

[R( f)] - inf R(f) < 20mE

SUP( D eilf(Xi) - fr(Xi) = =5 P(f f*)z)] (50)

fer i=1
To complete the rest of the proof, we require an additional proposition.
We leverage an additional fact to complete the proof above.

Proposition 23.2. Assume that some class of functions G has a covering number N (G, L2(Py,), v) for some
y > 0, such that the zero function belongs to this cover. Then, for any a > 0,

E.

1 )
sup(; § £ig(Xi) — ¢’ g*(X;)
g€G i=1

<C (a + % ‘/ay \/log N(G, L2(Py), €) de) (51)
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+ % log N(gl LZ(PH)/ 7/)

n

(52)

where C is an absolute constant

Proof of Proposition 23.2. For any g € G, let [g] denote the closest element to g in the covering net at
scale y. Hence, we have

1 n ) 1 n
E. [sup (— Z ig(X;) — '@ (Xi) || < Ee |sup (— Z i(g(X;) — n[g](Xi)) (53)
geg \"" o geg \" i
Term (I)
n ! )
+E, suP( (21X - 'g*(X0) 54
| 8€6 i1
Term (II)
1w c’
+E. [sup (; D eimlgl(Xi) - 7 (81X (55)
8€G i=1
Term (III)

First, we can approach term (II). If || g|| L) SV then 1t[g] = @, the zero function. That is, among all
functions in the covering net, g is closest to the zero function. Hence, in this case, term (I) is at most 0.
Otherwise, if || g|| L@y >V Ilg — m[g]ll Ly(p,) SV, S0 we can apply the triangle inequality to again show
that term (II) is at most 0.

Next, we can approach term (I) by repeating the Dudley integral proof, this time replacing the Ly(P})
diameter in the upper limit of the integral with y, since ||g — 7[g]]] L) S -

Lastly, we can approach term (III) using the MGF bound on Rademacher random variables. Define the
covering net at scale y by N, and fix A > 0. We have

15 oo ool < 1o | " o — S ||
E, :;1/\12/(7’1;&}1(}(1) 4h (X)H]] < nAlog[Eg exp{ir;jav?/\ ;ezh(Xz) 4h (Xi) } (56)
<~ llogEc| Y. exp{A > eih(Xi) = TH(X0) } (57)
n | EN, i=1 |
11 A0 AN 2
< EKIOg|Ny| max (exp{fl;h (Xi) ==~ 2 h (Xl)} (58)
2
< ﬁlog|Ny| %)
2
= n—cllogN(Q,Lz(Pn),V) (60)

where in eq. 59 we set A = % to make the argument of the exponent zero. Combining the bounds for
terms (I), (I), and (IIT) provide the desired result. [

Now, we can resume the proof of the random design regression bound from before.
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Proof of Proposition 23.1 (continued). We resume with the previously determined bound.

[R(f)] - inf R(f) < 20mE ]scugrp —Ze(f(XZ) FAX) - = Pn(f f*)z)] (61)
= 20mE |sup ;Zemxi)—f*(x»—— —Z(f(X) FHXP|| 62)
- 20mE [sup —Z(e (%) = £ 000) = 5/ (X0 = * P (63)

We can use the result from Proposition 23.2 by setting g(X) = f(X) — f*(X) and ¢’ SL Notice that
N(F\NAS*}, La(Py), €) < N(F, La(Py), €). Hence,

[R(f)] - inf R(f) < Ez

Cm(a+T/ \/logN(T\{f*} Ly(Py), €)de

n

+ m IOgN(f(q: \ {f*}/ LZ(Pn)I 7/))

<Ez

1 Y
Cm ((x + %/H \/logN(T, Ly(P,), e)de +

as desired. O]

mlog N(F, La(Py), v) )]
n

We can use this result in an example, Consider a non-parametric function class ¥ such that, for all P,,,
log N(F, La(Py), €) ~ €77, where p € (0,2). Further, assume WLOG that m < 1. Also, recall that

/ \/log N(F, Ly(Py), €) de < =1+ (64)
To optimize over y, we can set the two terms of the bound to be equal, i.e.,
L o vq_y?
— oyt L 65
7 (65)
— i (66)
\n
> 7/ = n_ﬁ (67)
Hence, if we set a = 0, the final bound simplifies to
E[R()| - inf R(F) < n772 (68)
fex

23.2 Online Learning

The next main topic we will cover is online learning. Many online learning algorithms involve some kind
of dynamic update step, such as stochastic gradient descent. We would like to devise bounds on the total
number of mistakes that our algorithm makes, despite these dynamic update steps.

As an example, consider a classification problem where we utilize online learning. Given a finite function
class ¥ of {0, 1} valued functions, let f* € ¥ be a target function. That is, you observe X;, and, shortly
after, f*(X;) will be revealed. In the coming lecture, we will show that there is a way to make at most
log, (|7 |) mistakes on sequences of any length.
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STAT210B Theoretical Statistics Lecture 24 - 04/11/2024

Lecture 24: Online Learning

Instructor: Nikita Zhivotovskiy Scribe: Zhiwei Xiao Proofreader: Zhiwei Xiao

Online Learning Background

Online (machine) learning refers to the process of continuously updating and improving the best predictor
(machine learning model) at each step as new data becomes available in a sequential order. It’s applied in
many areas including recommendation systems, natural language processing, neural networks, etc.

Online Learning Protocol/Example

Consider a classification problem, where F is an unknown finite class of {0,1} classifiers (functions), and
f* € F is the target function. We also have a sequence of data points (x1,x2, ..., z,) with true labels. For
Y1, a classifier f will give us the predicted label 3, and then the nature will reveal the true label f*(z1).

The same process is repeated for ¢ = 2,...,n. The aim is for Y Ind[y; # f*(x;)] to be small.
i=1

1. Naive Strategy

We call this ”Follow the leader”. Let F; = F, fori = 1,2, ...,n, pick any f € F;, predict y; = f(x;), then check
the true label f*(x;) revealed by the nature. Then we update by setting F;11 = {f € F; : f(z;) = f*(x;)},
which means that we remove all functions that don’t agree with the data seen so far. This strategy makes
at most |F| mistakes.

2. Halving Algorithm

Let 71 = F, for i = 1,2,...,n, we predict ¢; as the majority vote of {f(z;) : f € F;}, then check the true
label f*(x;) revealed by the nature and do the same update as in the naive strategy. This strategy makes
at most log, |F| mistakes. (Intuition is that if the majority is right, it’s right; if the majority is wrong, we’ll
drop at least half of the functions.)

More General Setup of Online Learning / Regret Definition

We have a loss function L(f(X),Y) which is non-negative, and F which is a class of functions. We have

~

a sequence of predictors fl, J2, ., fn such that fl has seen no data on previous rounds, fg has seen one
data point, etc. Notice that f; does not know y;|z; by definition. Hence, more and more information have

n ~
been seen and trained on as we move along the sequence. And we define the regret as > L(fi(x;),y;) —
i=1

inf S L(f(x:), 11).

feF i=1

Proposition (Online to Batch Conversion)

Assume that L(f(X),Y) is convex with respect to the first argument (definition of f above) and that
(x4, yi)1; is an i.i.d sample. Assume also that the sequential estimators fi, fo, ..., f, satisfy that the regret
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S L(fi(w), yi) — )}ng__ Z L(f(z;),y:) < R™ almost surely, where R(™) is a constant. Then we have that
i=1 €

E E L(lzn:fi(X),Y) it B LX), Y) < R
(iyi)jo, (X,Y)~Pxy T i fer n
Proof:
Define S = (z;,y;)"_ ;. We know the regret satisfies Zé L(fi(xs), y:) — ;gg__zé L(f(z;),y;) < R™ & for any
sequence. And remember that f; does not know y;|z; by definition, and that the pair (x;,y;) is independent
of (x1,y1), ., (xi—1,yi—1). Hence, we can take the expectation on the both sides of ®, and we first analyze

its left-hand side after taking the expectation:

n

IEZL(fz(%),yz) - Ig;gg__;L(f(%%yz) > ;IE;R(JE@) - J}Ielg__nR(f ( Zfz - J}gﬁ__R ))

1=1

where the risk function R(f) = E(x,yv)~prx y [L(f(X),Y)], we used Jensen’s inequality and inf’s concavity in
the first >, and used first argument and the convexity in the second >. We finish the proof by dividing both
sides by n.

Exponential Weights (Hedge Algorithm)

Consider F = {fy : 0 € ©} - a family of functions parameterized by © C R%. The prior distribution 7 (6) over
© does not depend on any data. n > 0 is the fixed learning rate. After seeing i data points (x1,y1), ..., (s, ¥i),
denote

j=1

A~

exp <—77 EZ: L(f@(%)»%)) ()
(0) =

pi\V) = , .
Egnr €XP (—77 2 L(f@(“z’j)ﬂj))

j=1

And denote go(2;) = L(fo(x;),y;) for simplicity. See that we can work with

po(0) = (0), pil6) = gff_n gZi??’-zizzlfff-

The claim is that —1 7 108 Eg~r exp(—n - go(2i)) = —% log Eg~p, , €xp(—nge(zi)), where we denote the
=1 =1

left hand side as H(n ) and the right hand side as the so-called "mix-loss”.

See that

o xp (—ngn(en) 1 5 00|

=1

n—1

H(n)—H(n-1)= —llog
7 Eo~r exp(—1 3 90(=1))

_ —llog ( E exp(—??ge(zn))) :

77 ean—l
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The idea is that we can relate the mix-loss with the true loss of our prediction. We can build fl, s fn such
that L(fi(x;),y;) < —% log (ngﬁi_l exp(—nL(fo(xi),v:))). Then by our claim before, we have that

ZL(fxxi),yi)s—%Zlog( £ exp(—nL(fem),yi)))

=1

— —%log ( E exp(—nZMfe(%%%))) :

Ways to Interpret the Logarithmic Loss

1: F={VfeF: [ f(z)de =1, f(z) >0} is a family of densities in R.
I X ~ f(X), Ex ~ log(f(2)) = ] log(f(x)) f(x)dz : entropy

2: X follows a distribution according to f(X).

E [ tos(7(e) — (—1os(s@)] = Brog(2 ) = 102 gyt = w1411,

3: Cross-Entropy Loss.
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STAT210B Theoretical Statistics Lecture 25-04/16/2024

Lecture 25: Prediction with Logarithmic Loss
Instructor: Nikita Zhivotovskiy Scriber: Zach Rewolinski ~ Proofreader: Reece Huff

25.1 Reminder: Why We Use Logarithmic Loss

The following neat properties encourage us to use logarithmic loss.

1. Let ¥ = {fo : 0 € O} be a family of densities. If ffg(x)dx = 1 with Lg(x) > 0, then
Ex~f,[—1og(fo(x))] is the entropy.

2. Ex-f,[-1log(g(x)) - (= log(fo(x)))] = KL(follg)

3. Consider a classification task, where y € {0, 1} and we predict the probability of a ‘success’ p € (0, 1).
Note that —(y log(p) + (1 — y)log(1 — p)) is equivalent to the cross-entropy loss.

4. Consider data points z1, ..., z, and density fg. The maximum likelihood procedure

log (17, fo(zi)) = X1, log(fo(zi)). Maximizing this quantity over 6 € © is equivalent to minimiz-
ing — >\7_; log(fo(zi)) over 0 € ©.
25.2 Density Estimation

Let us focus on the density estimation problem with data z1, ..., z,. We want to predict f; such that
U(fi(z) < = log (Eo~p., exp(—nt(fo(zi))))

Claim 25.1. If ¢ is logarithmic loss, we choose n = 1 and f; = Eo-pifo(zi)-

Proof of Claim 25.1. Then —log(Eg-~p,_, exp(—nl(fo(zi)))) = —1og (Eg~p,_, fo(zi)) - O

From the formula for sum of mixed losses (previous lecture) where 7 is a prior, we have that

n n

> —log (Eg-p, 1 fo(zi) = ) ~log (Eg~p, , exp(~(~log(fa(z)))))
i=1 i=1
= —log ([E9~n exp (— Z(— log(fe(zi))))) . (69)
i=1

We want to find an upper bound on this quantity. This is when we apply the Donsker-Varadhan formula,
which tells us that
—log Eg~n exp(h(0)) = sup(E[h(0)] — KL(p||m)).

p
Thus, (69) above is less than or equal to
~log Egorexp (— (- log(fe<zi>)>) <inf (— ) log(fo(zi)) + KL(p| |n>) . (70)
i=1 i=1
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Example 1

Let ® = {f; : i € [m]} be a finite family of distributions with |®| = m. Let 7= be a uniform prior on ®. Let
p be the distribution centered on f*, where

f* = argmin {— Z log(fi(zi)) } (71)

je€lm]

Plugging (70) into (71) gives

-Zlog j~pis fi(2i)) = ( Zlog(f (zz)))<10g(m)

What is the exponential weights prediction?

) - exp (— (— S log(fj(zz')))) < _ Hizl‘f]‘(zk) |
S exp (- (- Zia logm(zz-)))) ERD YRy | | EYACH
Thus,
S (k)
IE'NAi—lf'(Zi) = fi(zi) - k 1 ! .
e ]Zl ! Z]1Hk1 ](Zk)
Example 2

Let ¥ = {fi, ..., fu} be densities, and assume that z1, ..., z, are sampled from f* € F.

. » . . A
Claim 25.2. 3f, an estimator of f* based on z1, . .., zy such that E;,, ., KL(f*||f) < =&=.

Proof of Claim 25.2. Indeed, recall from “Online to Batch" that we choose the progressive mixture

@ = > B i),
i=1

25.3 Working with Infinite ©® (Yang-Barron Construction)

Let F be a collection of densities. We then have that
N(F,KL, &) =min{N € N : 3qy, ..., gy such that for all 0 € ®,3i € [N] such that KL(fs, q;) < £2}.

We note that this definition is special, since the covering number with the KL divergence distance is
defined with &2.
Idea: Fix y > 0 and let N, be the net corresponding to N(7, KL, ¢).

Note: f is just a progressive mixture on 41, ..., q|n,| with the uniform prior on this set.
Proposition 25.3. Asume z1,...,z, ~ f*, with f* € F. Then there exists a f which satisfies
log N(F ,KL,¢) }

n
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Proof of Proposition 25.3. Fix ¢ > 0. We have that

LE KL= E . (72)

/--~/Zn

E log (fj(z))
z~f f(z)

Let g* be a density in the net such that KL(f*||q*) < ¢2. Then we have that (72) is equivalent to

f*(Z)) q'(z)
log (q*(z) + log ( f(z) )

E

Z1,.e/Zn

E
z~f*

21,0020 | 2~

]se2+ E [[Eﬁ [—log(ﬂz))—(—log(q*(z»H. (73)

We will use the regret to bound the right-hand side of (73). Note that the weights on fi only depend on
z1,...,zi-1 (in other words, p;_1). By convexity, we know that

i s f [_%Zlog(ﬁ(z)) - 1Og(‘ﬂz))” = e LE* - glog(ﬁ(zi)) - (—log(q*(zi))”
log N(¥,KL, ¢)
< .
n
[
Example 3

Let ¥ = {N(6,1;) : 0 € O}, where © = Bg. We then observe z1, ..., 2z, iid N(0*,1;), with 6* € ©. We

.....

1
KL(N(O1, 1)IIN (62, 1)) = 51161 - 6,
thus giving us that
N(F,KL,¢) < (c/e)?

by a volumetric argument. From the proposition above, the progressive mixture f gives

d log(c/s)} - cdlogn
. < :

n

Zyeeey
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STAT210B Theoretical Statistics Lecture 25 - 04/18/2024

Lecture 25: Exponential Weights Estimator for Bounded Losses
Instructor: Nikita Zhivotovskiy Scriber: Yanbo Feng

1 Exponential Weights Estimator for Bounded Losses

In this lecture we will discuss exponential weights estimator under bounded loss. Bounded losses are common
in classification. But we should note that the log loss isn’t bounded. And the log loss is usually preferred
over bounded losses due to its convexity.

Theorem 1. Assuming 0 < (fo(x),y) < m. Considering the mizx loss, we have:

+13f Zf fo(xi),vs) (;Hﬂ-))

2

> E o).y < -

i=1 ~Pi—1

Proof. Since

(—nﬁ(fa(X),Y)— E —nﬂ(fe(X),Y)) [=mn+ B onl(fo(X),Y), B nl(fo(X),Y)].

O~p;_1 O~pi_1 O~pi_1

By Hoeffding’s Inequality, we have:

N (nm)?
o B exp(=nllfolzi),yi) < exp(=n, B l(fo(zi),p:)) + =),
Applying (—% log)(+) to both side we have:
nm’
——1Og( E exp(—=nl(fo(z:),y:)) = B L(fo(xi) pi)) — —=—
n O0~pi—1 O~pi_1 8
Summing them up, we get:
s 1 . nnm?
- - 1)y Y > E % 7
> oal, B explat(fue. ) 2 30, B Afolw )~

Using the formula for the sum of mis losses:

N 8
i—=1 Pi—1

S B tfle) ) < T —%logz B exp(—nt(folwi), i)

By Donsker-Varadhan Variational Formula, we have:

nnm?

Do, B o)) < = o(3 B explontlfle).u)

IN

nm 0y
3 +1nf ZE fo(zi), yi) (gH ))
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2 Example 1: Binary Classification

Now show an example for how exponential weights estimator used binary. classification.
Suppose F ={f1 =1, fo =0} :

Fact 2. Suppose F = {f1 =1, fo = 0}. Then the deterministic strategy can’t guaratee regret < O(n).

Proof. If choosing a deterministic strategy. Then the regret will be

n
izzl Lty — ?1612 Z Lty

Consider the worst case. The first term could be n since y; can be always opposite to our prediction. And
the second one is less than %, thus the regret > . O

Fact 3. Suppose F = {f1 =1, fo = 0}. Ezxponential weights estimator can guaratee regret < O(n).

Proof. We use indicator loss here, so m = 1. Let 7 be the uniform distribution on F (7(f1) = 7(f2) = 3).
Let ~ pick the best estimator in F. Then we have:

1
KL(y||w) = —log(5) = log 2.

Plugging in Theorem 1, we have:

" m] log 2
Z Igf Lo < 3 +mmzl(f(wz)7éyz

n feF -
And
log2 nn
n 8
8log 2
n= :
n
So,

. nlog(2)
E 1 — 1 .
Z:: b\ (fQ(mz);éy ) rfrél}l-z (f(mz)#yz) -

O

Remark 4. If F = {f1, fa- -+, fx}, we still let w be the uniform distribution on F. Then K L(v||w) = log(k).

nlog(k) .

So similarly, we can deduce 35—, B L(fy()zy) = minger 2imt L@z <\ 72
i—1

O~pi_

3 Logistic Regression

Definition 5. (Sigmoid function) o(z) = H—T;(—Z)'

Definition 6. (Loss function and predictor functional class) In this example, we choose F = {o ({x,0)) :
0 € R} as predictor functional class. And let ((fo(z),y) = —log(o(y(z,0))).

Remark 7. It is noted that when the (x,0) approximate the true value y, the prediction y{x,0) made by the
model tends to be closer to y*. Conversely, when the parameters (x,0) are far from the true value y, the
prediction y(z,0) diverges towards —y*. Additionally, the term —log(o(+)) is decreasing, implying that as the
model predictions approach the actual values, the overall loss decreases. This reduction in loss is desirable
as it indicates that the predictions are becoming more accurate.
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Now, using exponential weights predictor, we want to bound

eeRd

E lo i(zi,0)) — inf ( log(o(yi(x;, 0
; E log(o(yi Z g(o(yi(i,))).

Assumption 8. Let 0* = arginfycpa(— >, log(o(yi(xi, 0))). In this ezample, we assume [|0*||, < b,
where b is a constant.

Lo

Lemma 9. Let 6(z) = —log(m), then &(z) is conver, 6" (z) <

Proposition 10.

_Zlog(g E o(yi(z:,0 Zlog o(yi(wi, 07)) — log( E eXp( (0 — 9* Zyz zix; ) (0 —07))).

Proof. Since ¢ is convex, by Taylor’s expansion, we have:

= log(o (i, 0 Zlog oyl 6) + 0+ 5 - 50— 6°)7 Zym )0 0°)

1
Zlog o (yi(ws, 0 >Zlog o(yilwi, 07) +0+ o5 Lo -0y Zyzxz )6 —6%).

The first derivative is 0 since the function is convex and 6* is the minimizer. The second derivative is less
than i, which has been stated in above lemma.
So we have:

—Zlog E o(yie:,0) = — log( E epolog 7(yi(:,0)))))

sz 1

1
- IOg(QEr exp <Z log(o(yi{z:,0%)) + 0+ 21 0 0*)" Zyzx x})(0 — 0*)>

=1

:—Zlog (yi(x,0%)) — logEexp( 6 — 67 Zylxx (0 —07))

:—Zlog o(yi(z, 9*))—10g61[~3 exp( 6 — 67 Zy,LQSZ )0 —67)).

O

Now, our problem is how to bound — log(GIE exp((0 — 0*)T (=Y, y2x;zl)(0 — 6%))) in Proposition 9.

Lemma 11. If Q(0) = 0T A0 + bl + ¢, A is positive definite, then

[ exp (-Q0)d0 = exp( int (Q(0))- N

Remark 12. This lemma offers a tool to deal with the expectation of exponential quadratic term. The proof
comes from multivariate Gaussian distribution density. I skip it here.

Applying Lemma 11 we can give a cleaner expression to Proposition 10.
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Proposition 13. Let m = N (0, 3(am)™'Zy), then

- 1 d d
z:: IﬁE log(o(yi(x;, 0 Zlog o(yi(xi, 0°)) + ab*m + 3 log(det(A)) — B log(m) — B log(a),
where A = £ 30 y2xx] + anly.
Proof. By proposition 9, we have
- apr; log (o (yi (i, 0 Zlog o (yi(w:,0")) —log( [E_exp(z Lo 07 Zyzx 2] )(0—067))).

Let ¥ = (3am) 'Z4, then det(X) = (2am) <.

T —1

So the density function () = m exp(—%) =a? exp(—am ||9||§)

Let Q(0) = £(0 — 0") T (X1, y2wiz] )(0 — 0%) + ar ||9||§, we first transform it into the form described in
Lemma 10.

Q(0) = 0 0*)" Zym )(0 —67) + ar ||0]|3

= (0 —097T Zyzxa: + anZy) (0 — 0%) + (0°)T (anZy) (%)

> (9*)T(aﬂd)(9*)~

Let A= £ 3"  y?za] + anZy, we have:

log( E_ eXp nyc 7] 0))) = log(/ exp Zym ] 0"))a* exp(—am ||
= log (ag /exp (—Q(Q))d@)
~ log <exp<— B8, Q) — A)) + S log(a)

We know infyc pa Q(0) = am HG*H% < ab’rm. So

vl

log (exp(— inf Q(0)) - L) + glog(a) =— aienlgd Q(0) + log(m2) — log(1/det(A)) + glog(a)

OER det(A)

1 d
> —ab®r — 3 log(det(A)) + =

d
1 —1 .
“log(r) + 5 log(a)

So

Z B log(o(yi(wi, 0)) < = log(o(ys(ws, 7)) —log( E_ eXp Zyzxfc 6%)))

< — Zlog(a(yi@i, 0*)) + ab*m + %log(det(A)) - glog(ﬁ) — glog(a).
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STAT210B Theoretical Statistics Lecture 27 - 04/23/2024

Lecture 27: Logistic Regression, Exponential-Concavity
Instructor: Nikita Zhivotovskiy Scriber: Michael Xiao Proofreader: Dylan Webb

In the last lecture, we analyzed the logistic regression model. Recall the setup: We have z; € R?, with
|z¢|2 < 7, and y, € {—1,1}. We further assume the predictor function class of the form o({x,)), where the
sigmoid function o(z) = H—ex—p(z) Lastly, we assume that the MLE solution #* is bounded: |6*|y < b. To

produce the estimated coefficient, we define the loss function I(fy(x),y) = —log(o(y{x,®))).

1 Bounds on total loss in logistic regression

Following lecture 26, we want to further develop the bound of the total log loss in logistic regression.

Proposition 1. Under the logistic regression setting,

) d nb2r2
_ i;log Eo~p,_,0(yi {xs,0)) < gloga yi (2, 0%5) + d + & log (1 = )

Proof of Proposition 1. From lecture 26, we showed that

- 2 log E9~pz 10 (yz <:L'1, 0> Z log o yz <$z, ‘9*>)

=1

+ inf (mwug (0 —0%) Zxaz 0 — 9*)) (1)

0eR i1

1 d d
+ 3 log det ( Z Tix] + a7rId> — —log(a) — 3 log() (2)

1=1

First notice that (1) < an|6*|3 < amb®>. To bound (2), we employ the manipulation —%log(ar) =
—1 log det(arly). Therefore,

1 n

(2) = 1 log det(g Xy ziw] +arly)
2 det(mr[d)
]‘ 8>\ + am

= 5 logjl_[1

d
Z log g)\j + am
— am

where A1,..., g are the eigenvalues of the sample covariance matrix, %2?21 z;z] € R4, To proceed, we
introduce the Gram matriz in R™*", whose (i, j)-th element is {(z;, ;). The useful fact here is that, up to

zero eigenvalues, the spectrum of the sample covariance matrix is the same as that of the Gram matrix.
That is

N | —
<

d n n
Z A; = Tr(Gram matrix) = Z (wj x5y = Z |lzi]3 < nr?
i=1 =1

Jj=1
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With this fact, we have

Combining the above bounds, we conclude

2
=Y log Egep ol (i) < — 3 log oy oy, 0%)) + art? + ~dlog <1+ r )

=1 i=1 dam
d b2 2
:—Zloga yi {xi, 0°)) +d + = log(l—l—n Z )
— 8d
The second line follows from choosing a = ﬁ;‘blg. O

2 Square loss and its exponential-concavity

By construction of the loss function in logistic regression, it is somewhat natural to consider a log-exponential
type bound for the loss. Namely, we would like to produce a bound in the forms of

A 1
g(fi(xi)ayz') < —5 log]Eewai_l eXp(—Ug(fe(xi),yz')) (3)
If we assume that

1 1
E(EQNﬁi—l f9(xi)> yl) = _E 1Og exp (_UE(EGNﬁifl f9(xi)> yl)) < _5 log ]E’e“‘ﬁifl exp (—Ug(fe(l“z), yz))

and hence let f = Eg~p,_, fo, we have the equivalence

3) = Eg~p, , exp (—nl(fo(xi),yi)) < exp (—77€(E6~ﬁi_1 fo(xi), yz)) (4)
This gives us a framework to analyze the loss function with the following definition:

Definition 2. A loss function ¢ is exponentially-concave with respect ton > 0 if (4) holds for alli. From
another perspective, if we define vy as a distribution over 0, { is exponentially-concave w.r.t. n if (4) holds
for all such distributions .

The function log(-) is naturally exponentially-concave with n = 1. The following proposition demonstrates
that the squared loss is also exponentially-concave.

Proposition 3. Define the quadratic loss £(fa(x),y) = (fo(x) —y)%. Assuming |y| < m and |fo(z)] < m,
then the quadratic loss is ﬁ-ewponentially-concave.

Proof. The main idea is that if for any y such that |y| < m, the function f,(z) = exp(—n(z —y)?) is concave,
we have the desired result by Jensen’s inequality. To verify this, we take the derivatives of f:

8fgiz) = —2n(z —y)exp (—1(z — y)*)
I = e (cule = 9?) (20 + (20— )))

v

(%) (%)

Notice that we always have (%) > 0. And (skx) < 0 if 2n(z — y)? < 1, with (z — y)? < 4m?. So we can

choose n = 8#12 and the result follows. O
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We now show an application of exponential concavity in the context of model selection. Define the class
of functions F = {f1,..., fum} as our candidate models. Assume that |y| < m and |f| < m. We want to
bound the quadratic loss of the optimal model. That is, we would like

n n
Z — 9;)? IJp ]Irl Z (z5) — yi)? + small term

This is made possible by the exponential-concavity of the quadratic loss. Define the parameter space © =
{61,...,0n}, and let 7 be the uniform prior on ©. If we take g; = Eg-;, , fo(x;) and n = then by the
Donsker Varadhan formula, we have

m27

1 n n
—5 log Eg . exp ( Z — fo(zi) ) Z 24+ 8m? log(M)

This allows us to conclude about the risk:

Corollary 4. If (x;,y;) are i.i.d. samples, and |y| < m, |f| < m, then

feF n

2
E(l’»y)R< ZE(%pZ 1f9> min R(f) + w

The rough idea of the proof relies on the observation

> —% log o~ p,_, exp(—=nl(fo(z:),y:)) = —% log By exp(—n Y 1(fo(2:),y:))
=1

=1

The RHS of which we can bound by the Donsker-Varadhan formula or direct computation.
Lastly, we turn to linear regression. Consider the setup: |y;| < m, |zill2 < r, |6*| < b, where 0* =
arg mingega ;i (yi — (0, z;))%. Our goal is to make a sequence of predictions 9, ..., 9, such that

i Zn: — 0%, z; ) + small term

Before next lecture, we provide a bit motivation for the forthcoming method. If we select the distribution

pi—1 ~ €Xp < Z —(@;,0)) )

where 7(#) ~ exp(—nA|0]]2), then p;_; is Gaussian with its mean exactly equal to 6y, the ridge regression
prediction.
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STAT210B Theoretical Statistics Lecture 28 - 04/25/2024

Lecture 28: Sequential Linear Regression

Instructor: Nikita Zhivotovskiy Scriber: Zora Tung Proofreader: Daniel Etaat

1 Sequential Linear Regression

Given a deterministic sequence of pairs (y;,z;);_,, z; € R%, and y; € R, we define
. 2
0* = argmlnz (yi — (0, 2:))".

Further assume that, ||z;|| <, |y;| <m, and ||6*||, < b, for some fixed constants m,r,b € R. Our aim is to
create a sequence 1, ..., Jn, where y; depends only on the data seen before the ¢th round, such that

S i—wi)® =D (i — (24,0%),

i=1 =1

i.e. such that the total regret is small. We also define the clip function:

<
clip,, () = min {m, max {—m,z}} = v |z < mo
m - sign(x) otherwise
Theorem 1 (Vovk-Azoury-Warmuth). In the sequential regression setup set §; = clip,, (<éz’—1,$i>> ,

where
i—1

A . 2 2
0i 1 = argminy_ (y; — (2;,0)" + X613
fERY =1
18 the ridge regression predictor. Then there is a choice of X\ such that

n n 2792
N 5 nr<b
ZE - yz S ZE:1 331,(9 +m (d+4d10g (1 + W)) .

Remark 2. As homework, we derived a bound that scales as m? + r2b%. In general, this is less favorable

than the m?log (T b ") bound in the theorem above.

The reason we require clipping for this estimator is to force exp-concavity of the squared loss. Recall

from the previous lecture that the squared loss is gis- (z)| < m. However, in

our setup |fo(x)| = [(z,0)| < rb.
Lemma 3. Lety € [-m,m] and let Z ~ N (a,0?). Then if n = g,

=i @ < ~tog (B o (-u2-)]).

Proof. Let’s compute the RHS. It equals,

1 1 o —a)®
— log / exp | —n(z—y)* - @ dz (1)

210 J_so 20

Gaussian pdf
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Recall that if Q (6) = 0T A0 + b + c is a quadratic form, where A is a positive definite matrix, then

[ e -Qnas = (- it 00) f—tw @

In this case A =1+ 5 so (1) becomes,

1 VT 1 ) 2 (22— a)2
ke ( om0+ 1202 ¥ <_12f (n S Tﬂ))) @

Solving for the inf by setting the derivative to zero, we have

2(z—a)
2 — —= =0

) s

MTTog2) = W1 o5

M+ 557

z = —-

N+ 252

_ 2020y + a
202n+1 "

Plugging this back into the inf we have that,

2 2
. — 202 207y +a 1 2021y + a
¢ Y (z a) B B
n (77 (Z=y) "+ 55— 202n + 1 o2 \ eyt

(20277y+a—20 ny — y) N 1 (202ny+a—202na—a>2

Il
3

2020+ 1 202 2020+ 1

2
20_2772 y—a
2 n+1 2020+ 1

2 2

y—a n(y—a)

2002 +1) (L2 ) =LY
12070+ )<202n+1> 2027 + 1

I
3

Finally plugging this into (3) we get,

—llog ;exp _M :ilog(202n+1)+M
n V202n +1 20%n +1 2n 202n + 1

We will now compare (y—clip,,(a))? Wlth 5 1og (20%n+1)+ 2(g nall We start by assuming that a € [—m, m]
and we will show that,

(y—a)’
2020+ 1
This will immediately imply the desired result for (y — clip,,(a))? since allowing larger values of a will only

increase the RHS of the inequality while leaving the LHS unchanged. Factoring out the (y — a)2 terms, we
have

1
(y —a)* < o log (20217 + 1) +
n

2 1 1 2
— 1—— ) < —1 2 1
(v —a) ( 1+4+202n/) ~ 21 og(an—i— )
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L Then we can

and by our assumptions, y — a € [—2m,2m] = (y—a)’ € [0,4m?] and 7 =

8m? "
reparameterize by w = 202n and it is enough to show that,
1 L <log (1 + w)
- — 0 w).
14w/~ &
This is true analytically, see https://www.desmos.com/calculator/f5eyqdz2ze. [

Proof of Theorem 1.

Proof. We would like to use the exponential weights algorithm with the Gaussian prior:

w(0) = (an)? exp (—an 613)

where a is a tuning parameter. Observe that the weights take on the form,

Pi—1 X €Xp —nz — (z4,0))° — anr| 0|3

By construction, p;—1 is multi-variate Gaussian since p;—1 o exp (—Q (#)). Since the Gaussian density is
maximized at its mean, the mean of p;_; must be,

1—1
A . 2 2
0;—1 = atgmin > (y; — (x;,0)) +ar 1915
J=1 =\

Then by recalling (2) we must have that,

pi—1 = Cexp <Q(éz'71) -Q (9)> :

where c is a normalizing constant. Now, by our lemma we only need to show that our prediction is the clip,,
of a Gaussian mean. Observe that,

E [fo(z)]= E (0,2;)=(0i_1, )

O~pi—1 O~pi1

Concretely, we are training a ridge regressor on the first ¢ — 1 points and using it to predict the label for z;.
Moreover,

0,2;) ~ N (<éi_1,;,,-i> ,gg>

Together with our lemma this implies that,

<yi — clip,, ((xz, éi_1>>)2 < —1 log ( E [exp (—7] (y; — <x2,6))2)})

n O~p;—1
1
——log
n

e oo
z—%log (/ eXp< 772; (i,0 —a77||0||2> (an)gd9>-

1=

Summing both sides we get,

i <yz~ — clip,,, ((a:z, éi_1>)>2

M:

IN

132



which is the now familiar integral of a exponentiated quadratic form. Once again recalling (2) and noting
that infycra Q (6) < Q' (60*) we can bound the integral above by,

* 1 g 1 4 *|2 i - T
— (x;,0%))" — ; log ((an) ) ; log (7r ) + X675 + 2 log (det ((;xzxz + )\Id> 77))

Repeating the the computations for our analysis of logistic regression and fixing n = g - > and A =
us,

M:

z:l

i (v = 90)" < i (i — (@i, 0%))" +m” <d+ 4dlog <1 + Z—f))

2,.2 2b2
m? <d+4dlog (1+ "d; )) — m? (d+4dlog (ng»’

this completes the proof. O

Therefore, since

Remark 4. The same regret bound holds the estimator §; = (0,_,, x;) where

0,y = argmin>_ (y; — (w;,0))" + M|6]5 + (x4, 0)°

essentially adds a point with label 0 to the training data.
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STAT210B Theoretical Statistics February 12th, 2024

Homework # 1: Concentration Inequalities
Reece D. Huff

Regrades

When regrading, I only attach problems in which I did not receive 100%. If the mistake is minor, I
highlight my changes in purple. If the mistake is major, I highlight the entire problem in purple. I
provide the regrade justification in the gray box below the problem statement.

Notation

Let c and C represent a small and large constant, respectively (e.g., ¢ = 107 and C = 10°).

Problem 0

Familiarize yourself with the proof of the result showing the equivalent definitions for
sub-exponential and sub-Gaussian random variables.

Note: This exercise is not checked and does not have to be typed, though we expect you are
familiar with the derivations.

o))

Property 1 || - ||1p2 isanorm. Let X,Y, A € R, then

Recall the definition of || - ||,

and its properties

IAX1ly, = IA1IX,,
IX +Ylly, < XLy, + 1Y,

1X[ly, =0 X=0 (as.)

Property2 (a.) Z~N(0,1) = |Z]|,,<C
(b.) Z ~N(0,0%) = 1Z1ly, < oC

Property 3 If Xj, ..., X, are independent, sub-Gaussian random variables, then

n n
QX =€ Il
i=1 ) i=1

2
¥



Problem 1 (|| - ||¢2 is a norm)

Prove that the sub-Gaussian norm || - ”1/’2 indeed satisfies the properties of a norm. In
particular, show that it satisfies the triangle inequality and that || X ||1,1;2 =(0ifand onlyif X =0
almost surely.

Recall the definition of || - |,

||X||¢2 mf {t >0:E [lpz('X')

.

where ¢»(X) = X’ — 1.
To begin, we prove the triangle inequality

1X + Yly, < XLy, + 1YL,

Proof. We define 12(X) = X" — 1 and consider
| X +Y] [ X] + Y] a| X| b|Y]|
< =
l’bz(a+b <y2 a+b Y2 a(a+b)+b(a+b)

1 X| b Y|
_a+b¢2( ) a+b"b( )

by convexity of 2(X) (ie., f(1—t)x +ty) < (1—t)f(x) +tf(y) forall x, y, and t € [0, 1]). Now, we set
a =Xy, and b = [|Y]],, and take the expectation of both sides

Il Y|l
E |y, | X +Y| < P2 E 1 X| n P2 E |y, Y|
XMy, + 1YWy, |~ XLy, + 1Yy, Xy, || 1X1g, + 1YLy, YLy,
and take the inf of both sides
. X + Y] 11Xy, " X
inf{E |7 < 2
{ l"” Xl + 0. | [ = T+ v, Y2 T,
Y|l
[ nflE ¥ Y]
I, + YT, 1Y1ly,
I1X1ly, 1YLy,
IX + Y|, < I1X[ly, + Y|l
v = Xy + VL, 0 T IR, + 1Y, e
X, + 1Y,
IXIly, + YTy,
3 IX115, + 21Xy, 1Y 1y, + 1Y,
- XLy, + 1Yy,
Xy, + Y1l X+ Y]
XLy, + 1Yy, V2 V2

Thus we arrive at the desired result

IX + Y1y, < X1y, + 1Yl



Next, we will prove that || X ||1P2 = 0 if and only if X = 0 almost surely.

Proof. Starting with the definition of || - ||,

s3]

LetY = exp{ (f—;) }, and let us assume that E[Y] = 0 and Pr[Y > 0] = k > 0. Then, we have

0=E[Y]>Pr(Y>0)E[Y|Y>0]=kE[Y]Y >0]>0.

Finally, we show that [[A X, = [A| | X]]y,-

Proof. This proof follows directly from the properties of inf, e.g., inf{|y|x} = |y|inf{x} for y € R.
, A2X?
1AXll,, = u?f{t >0:E [exp{( B )}] < z}
' X2
||AX||¢2 =11t1f{|/\|k >0: [El {(F)}
:|}\|inf{k>0:[E| {(X—Z)}
t

IAXIly, = AL, -

I\.)
——

Thus we achieve the desired result,



Problem 2 (Moments are sharper than MGF)

Show that moment bounds for tail probabilities are always sharper than Chernoff-method
bounds. Specifically, let X be a non-negative random variable and let t > 0. The best
moment bound for the tail probability Pr(X > t) is inf;>o t /EX7. The best Chernoff bound
is infy~0 Eexp(A(X — t)). Prove that

q Eexp(AX
inf EX! i ESPAX)
g0 t1 A>0  exp(At)

Hint: Consider two positive summable sequences {a;};-; and {b;};2;. Suppose ¢ < g—j for

i € N. Thenc < g%gz Moreover, if 7- # Z—’] for some i, j, then c < gglg’ Proving this might
i=1 i i i=1 Vi
be helpful.
Recall that the moment bounds for tail probability are defined as
. EX1
Pr(X >t) <inf —— (moment bound)
g0 t19
and the Chernoff-method bounds are defined as
Eexp(AX)

Pr(X >t) < inf

o exp(iD) (Chernoff)

In order to prove that

q E AX
inf X! g ESPUAX)
g0 t1 A>0  exp(At)

we first establish the following lemma.

Lemma HW1.P2.1. Consider two positive summable sequences {a;};-, and {b;};2,. Suppose ¢ < 3* foralli € N.
Then ]

< Zfio aij
< == .
Zizo bi

Proof. By assumption cb; < a; for all i € N. Summing both sides from 1 to oo results in Equation (74), i.e.,

(o] (o) o]
Zizo ai

Zcbi < Zai — (< = —-

. Zi:o bi

(74)

Now we may proceed with proving the following theorem.
Theorem HW1.P2.2 ([PN95]). For a non-negative random variable X and for all t > 0,

q E AX
g0 t1 A>0  exp(At)



Proof. To begin, recall the Taylor series expansion of the exponential function (i.e., Maclaurin series)

(o]

kixi
exp(kx) = Z i

i=0

Taking a Taylor series expansion w.r.t. to A of the objective function of the Chernoff-method bound

results in
Eexp(AX) _ i AMEX! i Aft
exp(At) B prs i! pars i!

i i ipi
Leta; = 3,500 255 and let b; = 3,72, A, then we have

Eexp(1X) _ X4
exp(At) Y. bi

We note that

. IEXi I i q
o AEX 1 _EX S i EXD vienw
b; il Al f 20 H

We can then set ¢ to inf,> E—%q and leverage Lemma HW1.P2.1 such that

2 Eexp(AX) _ ZZ%O a;
g20 t1 exp(At) X2y

Note that the above inequality holds for all A > 0 including the A that minimizes E exp(A(X — t)). Thus,
we have

q E AX
inf Ext <in —exp( )
g0 t1 A>0  exp(At)

and achieve the desired result of the proof. O



Problem 3 (Hoeffding’s lemma with the correct constant)
Let X be a zero-mean random variable within the interval [a, b]. Then, for any A € R,

A%2(b—a)?

Eexp(AX) < exp 3

Hint: Define Lx(A) = log(E exp(AX)). Use the Taylor expansion of Lx with Lagrange’s error
bound. Then, create a random variable Y, € [a, b] whose variance equals L;’((/\). Use the
boundedness of Y, and the upper bound on the variance of any bounded random variable to
control LG (A).

In order to prove that

A%2(b —a)?

Eexp(AX) < exp 5

we will leverage the two following lemmas.

Lemma HW1.P3.3 (Taylor’s theorem). Suppose that I C R is an closed interval and that f : T — R. For
a€t andh € R suchthat a + h € I, there exists some 6 € (0, 1) such that

fa+h)=f(a)+hf'(a)+ h;f”(a + Oh).

Lemma HW1.P3.4 (Maximum variance). Let Z represent a random variable Z € [a,b]. Then Var[Z] is upper
bounded by

(b —a)?
4

Var[Z] <

Now we may proceed with proving the following theorem.
Theorem HW1.P3.5. Let X be a zero-mean random variable within the interval [a, b]. Then, for any A € R,

A2(b - a)?

Eexp(AX) < exp 5

Proof. To begin, let us define
Lx(A) = log(Eexp(AX)).
To begin, let us calculate the derivatives of Lx(A). The first derivative of Lx(A) with respect to A is

EX exp(AX)

Ix() = E exp(AX)

and the second derivative is

d EXexp(AX) E[exp(AX)]E[X%exp(AX)] - E[X exp(AX)] E[X exp(AX)]
il - .

dA Eexp(AX) ([E exp(/\X))

E[exp(AX)] E[X? exp(AX)] — E[X exp(AX)]?

([E exp()LX))2

Ly() =

6



) E [X2exp(AX)] 2
Lx() = E exp(AX) -

E [X exp(AX)]
E exp(AX)

We now define a random variable Y, such that Var[Y)] = L} (1), i.e.,

_ Xexp(AX) . XZexp(AX) _qn
A= W and Y/\ = W — Var [YA] = LX(A)
Note that Y) is in the interval [a, b]
E | Txe[ap) eXp(AX)
Pr(Y, € [a,b]) = E [Ty,ciap] = [xetasy Iy

E exp(AX)

and therefore we may use Lemma HW1.P3.4 to bound L% (A)

b— 2 . b— 2
%:LX(A)S( 4[1).

We have by Lemma HW1.P3.3 with f =Lx,a =0, h = A, thereisa 0 € (0, 1) such that

Var[Y,] <

2
Lx(1) = Lx(0) + ALy (0) + 5-L5(61)

EX 2 2(1 — ~)2

since L (A) < (b_f)z for all A. Thus, we conclude that

A%2(b - a)?

8
A2(b—a)?
—

Lx(A) = log(Eexp(AX)) <

Eexp(AX) < exp



Problem 4 (Binomial concentration with sharp constants)

In this problem, we aim to obtain sharper bounds for Chernoff bounds than those derived from
Hoeffding and Bernstein inequalities for the binomial distribution. First, for two probability
distributions on k elements P = (p1, p2, ..., px) and Q = (g1, 92, .., 9x) (i-e., pi, qi € [0, 1] for
alli € [k] and Zle pi = Zle g; = 1), define the Kullback-Leibler divergence as follows (log is
the logarithm with base e):

1

k
KL(P,Q) = Z pilog &
i=1 1
Consider X to be a binomial random variable with parameters n and p € [0, 1]. Prove the
following:
1. Forany t € [0,1 — p], it holds that
Pr(X > EX +tn) <exp(-nKL((p +t,1-p —t),(p,1—-p))),
and for any f € [0, p],
Pr(X <EX —tn) <exp(-nKL((p —t,1-p +1t),(p,1-p))),

2. For any 6 > 0, we have

86 EX
Pr(X > (1+0)EX) < (m) ,
and for 6 € (0,1),

6_5 EX

Demonstrate that the bounds can be further simplified for the same values of 6. That is,
show that

@\ o [EX) e\ [OEX
1ropr) ~P\ 235 | -0y =“P\72 )
These inequalities, when 6 is a small but fixed constant, are often referred to as the

multiplicative Chernoff bounds, as they compare the random variable to multiple times its
expectation.

Hint: Apply Chernoft’s method and a precise computation of the MGF for Bernoulli random
variables. In 2.), simplify the formulas in 1.) by combining the exact computation for the KL
divergence with the inequality (1 — x) < exp(—x) for x > 0. For the last inequalities, it may be
useful to first show that % < log(1 + 6) for any 6 > 0 and that —6 + 6%/2 < (1 — §) log(1 — 6)
for 6 € (0,1).

Recall the Chernoff’s method

. . Eexp(AX)
Pr(X > k) < /1‘r>lg W,



various properties of the Bernoulli random variables
EX=p and Var[X]=pg=p(l—-p) and MGFge(A) = Eexp(AX) =g+ peA =1-p+ pe/\,
and various properties of random variables following the binomial distribution

EX =np, Var [X] = npg =np(l —p)

MGFyin(A) = Eexp(AX) = (g + pe!)" = (1 —p + pe)",
J

ﬁMGFbm(A) = npet(g +pet)"! = nper(1 - p + pet)'!

where (Z) = —k!(:ik)!'
Theorem HW1.P4.6. Forany t € [0,1 — p], it holds that
Pr(X > EX +tn) < exp(-nKL((p +t,1-p —1t),(p,1 - p))).

Proof. We begin by utilizing Chernoff’s method with k = EX + tn. Note that the mean of the binomial
distribution is np, so k = np + nt = n(p + t). Additionally, we utilize the MGFy, to arrive at

E AX 1- An
Pr(X > EX + tn) < inf — 0P, (A =p+pe)
A>0 exp(An(p +t))  A>0exp(An(p + 1))

for t € [0,1 — p]. Next, we aim to solve for A* that minimizes the objective function. That is,

1-— A\n
A* = arginf( p+pe’)
A20 exp(An(p +1))

Therefore, we calculate the partial derivative of the objective with respect to A,

J { (1—p +pe') } (A -p+pe'n(p +t)exp(An(p + 1)) —npe*(1 - p + pe’)" L exp(An(p + 1))

oA exp(An(p + 1)) (exp(An(p . t)))z
_n(p+ A —p+pet) —nper(1—p +pet)'?
) exp(An(p +1t))

and set the resulting partial derivative to 0 to solve for A*

n(p +t)(1-p+pe’) = npe*(1—p + pet)y"

p+t)1-p+ peA)” = peA(l -p+ peA)”"1
pe’ (1 —p+pet)
p+t  (1—p+pet)yr-1

A

% = (L—p+pety
A

pe

— =1-p +peA

pet =(p+t)(1—p+pe")
pet =(p+t)(1—p)+plp+t)e’

9



pet —p(p+t)et = (p+t)(1-p)
[p—plp+t)]e* =(p+t)(1-p)
o _pHHd-p) _t+p—p?-pt t
p(l—p—t) p-p>-pt  p(- p—ﬂ
oo PFDA-P)
! _bg(ﬂl—P—ﬂ)

Substituting A* back into the objective function results in

Eexp(AX)  (1-p+ pet)"
>0 exp(An(p +t))  exp(An(p +1))

A=A*
1—p+pe ) /exp(/\*n(p +1))

t " (p+1)(1-p)
( (1 p—t) ) /exp (n(p+t)log(—( H ))
(p+1(1-p)\" "
i) (=)
( n(

1- p—t+) ((p+t)(1 P)) n(p+t)

— (1 _ p)n % (1 o t) n s (p + t)—n(p+t) % (1 _ p)—n(p+t) % pn(p+t) % (1 —p- t)n(p+t)
— (1 _ p)n—n(p+t) % (1 —p- t)—n+n(p+t) % (P + t)—n(p+t) X pn(p+t)
— (1 — p)”(l_p_t) X (1 -p- t)—”(l—P—t) X (p + t)‘”(P‘”) X p”(P+t)

_ 1-p n(l—P—t)X p n(p+t)
1-p—t p+t

~ (1 —p- t)—ﬂ(l—r’—t) (P n t)—"(P"‘f)

I-p+p

X(ml—p—ﬂywﬂ)

n
) % (P + t) n(p+t) % (1 p) n(p+t) % pn(p+t) % (1 p— t)n(p+t)

1=p P
Taking the explog
t 1-p—t
= exp l—n(p +t) log(%) -n(l-p-t) log( fP )l
—t
:expl—n (p+if)log(pi;lr )+(1 p—t)log( pp )H
E exp(AX)

)1\r>10 exp(An(p +t)) = &Xp ( —nKL((p+t,1-p—1),(p,1- P)))-

Thus, we have arrived at the desired result,

E exp(AX)
>0 exp(An(p + 1))

fort €[0,1-p]. O

Pr(X > EX + tn) < inf —@@(—nKme+hl—p—ﬂAn1—p»)

10



Recall the Chernoff’s method for the left tail

. . Eexp(AX)

Theorem HW1.P4.7. Forany t € [0, p], it holds that
Pr(X <EX —tn) <exp(-nKL((p —t,1-p +1),(p,1-p))).

Proof. We begin our proof by utilizing Chernoff’s method with k = EX — tn. Note that the mean of the
binomial distribution is np, so k = np — nt = n(p — t). Additionally, we utilize the MGFy, to arrive at

o Eexp(1X) _ (1-p+pel)
Pr(X > EX + tn) < inf expn(p—1) inf exp(An(p — 1))

for t € [0, p]. Next, we aim to solve for A* that minimizes the objective function. That is,

.. (1-p+ peA)”
A* = arginf
S0 exp(n(p — 1)

Therefore, we calculate the partial derivative of the objective with respect to A,

9 { (1-p+pet) } _ (A —p+pet)'nlp—t)exp(n(p — 1)) - npe’ (1 —p + pe’)" " exp(An(p — 1))
A |exp(An(p —t)) (exp(An(p _ t)))Z

_n(p—t)(1—p+pet) —nper(1-p+petyr
- exp(An(p —t))

and set the resulting partial derivative to 0 to solve for A*

n(p— )1 —p +pet)' = npe’(1—p +pe')'™!

p_p=DA-p) _ —trp-piapt ot
p(l—p+t) p—p?+pt p(l—p+t)
(P—t)(l—P))
A* = log| ———~2
g( p(l—p+t)

Substituting A* back into the objective function results in
Eexp(AX)  (1—p+pet)
A<0exp(An(p —t))  exp(An(p —1))|,_
%\
= (1-p+pe) [exp(r*n(p - 1)

_t " _ (p—t)(1-p)
P(l—P+t)+1l) /eXp(n(p t)log( p(l1—p+t) ))

~ (1 —p+ t)—"(l—PJrf) (P _ t)—”(P—f)

I-p p

= (1—p+p

11



Taking the exp log

= exp [—n [(p —t)log(pT_t) +(1-p +1,‘)log(1 If;t)

E exp(AX)
10 exp(An(p —t))

= exp [~ nKL((p — £, 1= p +1), (p, 1)),

Thus, we have arrived at the desired result,

E exp(AX
Pr(X < EX — tn) < inf — O PUX)

A<0 exp(An(p — t)) = exp ( -nKL((p—t,1-p+1),(p,1- p)))

fort € [0, p].

12



Theorem HW1.P4.8. For any 6 > 0, we have

EX
Pr(X > (1+ 6)EX) < ( e’ )

(14 06)1+o

Proof. Recall our earlier result,

E AX
Pr(X > EX + tn) < inf ——oPUX)
1>0 exp(An(p +t))

= exp(—nKL((p +t,1-p—-1t),(p,1 _P)))

p+t 1-p—t
(p+t)log(7)+(1—p—t)log( T—p )H

= exp l—n
fort € [0,1 - p]. Note that
EX+tn=np+nt=>01+t/pynp=1+t/p)EX

therefore we can set 6 = t/p. In other words, t = 6p and we have

(p+ 6P)log(p ;519) +(1-p- 5}7)10%(%)”

Pr(X > (1+0)EX) < exp l—n

1-—
— —n(p+op) P
(1+9) X(—l—p—ép

~ 1 L (L-p-op+op nl=p=op)
5 n(1-p=op)
= ; X |1+ —p)
(1 + 5)A+o)mp 1-p-op

< 1 y 5p n(1-p-op)
T (14 6)A+0)mp 1-p-0op

X exp(nop)

)n(l—p—ép)

exp (

= (1 + 5)(1+6)np

e EX

13



Theorem HW1.P4.9. For 6 € (0, 1),
- EX
Pr(X <(1-90)EX) < (m) .
Proof. Recall our previous result

E exp(AX)
A<0 exp(An(p —t))

= exp ( -nKL((p-t,1-p+1t),(p,1- P)))

= exp l—n [(p —t)log(pT_t) +(1-p +t‘)10g(1 Ii_j;t)

Thus, we have arrived at the desired result,

E exp(AX
Pr(X < EX - tn) < inf — - PUX)

o epiinp—n) P ( —nKL(p-t,1-p+1),(p, 1~ p)))

for t € [0, p]. Note that
EX—-tn=np-nt=1-t/pynp=1-t/p)EX

therefore we can set 6 = t/p. In other words, t = 6p and we have

Pr(X < (1-90)EX) <exp l—n l(p - 5P)10g(p —P(SP) r(l=-p+ 6p)10g(1 -p+t 6P)H

1-p
_ n(1-p+0op)
= (1= 5) PP (1—P)
1-p+06p
B 1 y 1—p+0p-0op n(1-p+op)
B (1 - 5)1-0)mp 1-p+06p
~ 1 " —(SP n(1-p+op)
B (1 - 5)1-0)mp 1-p+06p
3 1 y —5]9 n(l-p+op)
T (1= 6)-0mp SP\T p+op
1
= W X exp(—i’lép)
p=d EX
PriX <(1-9EX) < | ————
10 < 0080 ¢ -5

14



In order to prove that for any 6 > 0, we have

ed  \FX —6%EX
((1 +6)1+5) = exp( 2+ 06 )

we must first prove the following Lemma.

Lemma HW1.P4.10. Forany 6 >0,

< .
15 < log(1 +6)

Proof. Starting with

f(0) :=1og(1 +0) - 20

2+6
f(0) =

1 22+48)-26 1 4 (2402 -4(1+0) _ 52
1+ 2+6)2  1+6 (24062  (1+8)2+062  (1+0)(2+0)?

We see that f/(0) > 0, meaning that f(A) is strictly increasing for all 6 > 0. Taken with f(0) = 0, we can

conclude that f(A) > 0 for all 6 > 0. Thus,

26
f((‘i)—log(1+6)—2_|_(5 >0 = 515

pI'OVil’lg our lemma. ]

<log(1+6) Vo=0.

Now we can proceed to the main Theorem.

Theorem HW1.P4.11. For any 6 > 0, we have

oo \EX _52EX
((1+6)1+0) Sex"(ﬂé)'

Proof. Starting with

00 EX 00
(m) = exp([EX log(m))
= exp[EX [6 — (1 + 6)log(1 + §)]]
3 exp[EX6]
- exp [[EX(l + 0)log(1 + 6)]

Note that exp(—klog(1 + 6)) < exp(—k6/(2 + 0))

< expl[EX lé -(1+ 6)%”

26
2+67

20 207420 0(2+06)-26%-26  =6°
246 2406 2406 T 246

Thus we arrive at the desired result:
ed \FX © o[ ZVEX
a+oypr| =P 25

Focusing on term 6 — (1 + 0)

5—(1+06)

15



In order to prove that for 6 € (0,1), we have

ed \FX _52EX
(o) <ee727)

we must first prove the following Lemma.

Lemma HW1.P4.12. For 6 € (0, 1),
~6+6%/2 < (1 -06)log(1 - 9).

Proof. Starting with
2

£(6) = (1 - 6)log(1 _5)+5_%

£1(5) = —1log(1—5)+(1—6)%+1—5 = —log(1-05)-6

We note that f’(6) > 0, meaning that f(A) is strictly increasing for all 6 € (0, 1). Taken with f(0) = 0, we
can conclude that f(A) > 0 forall 6 € (0,1). Thus,

f(é):(l—é)log(1—6)+6—%220 = —0+06%/2<(1-06)log(1-56) V5€(0,1).

proving our lemma. O
Now we can proceed to the main Theorem.

Theorem HW1.P4.13. For 6 € (0, 1), we have

e0 \FX ~82EX
((1—6)1—6) Se"P( 2 )

Proof. Starting with
-5 EX -5
() =ewlexienl 5 )
= exp|EX [-6 — (1 - 8)log(1 - 0)]]
Note that —(1 — §)log(1 + 8)) < 6 — 6/2
<exp|EX [-6+6—6%/2]]

Thus we arrive at the desired result:

e 0 \FX ~82EX
(—(1—6)1—‘5) Sexp( 5 )

16



Problem 5 (Sample mean of heavy-tailed random variables)

Assume that X is a random variable for which E|X — EX|'*€ < ¢, where € € (0,1). Note that
we do not assume the existence of the variance for this random variable. Let Xj, ..., X, be
independent copies of X. Show that for any 6 € (0, 1), with probability at least 1 — 0,

1
12”1 (%)m
— X <EX + .
n P one

In your proof, a constant different from 3 might emerge.

Hint: Utilize the following decomposition. For any a,t > 0,

1 n
Pr(EZ;Xi—[EX > t
1=

< Pr (31' e [n]:|Xi - EX| > a)

1 n
+PI‘(E El (Xi — [EX)H|X1-—[EX|SLI >t|.
1=

Apply the union bound to analyze the first term and Chebyshev’s inequality for the second
term.

Regrade justification: The original solution was incorrect because I made the incorrect assumption
that E [Z(lXi - E[X] |)1+€] < >(E [lXi - E[X] |1+€]). This led to an incorrect bound for the first
term in the decomposition. The solution that follows is a corrected version of the original solution.

Proof. To begin, we apply the decomposition provided in the hint. For any a,t > 0, we have

1 v , 1 v
Pr(;ZXi—EXZt <Pr(Jie[n]:|X;—EX|>a)+Pr EZ(Xi—[EX)T]|Xi_[EX|Sa2t .

i=1

i=1

Term 1

Term 2

We begin by analyzing Term 1. Applying the union bound, we have

n
Pr(3i € [n]: |X; — EX| > a) < ) Pr(|X; - EX| > a).
i=1

We will bound this probability by using a more general form of Chebyshev’s inequality, i.e.,

E|X - EX[P

Pr(|X —EX| > t) = Pr(|X — EX|P > t#) < >

which holds for any t > 0 and p > 0. We apply this inequality withp =1+ e and t = a to get
n n

E|X; - EX|'*¢  no
ZPr(|Xl- —EX|>a) < Z lam S (75)
i=1 =1

17



Next, we analyze Term 2. First, we note that for any independent and identically distributed random
variables A1, Ay, ..., A,, we have?,

1 < ’
1=

Then we define the random variables Y; = (X; — EX) and apply the above inequality to get

+E[A]%.

E [A7]

2
1 v E[(YiTjy<a)?] 2
E (EZYZ'T]W”S“) < nl +E [Y1H|Y1|sa]
i=1 [
Term A Term B

We will analyze Term A and Term B separately. Starting with the numerator of Term A, we have
E{(MTwi<a)?] = E [MT1w1<a) 7] = E[(M T ye) M T y<a) ] -

Since (Y31 |y1|Sa)1+€ < |Y11] |yl|s,1|1+E and Y11y, |<, is bounded by a, we have that
2 Ite 1-¢ 1-€ I+e 1-e
E [(Y11]|y1|Sa) ] <E [|Y11]|y1|Sa| a ] =a °E [|Y1ﬂ|y1|Sa| ] <oa

implying that Term A is bounded by Z2—. Next, we analyze Term B. To begin we note that

EWi]=E [Yily)<a] +E [Y1ﬂ|y1|>u] =0 = E[VTyj<a| = ~E [YiTjyj>a] -

Thus, Term B may be written as

2 2
E[YiTyia] = E [YiTjypsa] -
Bounding this term is more complicated and require Holder’s inequality. We have

E [ pipa]” < E[aTipnal)” < E [P ] E [[1310]"]”

By setting p = ¢+1/1 and q = ¢+1/e, we have

2¢

- [Y111|Y1|>a] <E [IY |1+€]1+6 [T 5] =T < 0T Pr(|Yi| > @)™

By Equation (75), we have that Pr (|Y1| > a) < —£z. Thus, we have that

+€*

x g o2
2 2 (o2 e+1 O 1+e 0 1+e (02
E [Y1H|Y1|Sﬂ] S ot (al+e) - q2€ - g€’

4Proof. Let A1, Az, ..., A, beiid random variables. Then

—[E

]
E ;;A,')

2A2+2A Ajl =

i#]

- — (nIE [A%] +n(n - 1)[E[A1A2])-

Since A;’s are iid, we have that E [A1A;] = E [A1] E [A2] = E [A1]*. Thus, we have that

(n[E [AZ] +n(n—1DE[A ]2) [E[ 2] +E[A]?

18



Combining the bounds for Term A and Term B, we have

2
n
1 oal=¢ g2
n 4 - n a<€
1=

Thus the overall bound is

1 <« no oa‘¢ o2
Pr EZXI—IEXZIE SF'F 0 ﬁ
i=1
for any a,t > 0. We will now choose a = nt, which gives
1 no o(nt)l-€ o2 o o o \?
Pr —ZXi—[EXZt < (nt) = + +( )
n 4 (Tlt)1+€ n (nt)Ze netl+te  peplte netlte
i=1

In the case when d/r¢t1+¢ < 1, the bound is no more than 39/x¢¢+<. In the case when d/r¢ti+¢ > 1, the bound
is no more than 39/x¢t+<. Thus, we have that

Setting the right-hand side to 6 and solving for t, we have

1
t B 3(7 1+e
~ \one

This implies that with probability at least 1 — 6, we have

1 Z”: 35 \ T
— Xi <EX+ ( )
n one€

as desired. ]
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Problem 6 (Maximum degree of a random graph)

Consider G = (V,E), a random graph with n vertices. The graph is constructed such that
for each pair of distinct vertices, an edge is added with probability 3, with all pairs sampled
independently (this is commonly denoted by G ~ G(n, %)). Recall that the degree of a
vertex v, d(v), is the number of neighbors of v, and the maximum degree of the graph G is
max,ey d(v). Use the concentration inequalities to derive both the high-probability upper
bound on maxyey d(v) and the upper bound on E maxyecy d(v).

To begin, we recall a few things about the degree distribution of a random graph. Let G ~ G(n, p)
represent a random graph with 7 vertices and with edges added with probability p. We denote v as a
vertex with a degree d(v). The distribution of degree of the vertices then has a binomial distribution of
degrees k:

Pon =) =) = (" o -

The expected degree in the random graph is then

E[d(0)] = (n - p.

In our case, we consider p = 1, simplifying the above expressions to

k n-1-k n-1
Pc(k) = Pgw,12) = (n ]z 1) (%) (%) = (%) (—k!(in__llz!k)!) and E[d(v)] = & ; 1.

Our goal is to show

Pr(max d(v) > t) < 0.

veV

In order to do so, we will utilize Hoeffding’s inequality with X; = d(v) € [0, n — 1] and u; = n-1/2 for all
i € [n]. Then we have that

Pr(Z (d(v) — nT—l) > t) < exp ( - #2_1)2)

veV

(n—-1) 22
Pr(nrzrjle%d(v)—n n2 Zt) Sexp(—n(n—_l)z).

0

Solving for t in terms of 6 results in

2 —log(&)n(n — 1) loo(l

Then we have that with probability at least 1 — 6,

maxd(v) < E [d(0)] (1 + \/ﬂ%(l/é)) .
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Problem 7 (Uniform distribution on the ball is sub-Gaussian)

Let X be a random vector uniformly distributed on the unit Euclidean ball in RY centered at
the origin. Show that for any v € §9-1,

<X, )y, < CIKX, 0)lL,

where C > 0 is some absolute constant.

Hint: Recall that ||Y||L,, = (E|Y|")'/?, where p > 1. To control I<X, )|, compute the

covariance matrix of X. Consider Z ~ N(0, I;) and U, a uniform random variable independent
of Z on [0,1]. Utilize the fact that U - Z/||Z||» is uniformly distributed in the unit ball
(prove this) and that || Z]|, concentrates strongly around its expectation.

We begin by proving the following lemma.

Lemma HW1.P6.14. Let Z ~ N(0, 1) and U, a uniform random variable independent of Z on [0, 1]. Then (i.)
U'e. 7 /| Z || is uniformly distributed in the unit ball and (ii.) || Z||2 concentrates strongly around its expectation.

Proof of (i.) in Lemma HW1.P6.14. We begin by showing that U? - Z/||Z||, is uniformly distributed in
the unit ball, 8. A random vector Y € R? is uniformly distributed in the unit ball if its cumulative
distribution function (CDF) is equal to " where r € [0, 1] is the radius of the ball. To see this, consider
the volume of the d-dimensional ball with radius r,
dj2
Va(r) = Z—/T ?
I'(5+1)

where I is Euler’s gamma function. Then probability that a random vector Y is in the ball is

Va(r)  mil? rd d

Pr(Y € B1) =Pr(||Y|la £7) = Fy(r) = = =r% forallr €[0,1].
(v € 8) = PellYll < 1) = Fr() = i = o [0,1]

We define Y as a random vector equal to U'/? - Z /|| Z||,. Then, the f,-norm of Y is

ul/d
1Yl = || 2121 = =121, = e,
> 21

Thus, the CDF of Y is equal to

d_
r O:rd
1-0

and we achieve the desired result that Y = UY? . Z/|| Z||, is uniformly distributed in the unit ball, ;. [

Fy(r) = Pr(|[ Y2 < 1) = Pr(ul/d < r) - Pr(ll < rd) = Fu(r) =

Proof of (ii.) in Lemma HW1.P6.14. We now prove the later statement. Let Z be a random vector in R?
with independent components Z; ~ N(0, 1) for all i € [d]. Then we have

d d d
EZ|? = [EZZ? :Z[EZZ? =) Var(Z;) =d.
i=1 i=1 i=1
Thus the expected length of Z is E||Z||, = Vd. Additionally, recall in Lecture 6 that we prove that for a
random vector Z € R¥ with independent coordinates Z; such that E[Z;] = 0 and [E[Z?] =1foralli € [d],

Pr( 1zl _,
Vi

tz
>t] <2 —Cc— h K = Zi >1.
) exp( CK4) where rirel[iy](” z”ll!z
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Changing variables to 6 = tVd, we obtain the desired tail
2

Pr()nzn2 _ \/E‘ > 5) < 2exp( €0

_F) < 2exp(—c52) forall 6 > 0.

Hence, we have that with probability at least 1 — 6
1Z11, - ENZIL,| < 2exp(-co?).

and we can conclude that ||Z||, concentrates strongly around its expectation. [
Now we proceed by proving the following theorem.

Theorem HW1.P6.15. Let X be a random vector uniformly distributed on the unit Euclidean ball in R¥ centered
at the origin. Then for any v € S%71,

IKX, 0 ly, < CIKX, 0,
where C > 0 is some absolute constant.

Proof. Let X = UY? . Z/||Z||, where Z ~ N(0, I;) and U, a uniform random variable independent of Z is
on [0, 1]. We begin by calculating the covariance matrix of X.
1
1 d 1
I = | [-=|1; = [—]1..
o= e )

14X, o)l = (E [1{X,0) ))Y? = (E [(XT0)*])V? = (E [0TXXT0])/? = (0T E [XXT] )"/~
N———
Cov(X,X)

uZ/d
2
12113

< gE[ueelzzn =

ExXXT =E|E 777

ulz T d

L 2/d)+1
2/d) + 1)

Next, we calculate the L, norm of (X, v), To begin note that

Thus, the L, norm of (X, v) is simply,
1
Vd + 2

We now recall our definition of a random sub-Gaussian vector from class, where we let X be a
d-dimensional random vector with EX = 0.

Definition HW1.P6.16. X is sub-Gaussian if for all v € S%71, || (v, ly, < CVoTLo.

KX, ), =

In our case, Vo Lo is precisely equal to the L, norm of (X, v). Finally, we proceed by calculating the
Il - lly, of (X,v). We have that




KX, o) Iy, =inf{t >0:

1
\(d +2)log(2) = t}

Thus, we will pick the ¢ the minimizes the objective while still being at least as large as L

V(d+2)log(2)”
Therefore,
(X, 0)l, = L - L o)l =X, o)l < CICK, )]
T @ 2)log2)  Alog@) 0Ny = 21207, -
]
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Problem 8 (Non-asymptotic analysis of fixed design linear regression)

Consider a fixed design linear regression model. Let x1, ..., x,, be fixed design vectors in R4,
Assume the response variables Y7, ..., Y, are independent, with Y; — EY; being sub-Gaussian
with parameter o for all i € [n]. Thatis, forall A and i € [n],
/\2 2
Eexp(A(Y; — EY))) < exp(Ta).
We are interested in a high-probability (with respect to the realization of Y3, ..., Y;) upper

bound on the excess risk (which measures the statistical performance of some proposed
estimator compared to the population best estimator):

&) =E

1<, r
;;(w—mz

1 n
—inf E[= » (x[p-Yi)
BeR? [n ;( i =Y
Let f3 be the ordinary least squares estimator in R?. Show that, with probability at least 1 — §,

02(01 +24/2dTog(1/5) + 2 log(1 /5))
- .

E(B) <

What conclusions can be drawn about EE(f)?

Hint: Assume without loss of generality that the sample covariance matrix is invertible. Then,
simplify the expression for the excess risk and apply one of the concentration inequalities
discussed in the lectures.

Let us rewrite the excess risk in matrix form. Let X € R™*4 be a matrix with xl.T as its rows. Additionally,
let B* represent the optimal § € RY. Then, we have

LS (g

i=1

&) = = [IIXB - VI3~ 1Xp* - YIB] .

BeRA

n
— inf E %Z(xiT,B—Yi)Z
i=1

Recall that the ordinary least squares solution f is (XTX)™'XTY. Note that the optimal solution is in
expectation, i.e., E[Y — XB*] = 0. Then we have

| A 1 _
&) =+ E [IXP = YIE ~ IXB* ~ YIB] = — E [l X(X"X)'XT Y = Y| - I1X* - VI3
———
P

We note that P = X(X X)X is a symmetric, projection matrix such that PT = P and P? = P,
PT=XX"X)'XN)T=X(X"X)"'XT=P and

P2=(XXTX)'XHXX"X)'XT) = (X(XTX)"'XT)=P.

We also observe that PXp = X,
(X(XTX)'XT)XB = XB.

Then we have

&(B) = E[IPY - I3 - IPX$* - YI}3]
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E[YTPTPY +YTY -2YTPTY - (B*"X"PTPXB*+YTY - 28*TX " PTY)]
E|YTPTPY -2YTPTY - p*TXTPTPXB* +28* "X PTY)]|
E[YTPY +E[Y]" PE[Y]-2E[Y] PY]|

&B) = —E[IP(Y -EY)I3].

§|b—‘§|>—\3|)—\§|H

Additionally, we introduce Z =Y — EY and P=r /A/n. The excess risk then becomes

&) = E [IPZE]
Recall the following proposition which we proved in class.

Proposition HW1.P7.17. Let X be a d-dimensional sub-Gaussian random vector such that for all A € R,

v e Sl .
Elexp(A(v, X))] < exp (/\ 02 Zv) .

where X = EXXT. Then, for all 6 € (0,1) we have

Pr (||X|| > VTr(D) + \/2/\max(2) log(1 /5)) <.

Remark HW1.P7.18. Note that squaring both sides of the inequality in Proposition HW1.P7.17 results in

2
X113 > (\/Tr(Z) + \/2/\max(2) 1og(1/5)) ) <5

Pr(||X||§ > Tr(X) + 2\/T1‘(Z)\/2/\max(2) log(1/6) + 2Amax(X) log(l/é)) < 6.

Pr

Then by Proposition HW1.P7.17 with X = PZ and T = EZTPTPZ, we have that

Pr(||j5Z||§ <Tr(X) + 2\/Tr(2)\/2)\max(2) log(1/6) + 2Amax(X) 10g(1/6)) >1-06.
Let us analyze Tr(X) and Amax(X). We note that
~=EPZZ"PT =PE[ZZT|PT,

and then since each entry in Z is independent (e.g., Z; = Y; - EY;), E[ZZ T] < 62I, by the sub-Gaussianity
of Y;. Then we have X < GZPI PT =g2P /n and since P is a projection matrix, Tr(P) = rank(X) < d and
Amax = 1. Thus we are left with

Pr|||PZ|% <

d +2Vd+2(1)1og(1/6) + 2(1) log(1/5)
n

which implies that with probability at least 1 - 6,

&) < d +2+/2d log(lr/lé) + 210g(1/(5).
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STAT210B Theoretical Statistics March 6th, 2024

Homework # 2: Bounds for Random Matrices
Reece D. Huff

Regrades

When regrading, I only attach problems in which I did not receive 100%. If the mistake is minor, I
highlight my changes in purple. If the mistake is major, I highlight the entire problem in purple. I
provide the regrade justification in the gray box below the problem statement.

Notation
Let c and C represent a small and large positive constant, respectively (e.g., ¢ = 107 and C = 10°). Unless
otherwise specified, we use the notation [1] to represent the set of integers {1, ..., n}. Given we matrix

A € R™", we use ||Al| to denote the operator norm,

|Allop = sup ||[Av|la = sup  uTAvD = Anax(A).

vesn-1 ueSm-1 yesn-1

Problem 1 (Covering the unit cube in /()

Consider the cube [-1,1]% in R?, equipped with the distance

p(0,0") =10 — 0'||c = max|0; — 0]
i€ld]

Show that the covering numbers of this set at scale ¢ are bounded by (1 + %)d

Theorem HW2.P1.

Consider the cube [-1,1]? in R%, equipped with the distance

p(0,0") =16 - 6’|l = max|0; — 6]
ie[d]

Then the e-covering number is upper-bounded by,

N([—l,l]d,p, e) < (1 + 1)d.

&

Proof. To begin we consider dividing each coordinate 0; for all i € [d] into M := |1/e] > + 1 sub-intervals.
We define the centers of these sub-intervals as 6? )= 14 2(j —1)eforalli € [d] and j € [M] and note

5For a scalar a € R, we use |« to represent the “floor” or the greatest integer less than or equal to a.
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that the length of each sub-interval is at most 2¢. It then follows that for any 51 € [0, 1], there exists some
j € [M] such that ‘651 ) 51‘ < ¢ forall i € [d], which implies that

P([-1,1],p,2¢) SN ([-1,1],p,6) <1+ % for all coordinates implying that

N ([—1, 11, p, e) < (1 n l)d.

&

Problem 2 (Sample covariance of bounded distributions)
Assume that Xy, ..., X, are independent zero mean random vectors in R? with covariance

matrix X such that || X;|| < r almost surely. Show that there is an absolute constant ¢ > 0 such
that, with probability at least 1 — 6,

%ixixf—z SC( \/rznznaog(d)+1og<1/6>>+r2<1og<d>+1og<1/é>) |
i=1

n n
Hint: You might need the following computation. Recall that the variance of a symmetric
random matrix A is given by Var(A) = EA% — (EA)2. Show that Var(A) > 0.

Theorem HW2.P1.

Let X, ..., X, be independent zero mean random vectors in R? with covariance matrix ~ such
that || X;|| < r almost surely. Then we have that with probability at least 1 — 9,

1 n
=D XiX] -1
i=1

where ¢ > 0 is an absolute constant.

n n

< ( \/rznzn(log(d) +log(1/9)) , r(log(d) + log(1/0))

Regrade justification: Tiny issue with bounding the operator norm with the triangle inequality.
My original solution was correct, just a tad loose.

Proof. To begin we show that the variance of a symmetric random matrix A is positive semi-definite.
Given a symmetric random matrix A € R, we note that

Var(A) = E[A - EA]* = E [A?] - 2E[AEA] + E [(EA)?] = EA? - (EA)>.
It that follows that for any v in the unit sphere S47!,
v Var(A)o = o7 ([EA2 - (IEA)Z) v =0 EA% — 0T (EA)?0 = E || Av|? - ||[EA0|3.
By Jensen’s inequality (i.e., p(E [X]) < E [¢(X)]), we have that E ||Av||§ > ||IEAv||% and thus

v Var(A)v > 0 forallv € $%7! implying that Var(A) > 0.
We will leverage the Matrix Bernstein’s inequality to complete this proof (Theorem HW2.P1.1).
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Theorem HW2.P1.1 (Bernstein bound for random matrices | 1). Let {Qi}, bea sequence of independent,
zero-mean, symmetric random d X d-matrices that satisfy ||Q;llop < K almost surely for all i. Then, for every

t > 0, we have
1 n
Pr( —
n p—

nt? nt?> nt
;Qi > t) < 2d exp (—m) < 2dexp( mm{2 5/ ZK})

where g% = 1 ||Z;7=1 [EQ?” is the norm of the matrix variance of the sum.

We use Theorem HW2.P1.1 with Q; = XZ‘XZ.T — .. First we show that Q; is in fact zero-mean
E[Qi]=E[X;X] -Z] =E[X;X]]| -2 =0 forallie [n].

with variance
E[Q?] = E[(X:X[ - )] = E [X:X] X;X[ + XX - 25X X | = E [IIXi2X: X | - 2T < [|X:12E [X: X]T]
E [Q7] < r°L.

Next we calculate the norm of the matrix variance of the sum

1 C 2 1 C 2 1 C 2 2
= D EQH| < D IEQ <~ > Izl < 2zl
i=1 i=1 i=1

Finally we note that
XX llop = IX|l5  which follows from the def. [ XX |lop = sup v'XX 0 = sup (X 0)

veS,_1 vES 1

Clearly, X Tv is maximized when v points in the same direction as X. Then we have v* = X/|| x|,

XT X X 2 X 2
" Xk X2 X2/ X2

This implies that

”Qi”op = ”Xz’XT Z“”op < IX; XT”op + ”Z”op< 2r* forallie [1]

2
as ||X1X;||Op = IX:ill; < 2.
Then, we use Theorem HW2.P1.1 to solve for t in terms of 6 for the two different regimes

2 2 2
6:2dexp(—:—t) = log(%) :—ﬂ — = 211 g(zéd)

nt 0 nt 2K 24
0= 2dexp(—ﬁ) = log(ﬂ) = 5% — = 710g(3)

Taken together this implies that with at least probability 1 — 6

202 (2d\ 2K. (2d 22| . (2d\ 42 (2d
ZQl < —log(6)+7lg(6)_\/ ” logg —lg 5

which implies the desired result that with at least probability 1 — 6

% Z XxT -5 <c ( \/ r2|[Z|(log(d) + log(1/6))  r*(log(d) +log(1 /5))) |
i=1

n n
where ¢ > 0 is an absolute constant. O]

op
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Problem 3 (Norm of sub-exponential random vectors)

Let X be a zero-mean random vector in R? with covariance &, which satisfies that for all
ve Sl
KX, o) Mly; < KX, )L,

where ¢ > 0 is an absolute constant.

1. Show that there is an absolute constant C > 0 such that for all 6 € (0,1/2), with
probability at least 1 — 9,

IX|| < C (\/Tr(Z) log(1/6) + log(1 /6)\//\max(2)) .

2. Compare your result with what one can get if the ¢-net argument is applied together
with the union bound to upper bound the norm of || X||.

Hint: Adapt the analysis of the sub-Gaussian sample covariance matrix.

Recall the following Lemmas and Facts we proved in class:

Lemma HW2.P2.2. Fix some probability density 7 on ©, and let f(X, 0) be a function with X being a random
variable and 6 € ® C R?. Then, with probability at least 1 — 6, it holds that for any probability density p on © for
which KL(p||m) < oo,

Eg~pf(X,0) < Eg~,log Exe/ X9 + KL(p|Im) + log(1/0). (76)
Fact HW2.P2.3. If Y ~ Ny(u, 0%1;) and A € R™ then E[YTAY] = 0? Tr A + uT Ap.

Fact HW2.P2.4. If p, 1t are the densities of Nj(v, I1/B), Na(0, 11/B), respectively, and ||v||2 = 1, then KL(p||t) =
B/2.

Fact HW2.P2.5. If x € RY and ¥ € R4 is symmetric and positive semidefinite then sup, g (x,v) = ||x||>
and sup, i1 V' L0 = Apax(X).

Fact HW2.P2.6. The function f(x) = ax + %for a,b,x > 0is minimized at x* = \/b/a and has f(x*) = 2vab.

Fact HW2.P2.7. If X is a random vector with E [XX ] = X then, for any v € R", |[(X, v)||%2 =ov'Xo.

Finally, beyond the Lemmas and Facts we proved in class, we will also need the following inequality for
sub-exponential random vectors.

Lemma HW2.P2.8 (Zero mean sub-exponential inequality). Let Z be a zero-mean sub-exponential random
variable. Then, we have that

1
CliZll,,’

E [exp(1X)] < exp(c2 1ZI2, /\2) forall A <

where C > 0 is an absolute constant.

Proof. Proving this inequality is a standard application of the sub-exponential properties.
By Proposition 2.7.1 Property (d.) in [ , Vershynin’s High-dimensional probability], we have that for
any sub-exponential random variable Z, we have that

E exp(|Z|/Ky) < 2

29



where K4 > 0 is an absolute constant.
By Proposition 2.7.1 Property (e.) in [ , Vershynin’s High-dimensional probability], we have that for
a zero-mean (EZ = 0) sub-exponential random variable Z, we have that

Eexp(AZ) < exp (Ké/\z) for all A such that |A| < Ki&s
where K5 > 0 is an absolute constant.

In the properties in Proposition 2.7.1 in [ , Vershynin’s High-dimensional probability], there exists
an absolute constant C such that property i implies property j with parameter K; < CK; for any two
properties.

We set Ky = ||Z ||¢ . and K5 = CKj to get the desired result, i.e.,

1
Eexp(1Z) < ex (C2 ZI12 /\2) forall A < .

Now we are ready to prove the following theorem.

Theorem HW2.P2.1a

Show that there is an absolute constant C > 0 such that for all 6 € (0, 1/2), with probability at least

16,
IX]l» < C (\/Tr(Z) log(1/6) + log(1 /6)\/Amax(2)) .

Proof. To begin, we use Lemma HW2.P2.2 with f(X, 0) = n (X, 0) and p and n being the densities of
Ni(v,Z/B) and Ny(0, Z/B), respectively, where v € S~ and § > 0 is a parameter to be chosen later. We
have that

Eo~p[n (X, 0)] < Eg-plog Exe™ ) + KL(p|im) +log(1/5).
N’
Term 1 Term 2 Term 3

We will bound each term separately. Starting with Term 1, we have

[E6~p[n (X, 8)] = U[E9~p[<X/ 9>] =1 <Xr [E9~p[9]> =7 (X, 0).

For Term 2, we leverage Lemma HW2.P2.8 with the sub-exponential random variable Z = (X, 0) with
parameter 1. We have that

Eo-plog Exe"™? < Eg-plog exp(CZ KX, 6)1lg, 172)

1
Eg-,log Exe™ 9 < C2n?Eq-, [|I(X, 6)|%.] forall |n] < ————.

Now we analyze Eg-,[[|[(X, 0) ||12p1]- By assumption and Fact HW2.P2.7, we have that
Eo-olI1(X, 0)I13,1 < Eovp | 1(X, O)IIE, | < Eop| 116X, O)IE, | = Eo-pl0Tx0],
We can then expand 67X0 as
Eo-p [0TZ0] = Eg-, [(6 -+ U)TZ(Q —v+ v)] = Eo-~p [(9 - U)TZ(G —v)+0 Lo +2(0 - U)TZU]
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noting that the cross term 2(6 - U)TZU vanishes due to the expectation,
ie., Eg~p [(6 - v)TZU] = (Eo~p [0] - v)" Zo = 0. We then have that

Eo-p [0726] = Eo- | (0 - 0) 2(0 - 0) | + 0o,

Finally, we note that the random vector 0 — v follows a Gaussian distribution with mean zero and
covariance X /. We can then apply Fact HW2.P2.3 to get that

Tr(Z
Eo~p [0TZ0] = Eg-p [(9 ~0)'2(0 - v)] +0 Yo = % +0 X0,
Thus, the overall bound for Term 2 is
Y) 1
Eg-, log Ex ex X, 0)) < C?n? I +v'Xv| forall|n| < ——————.
o-plog Exexpl (X, 0)) = (== + 07xo) < SR, BT

For Term 3, we use Fact HW2.P’2.4 to get that

KL(p|lm) = 5

Combining the bounds for each term, we have that

Tr(X) B
B

(X,v) < C*n? +0 Lo + 5 +log(1/) forall n| <
n n g 1

1
CIIX, Byl

Taking the supremum over all v € S%~!, we are able to leverage Fact HW2.P2.5 to get that

NIXll2 =1 sup (X,v) < Cznz( /(3 ) + sup {UTZU}) + = 4 +1og(1/0)
vesd-1 vegi-1
Tr(Z) ,8 log(l /0) 1
- ||X||2 < CZTI( maX(Z)) T] T for all |T]| S m

Unfortunately, we are not able to directly optimize over 1) in the above inequality. For example, if we

used Fact HW2.P2.6 to optimize for 17, we would get that 1) = 24/108(/6)/C2Aex(x) which may be much larger
than 1/C||<X 0)ll,, as 6 approaches zero. Thus, we seek to set 17 to meet the sub-exponential condition, i.e.,

In| < W and then optimize over f§ to get the best bound. To begin, we note that
Tr(X Tr(X
X, 02, = EouplI(X, O)I2,] < é ) 4oTxo < [g ) 4 (D)
Tr(Z

= KX, O)lly, < \/ () Amax(Z).

It then follows that
Tr(X) 1 1
||<X/ 6>”¢1 < \/— + /\max(z) — |T]| < <
ﬁ CJ% + Amax(z) C ||<X/ 6>||1p1
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thus, we setn =1/ ( Tr(z) +Amax (2 )) to meet the sub-exponential condition. The norm of X is then bounded
by

2 (HE LA (D) BCYEED 4 A (D)
1X[l2 < [ )+ﬁ v +10g(1/6)Cy [ E) 1 1 (®)
) 4 Apan(2) 2 B
ﬁ max
B

+log(1 /5)) < CyT @) + AmaX(Z)(ﬁ +log(1 /5))

To finish the proof, we optimize over f to get the best bound. We start with a bit of algebra to get that

I1X1l2 < CVIEVf + Aman(D)(1+ 5

X[, < CVE®/p + /\maX(Z)(ﬁ + 1og(1/5)) <C (\/TI(Z)/[% + \/AmaX(Z)) (ﬁ + 1og(1/5))

<C \/@ﬁ + VAmax(D)B + (X) log(1/6) + mlog(l/é))
=C \/TI‘(Z)ﬁ + \//\max(Z)‘B + \/?1 g(l/é) + mmg(l/é))

We set f = log(1/0) to get that

1l = €| VTH(E)10g(1/0) + VE (D log(1/5) + i 108(1/0) + VD 1og(1/6))

-C 2\/Tr(2) 10g(1/6) + 23 Amax(Z) log(1 /5))

1XIl2 < C{{Tr(Z) 10g(1/6) + VAmax(D) 1og(1/5))

as desired. O]

¢-net Argument

We aim to bound the norm of a zero-mean random vector X in R? with covariance ~. We will use the
e-net argument and compare it with the variational approach. This follows directly from the proof of
Theorem 4.4.5. in [ , Vershynin’s High-dimensional probability].

Approximation via an e-net: Consider an arbitrary ¢ € (0,1/2) and denote by N, an e-net of the unit
sphere S%7!, characterized by its cardinality N, := |N;|. Invoking Exercise 4.4.3 from Vershynin, the
following inequality is obtained:

1

The factor 15- is regarded as an absolute constant, as the specific choice of ¢ does not influence the
resulting bound.

Concentration: Considering a fixed vector v € 5?1, then the inner product (X, v) is a zero-mean
sub-exponential random variable—coupled with the equivalence of Proposition 2.7.1 (a) and (d) from

Vershynin—yields the following probability bound for any positive u:

—Ccu —CU —CUu
PI'(<X,U> > M) < exp (m) < exp (m) < exp (W)
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Pr({(X,v) > u) < exp (l)

V Amax (Z‘)

where c is an absolute constant.
Union Bound: By applying the union bound across the elements of the ¢-net, we derive the following

Pr {max{(X,v) > u) < Pr({(X,v) > u) < Neexp (i) )
(UGN‘S UEZ)\:({, \Y Amax (Z)

Parameter Selection: Corollary 4.2.13 from Vershynin ensures the existence of an e-net satisfying

Ne < (1+2/¢)? Setting u = Cy/Amax(Z)(d + t) for a suitably large absolute constant C such that ¢cC < C,
we obtain the following bound:

Pr [max(X,v) > u| < N, exp(

veN;

—cu —cCA A max(Z)(d + t))
Amax(z) \Y Amax(z)

Pr(max(X,v) > u| < exp(dlog(l +2/¢)) exp (—C(d + t)) = exp(dlog(1 +2/¢) — C(d + 1))

veN;

) < (1+2/€)dexp(

Pr (max(X,v) > u| < exp(=C(d + t)) < exp(-t).

veEN;

Now we set 6 = exp(—t) to solve for t in terms of 0. As such, we have that t = log(1/0). Thus, we have
that with probability at least 1 — 6,

Pr (max(X,v) > u) <6 = max(X,v) < max(X,v) = ||X]|| £ u = CyYAmax(Z)(d + log(1/0)).
vEN; vEN; vesd-1

Comparison with the Variational Approach:
The bound reveals that the e-net approach exhibits a dependency on the dimension d. Defining r(X) as

the effective rank of L, i.e., r(X) = Tr(Z)/Amax(X), we can compare the two approaches. The variational
approach can be rewritten as

| X|| < CVAmax(X) (,/r(Z) log(1/0) + log(l/é)) .

However it is still difficult to compare the two approaches directly. If we return to our derivation of the
variational approach, we can set § = r(X) to get that

IXI < CVAmax(Z) (r(Z) + log(1/0)) .

This shows that the variational approach is more efficient than the e-net approach, as r(X) < d.
Importantly, sometimes the effective rank r(X) can be much smaller than the dimension d, which would
make the variational approach significantly more efficient.
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Problem 4 (Gaussian matrix series)

Assume that g1,...,gn are independent standard Gaussian random variables and let
A1, ..., A, be asequence of deterministic symmetric d by d matrices.

1. Using the matrix Chernoff bound, show that

Z”: SiAi
i=1

E < 4|2log(2d)

>4
i=1

2. Show that

2
E >

Zn: 8iAi i A?
i=1 i=1

3. Use Gaussian concentration to prove a high probability upper bound on ||Z?:1 ngi” .

4. Compare the tails you achieve with the tails that follow from the matrix Chernoff bound.

5. Assume that A; are rank one matrices of the form A; = uiul.T, where u; € S971. Show that
for some absolute constant ¢ > 0 we can bound

i SiAi
i=1

Note that this bound does not depend on log(d).

E < cVn.

6. * Provide a collection of matrices Ay, . .., A,, showing that the multiplicative log(d)-factor
cannot be improved in general.

Hint: You might find it helpful to upper bound the operator norm in terms of the Frobenius
norm. In the last bullet point you might find it useful to provide a lower bound on the
maximum of n independent standard Gaussian random variables.

Theorem HW2.P3.1

Let g1, ..., gn represent n independent standard Gaussian random variables and let Ay, ..., A, be
a sequence of n deterministic symmetric d by d matrices. Then we have that

Zn: giAi Zn: A7
i=1 i=1

E < +|2log(2d)

Proof. We begin by recalling the matrix Chernoff bound.

Lemma HW2.P3.9 (Matrix Chernoff bound). Consider a finite sequence Ay of fixed square matrices in R4
and let &y be a finite sequence of independent standard normal random variables. Then, for all

Z A =t <d-e 2 where o2 = ZA,ZC
k k

Pr

op op
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It then follows that

>4 <od. e t?20? — §5=04.,t/2°
|
op s

Pr

Z QiAi

log(6/2d) = ~t*/242

t = /202 1og(24/s)

Therefore with non-zero probability, we have that

D gl < JZlog(Zd)
i op
0

Theorem HW2.P3.2

Let g1,..., gn represent n independent standard Gaussian random variables and let Ay, ..., A, be
a sequence of n deterministic symmetric d by d matrices. Then we have that

Zn: 8iAi Zn: A
i=1 i=1

n

2.4

i=1

E

op

2
E >

op op

2 2

N
=

Proof. To begin, by applying Jensen’s inequality twice we have that
= ||E gig ]‘A,'A j

Zn: SiAi Zn] SiAi Zn: SiAi
i=1 i1 i=1 i=1 j=1

p - op - op op
We note that all of the cross-terms cancel due to the independence of g; for all i € [n], which implies that

ZgiAi ZAZZ ZgiAi ZAzz
i=1 i=1 i=1 i=1

E >[E

2
> ||E
0

n

D EgiA;

i=1

2 2
E > = |E >

op

op op op op

O

Theorem HW2.P3.3

Let g1, ..., gn represent n independent standard Gaussian random variables and let Ay, ..., A, be
a sequence of n deterministic symmetric d by d matrices. Then we have that

n n n
D 8ii s + leog@/a)z 14113,

with at least probability 1 — 6.

<E

o

We begin by recalling the Lemma we proved in class regarding Gaussian concentration.
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Lemma HW2.P3.10. If X ~ N;(0, 1) and f : R? — R is L-Lipschitz then,

2 2
Pr(f(X) ~ Ef(X) 2 1) < exp ( - th) o Pr(|f(X)—[Ef(X)|Zt)szexp(—z%). (77)

We know utilize the above lemma with X = ¢ where g :=[g1, ..., g»] and f(g) = ||Z?=1 giAi”op‘ Then we

have
tZ
P >t <2 -
r >t < exp( 2L2)
op p N
o
where

1)y _ 2
VAT S0l AT 0| B ¢, ¢@ < N(0,I).
”g(l) — g(z)”z

Now we solve for t in terms of 6 and arrive at

6 =2exp (—*/212) = log(d/2) = —*/212 = t = {J2L?log(?/s).

Then we have with probability at least 1 — 6

i QiA; < \J2L%1og(?/s)
i=1

op op
Finally we solve for L with
fig™) - £3?)] = gE”A A | ng”A Zg@A
- op op
1 2
- |-
op
n
1 2
e -5
i=1 op
O (0 @S
SN &) Az
i=1 i=1 o

Therefore we are left with

g™ - g™ < |

) @
-7, \ZIIA B, = L=y D4R, 2 |f (g . fH )
i=1 —gi )

Substititing L? into our high probability bound results in that with probability at least 1 — &

Al < \/ZLTg(Z/é) < JZlog(z/b)Z ”Ai”gp
op

i=1

op
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Theorem HW2.P3.5

Let g1, ..., gn represent n independent standard Gaussian random variables and let Ay, ..., A, be
a sequence of n one matrices of the form A; = uiuiT, where u; € $971. Then we have that

i QiA;
i=1

SC\/E

OR

E

for some absolute constant ¢ > 0.

Proof. We begin with square of the left hand side and apply Jensen’s inequality twice

n n 2 n 2 n n
> sidi g | 2 |E (Z giuiuf) E DD, gigiuin] uju]
i=1 i=1 op i=1

i=1 j=1
op op

n

2., T . T
Z[Egl. uil; Uil
i=1

E =E

P

2
o

(again by independence of g; for all i € [n])

op
which implies that
n 2 n n n n
E ZgiAi > Z [nguiuiT = Z uiu|| = sup v’ (Z uiuiT) v = sup ZvTuiuiTv
l=1 Op l=1 Op l:1 Op U€5d71 l:1 Uesd71 lzl
n
= sup Z(u?v)2
vesi-1 5
n 2 n
E Z Al = Z(u;rv)z forallv € §9°1.
i:l op 121
Since the last inequality holds for v € S971, we set v to —u; for all i € [n] such that
n 2 n
E Zgl’Ai >-n = |E ZgiAi SC\/Z
i=1 Op l=1 Op
where ¢ = 1 > 0 is an absolute constant. l
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Problem 5 (Non-asymptotic analysis of ridge regression)

Consider the random design linear model
Y =(X,p") +&,

where * and X are in R?, & is a zero mean random noise with variance o2 independent of
X. Let £ = EXXT and assume that it is invertible. Assume that || X|| < r with probability
one, where r > 0 is some constant. We observe a sample (X1, Y1), ..., (X, Y,) of independent
copies of the random pair (X, Y). Fix A > 0 and consider the ridge regression estimator

A

— : 1 N 2 21 — (¥ -1 1 N
m-argg@(; ;m—w,xi» + Al )—(znmzd) -;;mxi,

where ﬁn = %Z?:l XiXZ.T is the empirical matrix of second moments and I; is the d by d

identity matrix. We are interested in upper bounding

2
’
2

E || - )
where the expectation is taken with respect to the random observations (X;, Y;),i =1,...,n.

Part 1. Show the following decomposition

=2 (31 - ) )2 < PE (BT (B + ML) (s + ML) )

(72 &
+—E Tr((Zn + Md)‘li)- (78)

Part 2. We want to understand how much we lose if we replace the sample covariance matrix
3, by the population matrix T in the above formulas. Our final goal will be to show
that we lose at most a small multiplicative factor. Returning to the population level
quantities, show that

BT+ AL + ALY < A(FTE+ AL Ep)
= inf (R(B) + AIBIP - ().

where R(8) = E(Y — (X, B))? is the prediction risk of 8. This would imply that the
population analog of Equation (78) is

2
inf (R(ﬁ) + MBI - R(ﬁ*)) + Tr((Z + )\Id)‘lz).
BeRA n
Part 3. Quantify the error from replacing %, with X. Start with the second term. We want to
show that for all v € §-1,
Eo™SV2(E, + AL) 2?0 < (1 + A) 0 ZV2(E + ALy) 12V ?0),

where A = A(r,n, A) is a “small” term. To do so, apply the matrix Bernstein inequality
to analyze the matrix (X + AI;)~Y/2(£, + Al;)(Z + Al;)~'/2, and obtain control over its
inverse. This will imply uniform control over v TL/2(%,, + Al;)~'Z1/2v and the entire
second term.
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Part 4. * Repeat a similar analysis with a possibly different error term A to replace the
sample covariance by the population covariance in the first term of the upper bound
Equation (78).

Part 5. Try to interpret (informally) the final bound by discussing the performance of ridge
regression depending on A.

Hints: For the first inequality we need to exploit the explicit formulas for Y and 3, together with
the fact that £ is independent of X. You might also need to use that (Ep+AL) 18, (Ea+AL) T <
(£, + Al;)~" together with Tr(AB) < Tr(AC) for PSD matrices A, B, C with B < C.

Regrade Justification: I did not have time to complete this problem. Below is my solution that
closely follows the provided solution.
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STAT210B Theoretical Statistics April 5th, 2024

Homework # 3: Empirical Processes and Applications
Reece D. Huff

Regrade

I did not submit this homework originally, so I am submitting it now. I have completed most of the
problems.

Notation

Let c and C represent a small and large positive constant, respectively (e.g., ¢ = 107> and C = 10°). Unless
otherwise specified, we use the notation [#] to represent the set of integers {1, ..., n}.

Problem 1 (VC dimension)

Part 1. Show that the VC dimension of the set induced by axis aligned rectangles in R is
equal to 2p.

Part 2. Show that the VC dimension of the family of sets induced by all convex polygons
on the real plane, without any restriction on the number of vertices, has infinite VC
dimension.

Part 3. For a scalar t € R, consider the class of functions ¥ = {x + sign(sin(tx)) : t € R}.
Prove that # has infinite VC dimension. (This shows that VC dimension is not always
equal to the number of parameters of a function class.)

Hint: For 2, you may start with a collection of points on the unit circle.

Part 1. Axis-aligned rectangles.

In this analysis, we delve into the VC dimension of various function classes:

* Axis-aligned rectangles in R”. The VC dimension of this family is deduced to be precisely 2p.
Consdier the positive point set P = {ei}le in R? and the negative point set P’ = {—ei}le. We define
a set T as the union of positive and negative point sets, T = P U P’ (containing 2p points). Any
subset S of T can be uniquely selected by an axis-aligned rectangle within the subspace defined by
S. Now consider the next largest set that contains all of these elements, but one more arbitruary
point T = P U P’ U {x}. Any subset S’ of T’ can be shattered by an axis-aligned rectangle in RP*?,
as the additional dimension allows for the inclusion of the extra point. However, the set T’ cannot
be shattered by any axis-aligned rectangle in R?, as the extra point will always be excluded. This
implies that the VC dimension of axis-aligned rectangles in R? is 2p.

* Families of all convex polygons. For any integer 1, consider the set P = {(sin(2mtk/n), cos(2mk/n)) :
k € [n]}, representing n equidistant points on the unit circle. Any subset S of these points can be
shattered by a convex polygon crafted by connecting the points sequentially, thereby including S
and excluding its complement S°¢.
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Formally, let S = {p1,..., px} be a subset of P. Let x = Zle aip; be a convex combination of the
points in S with Z;‘ ax = 1. Let y be any point on the unit circle notin S. Then vy is not in the convex
hull of S, because

k k
X-y= (Zaip,')-yszadpi'm <1
i=1 i=1

Therefore the convex hull of S can shatter any subset of P, implying that the VC dimension of the
family of sets induced by all convex polygons on the real plane is infinite.

e TODO
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Problem 2 (Classification and population risk bounds)

Consider the binary classification problem with feature space X C RF and two classes
Y ={1,-1}. Assume that there is some unknown probability distribution Px y over X X Y.
Let n(x) = E[Y[X = x]. The Bayes optimal rule f; is given by f;(x) = sign(n(x)) (assume that
n(X) # 0 with probability one). Show the following;:

Part 1. The Bayes optimal classifier indeed minimizes the population risk R(f) = Pr(f(X) # Y)
among all (measurable) functions mapping from X to V. Here, the probability is
computed with respect to Px y.

Part 2. Show that for any classifier f : X — Y it holds that
R(f) = R(fp) = E[In(X)| - {f(X) # fg(X)}].

Part 3. Assume that there is a finite set of classifiers # such that f; € . Assume also that
there is some /1 > 0 such that |n(X)| > h with probability one. Show that there is an
absolute constant ¢ such that, with probability 1 — 6, (where 6 € (0,1/2)), it holds that

log(|F]) + log(1/6)

R(f) - R(fz) < ¢ —

where
n
= i I{f(Xi) # Yi}.
= argmin ) WP 2}

is any empirical risk minimizer constructed via the i.i.d sample (X;, Yi);?:l sampled
from Px y. Compare this result with the bound we obtained earlier in the class in the
special case where Y = f;(X) with probability one.

Hint: In the proof of 3, apply the Bernstein inequality together with the union bound to the
set of functions {(x, y) = I[f(x) # y] = I[f3(x) #y]: f € F}.

Part 1.

Proof. Let f : X — Y be any measurable function. The population risk R(f) is defined as the probability
that f(X) does not equal Y, that is,

R(f) =Pr(f(X) # Y) = E [Ts004v]
where T ¢(x)zv} is the indicator function that is 1 if f(X) # Y and 0 otherwise.
By the law of total probability, we have
Pr(f(X) #Y|X =x)=Pr(f(x) #Y|X =x,Y =1)Pr(Y = 1|X = x)
+Pr(f(x) #Y|X =x,Y =-1)Pr(Y = -1|X = x)
Pr(f(X) # Y|X = x) = T¢)21 Pr(Y = 1|X = x) + V(1)1 Pr(Y = -1|X = x)

which can be simplified to

Pr(Y =-1|X =x) if f(x)=1,

Pr(f(x) # Y|X =x) = {pr(y =1X=x) if f(x)=-1.

In order to minimize the above quantity, we should choose f(x) to be 1 if n(x) > 0 and -1 if n(x) < 0.
This is the Bayes optimal rule f;(x) = sign(n(x)). O
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Part 2.

Proof. To establish the relationship between the risk of any classifier f and the Bayes optimal classifier f,
we start by expressing the risk difference:

R(f) = R(f3) = Pr(F(X) # V) = Pr(f5() #Y) = E[Voour] ~ E [1g000r| = E[Voomr = 1000

Now, we note that 1¢(x)zy — 1f;(x)#y is nonzero only when f(X) # fz(X), and in such cases, it equals
|n(X)| since n(X) is nonzero with probability one. Therefore, we have:

R(H) = R(f) = | InGOL - Tes00| -

This completes the proof. O

Part 3.

Proof. Given the optimality of f, we have R,(f) < Ry( fz)- Let us define the excess risk process as
E(f) = R(f) — R(f) and its empirical counterpart as E,(f) = Ru(f) — Ru(f3)- By the optimality of f, we
note that the excess risk of f as

E(f) < E(f) = Ea(f)-
Fix a classifier f € ¥ and denote Z;(f) := T fx,)2y; — 1f:(x,)#y;- The difference E(f) — Ex(f) can be written

as E[Z(f)] - 1 S, Zi(f), where Z(f) := Zi(f).
Applying Bernstein’s inequality, we find that with probability at least 1 — 9,

207 log(1/0) , 2, log(1/0)

E(f)—En(f) < 3°f 4

n n

where Var(Z(f)) < UJ% and |Z(f) = E[Z(f)]| < Bf. We can take By = 2, but 012, should depend on f.

Since Z(f)? =1 F(x)£f;(x), and using the Massart noise condition [n(X)| > h, we have

1
EllnGOl- Troozp001 = 7 E(f) = o}

|~

Var(Z(f)) < E|Z(f)?] = Pr(f(X) # f3(X)) <

Substituting these values into the Bernstein bound and using the union bound over all f € F, we get
with probability at least 1 — 6,

2E(f)log(171/06) = 2log(|F/6)
E(f)_En(f)S\/ h + , .

For the empirical risk minimizer f , this implies

B < B - Ex() < | ELBIID) 20080710 \/ZE(f)IZi(IS”I/é),210g(1|17’|/6)

Solving for E( f ) when the first term achieves the maximum gives E( f ) < w. When the second

4log(|71/6) _ 4log(I71/0)
n = nh

term achieves the maximum, we have E(f) < ,since h < 1.
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Overall, with probability at least 1 — 6, we have

log(I7]) + log(1/0).

E(f)=R(f) - R(f;) <8 —

In the "noiseless" setting where Y = f;(X), we have R(f;) = 0 and |7(X)| = 1 with probability 1, allowing
us to take i = 1. In this case, the result simplifies to

recovering the bound from Lecture 5 up to constants. Thus, our result is more general as it accounts for
noise through the parameter & and reduces to the noiseless setting as h — 1. O
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Problem 3 (Empirical processes and random design linear regression)

Consider the random design linear regression model. That is, assume we observe an i.i.d.
sample of (X;, Y;)_, sampled according to some unknown distribution Px y over R? X R. For

any w € R? define its population risk R(w) = E(Y — (X, w))?. Fix b > 0 and consider the
constrained least squares regression problem to the Euclidean ball of radius b,

. : 1
w = ar min —
weR?:|lwl|,<b N

Z(Yi — (X, w))*.
i=1

(Note, that we do not assume the model Y = (X, w*) + &, where ¢ is an independent zero
mean noise.)

Assume that there are absolute constants m, r > 0 such that with probability one, we have
Y| < m and || X||2 < r. Using the Dudley integral method, show that there is some absolute
constant ¢ > 0 such that, with probability at least 1 - 6,

[d +1log(1/6
R(W) — inf . R(w)<c (m2 + rzbz) o—g(/).
weR:||w||,<b n

Is there a way to improve this bound with other methods we studied? Can we remove the
explicit dependence on the dimension?

Hint: You might require several tools we developed so far including symmetrization,
contraction, and bounded differences inequality.

Proof. Let w" € arg miny,cpd:|u|,<» R(w) be an optimal solution in the population risk sense. We want to
bound the excess risk R(®) — R(w").
To begin, we recall in class (Proposition 16.1.) that we proved that

R(@) - R(w*) <2 sup |Ry(w)—R(w)|

weR:||w|,<b

Then we define the function G(Z) = G(Z4,...,2Zy) = SUP e pi(p) IRy (w) — R(w)|. We will verify that
G satisfies the bounded differences condition with some parameter L. First, using the inequality
(a + b)*> < 2a% + 2b? and the Cauchy-Schwarz inequality, we observe that

(Y — (X, w))? <2Y% + 2(X, w)? < 2m? + 2r?b°.

Next, we examine the difference G(Z) — G(Z~), where Z~# denotes the sequence Z with the i-th element
replaced:

G(Z)-G(Z™") = sup |Ru(w;Z) = R(w)| = sup [Ru(v;Z™") = R(v)]

weBY (b) veBY(b)
< sup |Ry(w;Z) = R(w) = (Ru(w; Z7") = R(w))]
weBg(b)
1 1
= sup _(YZ - <Xi/ w>)2 - _(YZ, - (Xl/r w>)2
weBl(b) n
< 4(m? + rzbz)’
n
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24,212
which shows that G satisfies the bounded differences condition with parameter L = Am4r707)

Applying the bounded differences inequality, we obtain that with probability at least 1 - 0,

62) - E1G(2)) < || 1B,

uniformly.

which can be simplified to

sup |R,(w) - R(w)| <E| sup |R,(w)— R(w)||+4(m?*+ r’b?) log(l/é)'

weBl(b) weBl(b) n

Next, we apply symmetrization to the first term on the RHS. By introducing Rademacher variables o;
(Lecture 14, Lemma 3), we have

LS 0100 - (X, )
i=1

Ex | sup [+ 0% - (Xi,0)? - R(w)

i=1

sup
llwll2<b

< 2ExEs | sup

lwll2<b

We derive this bound via

1 “ 1 &
—E| sup Eai(Yi—<Xi,w>)2 — -4ME | sup §al~(Yi—<Xi,w))

d - n d -

weBj(b) i=1 weBy(b) i=1

IA

n

ZGiYi

i=1

n
+E| sup Z 0i(X;, w)
weB4(b) =1

IA
—_

—-4M|E
n

< %-4M (\/Em +\/ﬁbr)

2+22
< gypmo b

\n

The initial inequality leverages the contraction principle, Ledoux-Talagrand’s Theorem 2 (Lecture 18),
to eliminate the quadratic term. This is achieved by applying a 2M-Lipschitz continuous function
¢ : [-M, M] — R, defined by ¢(x) = x2, where M is set to \/2(m?2 + r2b2).

The second step employs the triangle inequality to separate the empirical risk into two components.
The third step utilizes Jensen’s inequality to the first term, and a combination of the Cauchy-Schwarz
inequality with Jensen’s inequality for the second term.

The final step is derived by noting that the quantities Vm? + r2b? and br Vm? + r2b? are both bounded
above by m? + r2b2.

Combining the above steps, we obtain with probability at least 1 - §,

R(@)~ R(w") < c (i +1712) \/@

where c is an absolute constant that absorbs other constants.

To address the question of improving the bound or removing the explicit dependence on the dimension,
we could consider other methods such as localized Rademacher complexities or covering numbers that
adapt to the intrinsic dimensionality of the problem. For example, if the data lies in a lower-dimensional
subspace or exhibits certain sparsity, we might be able to obtain tighter bounds that reflect these
properties. [
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Problem 4 (Gaussian width, Rademacher averages and Dudley integral)

Assume that T € R?. Let
d d
R(T) = [EsupZ eiti, W(T) = [EsupZ giti,
teT i=1 teT i=1
be the Rademacher averages and the Gaussian width of T respectively.
Part 1. Show that R(T) < \/§W(T).

Part 2. Compare the values of R(T) and W(T) when T = Bf (i.e., it is the £ unit ball).

Part 3. Compute the Gaussian width of the set of s-sparse vectors. That is, show that there is
some absolute constant ¢ > 0 such that

W(T) < c4[slog (%),

where
T={xeR%:|xllo<s,Ilxll <1},
el . . _ . . .-
Part 4. Let T be a convex hull of the set { el i=1,..., d}, where ¢; is the i-th standard

basis vector. Show that the Dudley integral upper bound is not sharp in this case.
That is, as d grows, the Dudley integral

| oI e

goes to infinity, while W(T') is bounded by an absolute constant for all 4.

Hint: For 1, it might be helpful to use that E|g;| = \/% . For 4, one can lower bound the size of

the covering numbers using appropriate packing numbers, which are easier to estimate (from
below).

Part 1.

Proof. Consider independent standard Gaussian variables ¢ = (g1, . . ., g4) and independent Rademacher
variables € = (¢1, ..., €4). The Gaussian width W(T) can be expressed as

. d
Since g; can be decomposed as g; = ¢;|gi|, we have

d
supZ il gilti

teT i=1

W(T)=E

Applying Jensen’s inequality to the convex supremum function, we obtain

d d
I [Tt
W(T) > E|E stlel%)z €ilgiltile ] = E[E stleleZ eiti] = ER(T)'
i=1 i=1
where the last equality follows from the definition of Rademacher averages R(T). O
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Part 2.

Proof. For any vector v € R% and 0 € Bf, the ¢; unit ball, Holder’s inequality gives (0, v) < ||0]|1|7]l =

||v]|co. There exists 6* € Bf such that (0%,v) = ||v||~, specifically the vector that selects the largest
absolute value entry of v. Thus, we have SUPgcpt (6,7) = |7]|co-

Consequently, the Rademacher averages for Bf are

R(BY) =E [sup(e, t)| = Ellellw =1,

d
teB1

since ||¢||e = 1 for Rademacher sequences.
For the Gaussian width, we have

W(B?) = E [sup(g, t)| = Ellglle,
ter

where ||¢||« is the maximum absolute value of the Gaussian entries. Using bounds on the expected
maximum of Gaussian random variables, we obtain

Vlogd < E||glle < v2log(2d) < 2+/logd,

for d > 12. This implies W(Bf) < 4/log dR(Bf) solong asd > 12. O

Part 3.

Proof. LetS € {1,...,d} and define Ai(l) = {v € R¥:v = vg, ||v||2 = 1}, where vs is the projection of v
onto the coordinates in S. The set T is the union of Ag(l) over all subsets S of size s.
The Gaussian width of T is given by

W()=E [sup(g,t)l = E [max sup (gs,ts)| =E [max ||g5||2] .
teT |S|=s i’GAg(l) |S|=s

Using Jensen’s inequality and the fact that || - ||2 is 1-Lipschitz, we have

< \/[E [max ||gs||§].
|S|=s

The expectation inside the square root can be bounded by considering the subgaussian property of
llgsll2 — El|gs||2 and the number of subsets of size s. We obtain

< [E||g5||% +2log ([Si) < s +2slog (es_d) ,

E [max 18sll2
|S|=s

E lmax 1l
[Sl=s

S
where the last inequality uses the bound (%) < (%) . Thus, we have

W(T) < \/s + 2s log (%) < Cy /slog (?),

for some absolute constant ¢ > 0. O]

Part 4.
TODO
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Problem 5 (Catoni’s mean estimator)

Consider the problem of estimating the mean of a random variable that is assumed to have a
tinite second moment. The objective is to construct a non-asymptotic mean estimator that
exhibits sub-Gaussian tail behavior, ideally mirroring the classical Central Limit Theorem
(CLT) asymptotic rate. Let i : R — R be a continuous, non-decreasing function satisfying

x? x?
—log(l - X+ E) <YP(x) < log(l +x+ 7)'

Givenii.d. random variables Xi, ..., X;,, with mean p and variance 02, we define the estimator
fi as the root of the equation

D X - ) =0, (3.1)
i=1

where A is a positive tuning parameter. For a fixed 6 € (0,1/2), assume n > 21log(1/0) and set

B 202 log(1/0) |- 2log(1/0)
a n(1—210g(1/6)/n)’ (o2 +n2)

Note that A depends on both 6 and o. Show that with probability at least 1 — 20,

The leading term in this bound, 4/ w, closely mirrors the tail bound for estimating

the mean of i.i.d. Gaussian variables using the sample mean, with the leading constant V2

precisely matching the optimal rate. Note that in your proof, the residual term /m
might be slightly larger.

Hint: Begin by examining the exponential moments of (for any v)
1 n
— D VA =),
i=1

Then, argue that [1 is bracketed by solutions to two equations similar to (3.1), though obtained
using high-probability bounds from the exponential moments analysis. You may also employ
the inequality 1 + x < exp(x).

The proof leverages the following lemma:

Lemma HW3.P5.1. Consider a continuous stochastic process Z(t), monotonic decreasing in t € R. Define
functions U(t) and L(t) such that for each t,

Pr(Z(t) <U(t)) 21-06 and Pr(Z(t) > L(t))>1-5.
For zeros t* of U and t~ of L, and a well-defined zero t of Z, the following holds:

Pr(f<t")>1-6 and Pr(f>t7)>1-06.
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Proof: The analysis begins with the case of t*, leveraging the implications:
Zt) <Ut) = Z(t) <0 = Z(t") < Z(f) = F <t

Hence, it follows:
1-0<Pr(Z(t") <U(t") < Pr(f < t).

Start by determining functions U(v) and L(v) that ensure:
1 n
L) < 21] PAX; —v) <U)

holds with probability at least 1 —26. Establish roots u* and u~ where U(u™) = L(1~) = 0. By the Lemma,
p~ < fi < u* holds with probability 1 — 20.
Calculations for U(v): Examine the exponential moment for X; = X;. Given 1’s upper limit,

2
E [exp(AY(X —v))| < exp ()\(y —v)+ %(02 +(u— v)z)) .

Chernoff bounds imply:

Pr Z/\gb(Xi -v) > n/\u) < exp (TZ/\([J -v)+ nT/\z(UZ +(u—-v)?) - n)\u) = 0.
i=1

Solving gives the bound for U (v):

+9§¥@;ﬂﬂm.

1 n /\2 ) 5
P = V) S A=)+ (0% (= )
i=1

Taking v = u + n where 1 is as defined, ensures v = u + 1 satisfies U(v) = 0. The monotonicity in v
implies by the Lemma that Pr(u < 1 +1) > 1-6.
By a similar argument for L(v) and applying a union bound, we conclude:

la—pul <n
holds with probability at least 1 — 206.
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STAT210B Theoretical Statistics May 1st, 2024

Homework # 4: Empirical Processes and Applications

Anonymous Author

Notation

Let c and C represent a small and large positive constant, respectively (e.g., ¢ = 107> and C = 10°). Unless
otherwise specified, we use the notation [#] to represent the set of integers {1, ..., n}.

Problem 1 (Covering numbers for star-shaped hulls)

Let ¥ be a class of functions absolutely bounded by 1. That is, for any f € ¥ and x € X,
we have |f(x)| < 1. Let star(¥ ) denote the star-shaped hull of ¥ around zero (i.e., the set
{af : f € F,a €]0,1]}). Show that for any ¢ > 0,

log N(star(¥), Lo(P), 2¢) < log N(F, Lo(P), €) + log(%).

That is, the covering numbers for star-shaped hulls are approximately the same as for the
original class.

Proof. Let N(F, L2(P), €) denote the smallest number of balls of radius ¢ in the Ly(P) metric required to
cover the class ¥. We want to show that

2
lOg N(Star(?)/ L2(P)/ 28) < lOg N(?/ LZ(P), 3) + lOg (E) .
Let {f1, f2, ..., fn} be an e-cover for ¥ in the Ly(P) metric, where N = N(F, L2(P), €). This means that
for any f € ¥, there exists some f; such that || f — f||,p) < €.

Consider the star-shaped hull of ¥, denoted as star(# ). For any function g € star(¥), there exists an
a €[0,1]and f € ¥ such that ¢ = af. Since { f1, f2, ..., fn} is an e-cover for F, there exists an f; such

that || f — fillL,p) < €.
Now, consider the function g; = af;. We have
1§ = &illopy = llaf = afillypy = allf = fillL,p) < ae < e.

To cover star(¥) with balls of radius 2¢, we can use the functions {g1, $2,...,gn} along with a
discretization of the interval [0, 1] into points {a;} such that the distance between consecutive points is
at most ¢. The number of such points is at most [1/¢] < 1/e + 1.

Therefore, the covering number for star(¥ ) can be bounded by the product of the covering number for
¥ and the number of points in the discretization of [0, 1], which gives us

N(star(F),Ly(P),2¢) < N (% + 1) < &

&

Taking the logarithm of both sides, we obtain
log N (star(F), L2(P),2¢) < log N + log (%) =log N(F, L2(P), €) + log (%) :

This completes the proof. O
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Problem 2 (d/n rate for random design linear regression)

We are going to improve the linear regression bounds from the previous homework assign-
ment.

Consider the random design linear regression model. That is, assume we observe an i.i.d.
sample of (X;, Yi)l’.l:1 sampled according to some unknown distribution Px y over R x R. For
any w € R?, define its population risk R(w) = E [(Y — (X, w))?]. Fix b > 0 and consider the
constrained (to the Euclidean ball of radius b) least squares estimator

n

1
@ = argmin - (Vi — (Xi, w) )2.
llwll,<b .

Assume that there are absolute constants m, r > 0 such that with probability one, we have
Y| < m and ||X||, < r. Using the offset term for Rademacher averages as in the lectures,
show that for some absolute constant ¢ > 0,

cd(m? + r?b?)

E[R(@)] - inf R(w) < -

weR
llwll,<b

Here, the expectation is taken with respect to the training sample.

Hint: You might need to directly bound the process without using the Dudley integral.
If needed, you may assume without loss of generality that the sample covariance matrix
(empirical matrix of second moments) is invertible.

Proof. We consider the random design linear regression model where we observe an i.i.d. sample
of (X;, Yi)z’.’:1 sampled according to some unknown distribution Py y over R? x R. We are given that
| Xill2 < r and |Y;| < m with probability one.

We respectively define the population risk and emperical risk for any w € R as:

1 n
R(w) = E[(Y = (X,w)P], and Ry(w):=— > (Y = (X;,w))"
i=1
Additionally, we consider the constrained least squares estimator:

1 n
© = argmin — Z(Yz’ —(Xi, w))*.
re i
llwll2<b

Our goal is to bound the expected excess risk,

E[E(w)] := E[R(D)] - inf R(w).
weR?
llwll2<b
To bound the excess risk E [E(w)], we recall our Proposition from Lecture 23. Specifically, recall the
equation right before Proposition 23.2.

1v N 1 *
E[Ew)] < 2OM[E§1€1¢p {E;Gi(f(xi)_f (X)) - 50_mP"(f_f )2}

where P, (f — f*)? := %( fXi)—f *(Xl-))z is the empirical measure, f* is the minimizer of the population
risk, and ¥ is the class of functions we are considering, and m > 0 is a constant such that |Y| < m and
|f(X)| <mforall f € £. Then we have the following lemma:
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Lemma HW4.P2.1. Consider the random design linear regression model. Let (X;,Y;)!"_, be an i.i.d. sample from

some unknown distribution Py y over RY X R. Assume that with probability one, we have max {|Y|, | f(X)|} < K
forall f € F. Then, for some absolute constant C = 20 and ¢ = 1/50, we have

E[R(f)] - R(f*) < CKEp, ,E,,

1w * c *||2
sup {; Do) - X)) - < lf - f IILz(pn>H :

i=1
Here o; are Rademacher random variables. The optimal function f* is the minimizer of the population risk R(f)
and the optimal function f is the minimizer of the empirical risk R,,(f).

Now we may apply this lemma to our problem. To begin we note that f(X;) — f*(X;) = (Y; — (X;, w)) —
(Y; = (X;, w*)) = (X;, w* — w). Then we have

E[R()] - R(f*) < CKEpy,E,, [sup {% D alFX0) = £ X)) - lIf - f*||i2(pn>H

| feF i=1

1 n
= CK[EPx,ylEGi Suﬂgj {E ; g <Xz';w* — ZU> - % (<Xi/w* — w>)2}
[ [[w]l2<b

We note that we can pull out the 1/», and that (X;, w* — w) = — (X;, w — w*) while ((X;, w* — w))? =
((Xi, w — w*))?. Then we have the following:

CK -
- T[EPX,Y[Eai infd Z 0; (Xi,w - w*> + % ((Xi,w — w*>)2

we —
lwl2<b | =

fi(w)

We now minimize f;(w) with respect to w. We note that f;(w) is a quadratic function in w and thus we
can find the minimum by taking the derivative and setting it equal to zero. We have

2c 2c
Z Va filw) = Z (Gin + szXZTZU — ?XIXT *) ~0

i=1
i XiX] (w - w* Z So0iXi
i=1

Now we multiply both sides by (X; X].T) ~! for an arbitruary j € [n]. We have

w—w* = 25( CoiX; + Z ( (X;X7) " oiXi = (X;X]) 7 X X[ (e - w*))
zi]

cross terms

We note that the cross terms will eventually cancel out by the independence of X; and X for i # j when
we take the expectation Ep, , [ - ]. Thus we have the following:

inf, {Zfl(w)}_o]<xj,2K(X]xT) Gij> K(<X]r§<(X]XT) U]'Xj>)2

||w||2<b i=1
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Again, note that the sum essentially vanishes as we are only interested in the j-th term and all other
terms will cancel out. It then follows that

Ko 12 T T KG? T -1y )2
inf, Zﬁ(w) X (X)X + (X (X)) ')
iy U1

We note that IT = X[ (X;X[) 7' X; is defined such that T = XT (X;X) " X;X] (X;X]) "' X; = TL. Then
we have the following;:

Ka.2 3Ko? Ko? 4

f iM=""im=—'X"(X;X7)'X; wh r= 2

wl?[R {Zﬂ(w)} 4c 4c ¢/ j (X)X where ¢ 3°
lll,<b

Finally, we note that X[ (X;X[) 'X; = Tr(X[ (X;X[)'X;) = Tr(X;X] (X;X]) ") = Tr(I) = d. Thus we
have the following:

dK o2

CK j

EIR()] - R(F*) < =~ Epy, By _ 4CK

c'n

CI

Recalling ¢’ = 4/3c, ¢ = 1/50, and C = 20, we have the following;:

A 60K2 c*K? 3
E[R(f)] = R(f*) < 00n - 7 where c¢* = T

To finish, we simply need to show what K is. We are given that |Y;| < m, || X;|]> < r, and ||w]||> < b. Then
we have

max {[Y], [f(X)|} < m +7rb < K = m?+r?b* < K>.
Thus we have the following;:

c*K? C*(m2 +770%) 3 m? +12b?

E[R()] = R(f*) < - =T=
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Problem 3 (Regression with expressive non-parametric classes)

Consider the non-parametric linear regression problem with random design given by the
model

Y= (X)) +E,

where f* belongs to some known convex class ¥. Assume that max{|&|,|Y|} < m and
|f(X)] < mforall f € F, and that & is independent of X and ¢ is zero mean. Finally, we
assume that the class F is non-parametric in the sense that

log N(F,La(Py), €) < Ce™F,

where C is some constant and p > 2. The assumption p > 2 corresponds to expressive classes

of functions for which the uniform convergence at rate —= is not possible.

\n
As before, we are given an i.i.d. sample of (X;, Y}")"_; sampled according to some unknown
distribution Px y over R x R.

Part 1. Using the offset term for Rademacher averages, show the upper bound (the best
upper bound you can get with this technique up to multiplicative constant fac-
tors) on E[R( f )] = R(f*), where f is an empirical risk minimizer in ¥ (i.e., f =
arg minfe?’ % Z?:l(Yz - f(Xz))z)

Part 2. Our goal is now to improve the above Dudley integral-based bound. First, show that
for any f € ¥, it holds that

R(f)=R(F) = If = FI2 5

Part 3. Assume that when building your estimator, you have access to the distribution Px
(but not Py|x), and for any € > 0 you can build the smallest e-net with respect to the
Ly(Px) distance (denote this set by N(¥, €); we assume N(¥,€) € ¥). Show that
there is a choice of the value of € such that the predictor

. 1
fe = argmin — (¥ ~ f(X))”

f€N(7‘—,€) i=1

leads to the classical rate of convergence n"77 for R(fe) = R(f*) despite being in the
regime p > 2 (recall that this rate was shown in the lecture for the standard least
squares in ¥ but only for p € (0, 2)).
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PROBLEM 3
(X;) Y; ) IS i.i.C‘o over ‘p9<,\{ E KZAXQ
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gn(\/\l)‘: ’V"{ Zﬂ (Y. - X?—w)l ts The ?.E\Pirica\ r'\sk_

P
=
)

l,/:) = Oorg min Eh(w) \eas-]' 8%0\.[‘&5 e_J“I‘imcxN"

WE Rd
lwll, <

W= orginf R(w)§  cphmal colukon

e R?
ﬂN“n b

Y’ 'Fk(BO‘('Z g S Zero  Meown
May \Y]/\g\ £ m )F(X)]ém
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e Using the offset term for Rademacher averages, show the upper bound (the best upper bound
you can get with this technique up to multiplicative constant factors) on E[R(f)] — R(f*),
where f is an empirical risk minimizer in F (ie., f = argminse r - Ly (Y= F(X0))2)

e Our goal is now to improve the above Dudley integral-based bound. First, show that for any
f € F, it holds that

R(f) = R(f*) = If = FI3,p0)-

e Assume that when building your estimator, you have access to the distribution Px (but not
Py|x), and for any € > 0 you can build the smallest e-net with respect to the Lo(Px) distance
(denote this set by F., and its cardinality by N (F,e); we assume F. C F). Show that there
is a choice of the value of € such that the predictor

f. = argmi LS - £(X))?
fe = argmin ;. r, - Z( i — F(X3)

i=1

leads to the classical rate of convergence n_zﬁ for R(ﬁ) — R(f*) despite being in the regime
p > 2 (recall that this rate was shown in the lecture for the standard least squares in F but
only for p € (0,2)).



| Poct ij Hecal

Proposition 23.1. For the random design regression above, for any a,y > 0 such that a < y, we have

m IOgN(T, LZ(Pn)r )’))| (37)

n

E [R(f)] - figéR(f) <E|Cm (a + %/l \/logN(T, Ly(P,), €)de +

where C is an absolute constant.

Where L2<Pn) - %‘Z<.L)2— G-V\A Lz(.p)’:\/f(’)z'

=

We hawe

¥
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Problem 4 (Estimation of Bernoulli mean in KL-distance)

Assume that we observe n independent Bernoulli random variables Xj, ..., X;, with an
unknown parameter p € [0,1]. Instead of the absolute or quadratic loss, our aim is to
construct p,, such that

EKL(p, pu) = E [<1 - Pﬂ‘)g(ll—_ zf) o lg(pﬁ)l

is as small as possible. Here, the expectation is taken with respect to the realization of the
sample X1, ..., Xj,.

Part 1. Prove that the standard sample mean p, = 1

= o 21 X; can lead to arbitrarily large
values of EKL(p, pn).

Part 2. Using the exponential weights algorithm with logarithmic loss and using the uniform
distribution over [0,1] as a prior, construct an estimator p,, satisfying for some

absolute constant ¢ > 0,

EKL(p, pn) < Clof(”).

Part 3. Explain how your estimator is different from the sample mean.

Hint: You might need to use the following. For any integers n1, np such that n = ny + ny, it
holds
1

(n + 1)(;,71)'

One way to prove this is through backward induction over n;.

1
/ p"(1-p)Pdp =
0

Part 1.

Proof. Consider the standard sample mean estimator p,, = % Z?zl X;. We will show that EKL(p, p,,) can
be arbitrarily large for certain values of p.
First, note that the Kullback-Leibler divergence from p to p, is given by

A 1-p P

KL(p, pn) = (1 -p)log (1 — ﬁn) + plog (ﬁn) :
This divergence becomes infinite if p, = 0and p > O orif p,, = 1and p < 1, due to the logarithmic terms.
Now, consider the case when p is very close to 0 (but not 0). The probability that all X; are 0 (and
hence p, = 0) is (1 — p)", which is close to 1 for small p. Therefore, with high probability, KL(p, p,) will
approach infinity as n grows.
Similarly, when p is very close to 1, the probability that all X; are 1 (and hence p,, = 1) is p", which is
close to 1 for p near 1. Again, with high probability, KL(p, ) will approach infinity as n grows.
In both cases, the expected value EKL(p, p,;) can be arbitrarily large, which proves the statement. [
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Problem 5 (Hypercontractivity, quadratic forms, and linear regression)

Our final problem aims to achieve an error bound similar to the one in Problem 3, but focusing
on the hypercontractivity of the distributions (and only the existence of four moments) instead
of boundedness. As before, consider the random design linear regression model. We observe
an i.i.d. sample of (X;,Y; ?:1 sampled according to some unknown distribution Py y over

R x R. Letw* = argmin, g+ R(w). Prove the following:

Part 1. (Hypercontractivity relations) Let £ € R be an additional variable. Show that if there
are L1, L, > 1 such that for all w,

E[(Y - (X, w04 < LE[(v - (X, w)?]"* and

1/2

(79)
E[((X, w)*]"* < LE [((X, w))?]?,

then for some L < ¢(Lj + L), where ¢ > 0 is an absolute constant, it holds that for all
weRY EER,

1/4 1/2

E[(€Y - X, w))*] " < LE [€Y - (X, w)?] 2.

Part 2. Denote N(&,w) = E [(EY - (X,w))z] Under the hypercontractivity assumptions
Equation (79), use the median-of-means based estimator from the lectures to provide

a quadratic form N (&, w) such that, with probability at least 1 — 6,

[d +1og(1/6)
2 |2 oM T
< c1(L1 + L) . ,

where ¢; > 0 is some absolute constant. Note that when constructing N (&, w) based
on the training sample, you can completely ignore the computational efficiency
restrictions.

Part 3. Let

-1

N(E,w)
N(E, w)

W = argmin f\?(l, w).
weR?

Show that, with probability at least 1 — 0,

R(®) — R(w*) < co(Ly + Lp)* - R(w”) -

7

d +log (%)
n
provided that n > c3(L1 + Lo)*(d + log(1/6)), where c;, c3 > 0 are absolute constants.

Part 1.

Proof. We are given that for all w € R,

1/4 1/2

" 1/4 N 1/2
E[(r - X o] s LE[(Y - @) and E[(X, )] < LE [((X, )]
We want to show that for some L < ¢(L1 + L,), where ¢ > 0 is an absolute constant, it holds that for all

weRY, EER,
E[€Y - (X, w)*]"* < LE (Y - (X, )]
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Let us denote Z = £Y — (X, w). We can write Z as Z = &(Y — (X, w*)) + £ (X, w* — w). By Minkowski’s
inequality for the L* norm, we have

1/4 1/4

E[Z4]" < B[y — X, )]+ E [ 0 - )]
Applying the hypercontractivity relations to each term, we get

1/2

E [Z4]1/4 < |€|L1[E [(Y - <X, w*>)2] + |(E|L2IE [((X, w — w>)2] 1/2 .

Now we note that the excess risk can be written as
E(w) = R(w) — R(w?)
=E[(Y - (X, w))*| —E [(Y = (X, w"))?]
= E[Y?] + E [((X, w))*| = 2E[Y (X, w)] - E[Y?] - E[((X, w"))*]| + 2E[Y (X, w")]
= E [((X, w))*] - E [((X, w"))*| —2E[Y (X, w — w")]
= E[((X, w —w")?] = 2E [(X, w*))?] + 2E[({X, w))((X, w)] - 2E[((X, w — w*))Y]
Ew) =E[(X,w-w"))?] - 2w TE [XX| w + 20" TE [XX|w + 2w E[XY] - 2w  E[XY]

By the optimality of w*, we have VR(w*) = 0, which implies that E [XX "] w* = E[XY]. Therefore, we
can simplify the above expression to

E(w) = R(w) - R(w") = E[((X, w —w"))?].
Now we can return to our expression from the hypercontractivity relations and write

1/2

E [Z4]1/4 < |£|L1[E [(Y - <X, w*>)2] + |E|L2[E [(<X’ w — ZU))Z] 1/2 — |£|(L1R(w*)1/2 + LzS(ZU)l/Z)

E[z4]'"? < & (L%R(w*) + L28(w) + 2L1L2R(w*)1/28(w)1/2)

= &2 (LfR(w*) + L3(R(w) — R(w")) +2L1L, (R(w*)(R(w) - R(w*)))l/z)

By optimality, we have that R(w*) < R(w) and R(w*) — R(w) < 0 < R(w) for all w. Thus we can simplify
the above expression to

E[74]"” < & (L2R@) + L3R(@) + 21 LR (@) = & ((Ly + L)*R(@)) = (L + L2)°E [E3(Y = (X, w))?]
E[2']" < (L + Lo)EIEY - (X, w))P]2

This completes the proof, i.e., we have shown that for some L < c¢(L; + L), where ¢ > 0 is an absolute
constant, it holds that forallw € R?, & e R,

1/4

E[z¢]"* < LE [22]'?, (80)

where L < ¢(L1 + Ly) for some absolute constant ¢ > 0. ]

Part 2.

Proof. We begin by recalling the theorem on the median-of-means estimator for hypercontractive
distributions we proved in class.
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Theorem HW4.P5.2 (Lecture 20 — Median-of-means for hypercontractive distributions). Let p be an even

]1/2p <

integer. Assume that X is a zero-mean random vector in R? such that for all v € S%71, E [(X,v)zP
LE [(X, v)f ] Up , Where L is some “nice” function (i.e., X is (p, 2p)-hypercontractive). Then, with probability

1-0, forallv e S%-1,

dlogp +log(1/0)
n 4

IMOM((X, v)") - E [{(X,v)"]| < C2V2LPE [(X, v)"] \/

where C > 0 is an absolute constant.

In order to apply this theorem to our problem, we consider define the vector v = Sw — w* and note that
N, w)=E [(EY (X, w))z] can be written as E [(X, Ew — w*)z]. We will apply the theorem with p = 2
to the random variable (X, v) for v = Sw — w*.

By the hypercontractivity assumptions given in Part 1, we have that for all v € S9-1,

E [(Xi,v)4]l/4 < LE [(x,0)%]""?,

where L < c¢(L1 + L) for some absolute constant ¢ > 0. This implies that X is (2, 4)-hypercontractive.
Applying the median-of-means theorem, we obtain that with probability at least 1 — 6, for all v € S971,

MOMI(X, 09 - E (%, 07| 27 [0, 0] y L1801

where C’ > 0 is an absolute constant. _
We define the median-of-means estimator N (&, w) as MOM((X, Ew — w*)?), which is a quadratic form in
& and w and can be written as

— _ 2y _ — (X 2 _ . — w*))?
N(&,w) = MOM((Y ~ (X, w))) = — Zlm (Xi,w)P = — Z;((Xz,éw w'))?.
1= 1=
Then, the above inequality implies that with probability at least 1 — 6,

[T 108 1/)
< cz,[1H10800)

We complete the proof with leveraging the hypercontractivity assumptions, L < c¢(L; + Lp), and the
absolute constants C’ and c to arrive at

'N(é,w) »

N(&, w)

N(E, w) , [d+1og(1/0)
-1 < L L _—
where ¢1 > 0 is an absolute constant. O

Part 3.
Proof. Let@ = argmin, pa N(1,w). By the result from Part 2, with probability at least 1 — 6, we have

/d |
SC1(L1+L2)2 #(1/6)
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We note that R, (w) = N(l, w). Since @ minimizes ﬁ(l, w), we have f\?(l, W) < ﬁ(l, w*), and therefore
N(,w)

1—cy(Ly + Lp)? /%ﬂ/é)

Using the fact that N(1, w*) = R(w*) and rearranging terms, we get

N, @) <

1
R(®) — R(w*) < ca(Ly + Lp)* - R(w") - (d+l+g(6)) ,

provided that n > c3(L; + Lo)*(d + log(1/6)), where ¢, c3 > 0 are absolute constants.

This shows that the estimator @ achieves a bound on the excess risk that is proportional to the
hypercontractivity constants L; and L, the dimension d, and the logarithm of the inverse of the
confidence level §, scaled by the number of samples 7. O

69



References

[AMN20] Julyan Arbel, Olivier Marchal, and Hien D. Nguyen, On strict sub-gaussianity, optimal proxy

[BK15]

[Mas07]
[PN95]

[Riv12]
[Val84]
[VC71]

[Ver18]

[Wail9]

variance and symmetry for bounded random variables, ESAIM: PS 24 (2020), 39-55.

Daniel Berend and Aryeh Kontorovich, A finite sample analysis of the naive bayes classifier, Journal
of Machine Learning Research 16 (2015), no. 44, 1519-1545.

Pascal Massart, Concentration inequalities and model selection, Springer, 2007.

Thomas K Philips and Randolph Nelson, The moment bound is tighter than chernoff’s bound for
positive tail probabilities, The American Statistician 49 (1995), no. 2, 175-178.

Omar Rivasplata, Subgaussian random variables: An expository note, 2012.
L. G. Valiant, A theory of the learnable, Commun. ACM 27 (1984), no. 11, 1134-1142.

V. N. Vapnik and A. Ya. Chervonenkis, On the uniform convergence of relative frequencies of events
to their probabilities, Theory of Probability & Its Applications 16 (1971), no. 2, 264-280.

Roman Vershynin, High-dimensional probability: An introduction with applications in data science,
vol. 47, Cambridge University Press, 2018.

Martin J. Wainwright, High-dimensional statistics: A non-asymptotic viewpoint, Cambridge Series
in Statistical and Probabilistic Mathematics, Cambridge University Press, 2019.

70



	Lecture 1 – The Non-Asymptotic Approach
	Some Limitations of the Asymptotic Approach
	Basic tail bounds

	Lecture 2 – Basic concentration inequalities
	Sub-Gaussian random variables

	Lecture 3 – Sub-Gaussian and Sub-Exponential Distributions
	Hoeffding's inequality
	Example 1: Rademacher Random Variables

	Sub-Gaussian Norm
	Properties of the Sub-Gaussian Norm
	Example 2: Khintchine's inequality 

	Non-Sub-Gaussian Distributions
	Sub-Exponential Norm
	Properties of the Sub-Exponential Norm

	Bernstein's inequality

	Lecture 4 – Tail and High-Probability Bounds
	Bernstein's inequality
	Comparing bounds
	Another application of Bernstein's inequality

	Lecture 5 – Learning Theory and Maximal Inequalities
	Statistical Learning Theory
	Maximal Inequalities
	Kernel Density Estimation

	Lecture 6 – Kernel Density Estimation and Norm Concentration
	Kernel Density Estimation (continued)
	Concentration of Norms of Random Vectors
	The Johnson–Lindenstrauss Lemma
	Concentration of ||X|| instead of ||X|| squared
	Concentration Without Independent Coordinates


	Lecture 7 – Norm of a Sub-Gaussian Random Vector
	Norm of a Sub-Gaussian Random Vector
	Kullback-Leibler Divergence
	Donsker-Varadhan Variational Formula
	Second Lemma
	Useful Facts
	Proof of Theorem 7.1
	Sub-Exponential Vectors
	Log-Concave Densities
	Gaussian Concentration Inequality

	Lecture 8 – Gaussian Concentration & Fixed Design Linear Regression
	Notation
	Gaussian Concentration
	Fixed Design Linear Regression Model
	Ordinary Least Squares Estimator
	Oracle Inequalities

	Useful Facts
	Proof of Theorem 8.1
	Proof of Lemma 8.3
	Proof of Theorem 8.9

	Lecture 9 – Fixed Design and Sparse Linear Regression
	Fixed Design Linear Regression
	Sparse Linear Regression
	Matrices and their Concentrations
	Covering and Packing Numbers

	Lecture 10 – Upper bounds on the norms of Random Matrices
	Preliminaries
	Upper bound for matrices with independent entries
	Operator norm of sample covariance matrices

	Lecture 11 – Matrix Bernstein & Gaussian Comparator Inequalities
	Proof of sample covariance bound, continued.
	Matrix Bernstein Inequality
	Useful facts for proof of Theorem 11.3.
	Proof of Theorem 11.3.
	Extensions of Matrix Bernstein Inequality.

	Gaussian Comparator Inequalities

	Lecture 12 – Gaussian processes
	Slepian's inequality
	Applications

	Lecture 13 – Sudakov Minoration and Gaussian Processes
	Lecture 14 – Empirical Process Theory
	Lecture 15 – Shattering Function Bound & VC dimension
	Lecture 16 – Empirical Risk Minimization & Dudley Integral
	Example: Statistical learning (classification)
	Definitions
	Empirical Risk Minimization

	Sub-Gaussian Process
	Examples
	Definitions

	Dudley Integral
	Statement
	Application


	Lecture 17 – Proof of Dudley's integral
	Lecture 18 – Nonparametric classes, Contraction, Bracketing
	Nonparametric classes
	Example: Lipschitz functions
	General nonparametric classes

	Contraction for Rademacher averages/processes
	Theorem statement and proof
	Application: excess risk in general
	Application: hinge loss
	Application: Rademacher complexity of a linear class

	Bracketing entropy

	Lecture 19 – Bracketing, Sub-Gaussian Mean Estimators
	Lecture 20 – Applications of the Median-Of-Means Estimator
	Lecture 21 – One-sided Lower Tail Bound Under Few Moments
	Lecture 22 – Applications of Localization
	Lecture 23 – Random Design Regression
	Random Design Regression
	Online Learning

	Lecture 24 – Online Learning
	Lecture 25 – Prediction with Logarithmic Loss
	Reminder: Why We Use Logarithmic Loss
	Density Estimation
	Working with Infinite Theta (Yang-Barron Construction)

	Lecture 26 – Exponential Weights Estimator for Bounded Losses
	Lecture 27 – Logistic Regression, Exponential-Concavity
	Lecture 28 – Sequential Linear Regression
	Homework 1 – Concentration Inequalities
	Notation
	Problem 0
	Problem 1 
	Problem 2 (Moments are sharper than MGF)
	Problem 3 (Hoeffding’s lemma with the correct constant)
	Problem 4 (Binomial concentration with sharp constants)
	Problem 5 (Sample mean of heavy-tailed random variables)
	Problem 6 (Maximum degree of a random graph)
	Problem 7 (Uniform distribution on the ball is sub-Gaussian)
	Problem 8 (Non-asymptotic analysis of fixed design linear regression)

	Homework 2 – Bounds for Random Matrices
	Notation
	Problem 1 (Covering the unit cube in )
	Problem 2 (Sample covariance of bounded distributions)
	Problem 3 (Norm of sub-exponential random vectors)
	Problem 4 (Gaussian matrix series)
	Problem 5 (Non-asymptotic analysis of ridge regression)

	Homework 3 – Empirical Processes and Applications
	Notation
	Problem 1 (VC dimension)
	Problem 2 (Classification and population risk bounds)
	Problem 3 (Empirical processes and random design linear regression)
	Problem 4 (Gaussian width, Rademacher averages and Dudley integral)
	Problem 5 (Catoni’s mean estimator)

	Homework 4 – Empirical Processes and Applications
	Notation
	Problem 1 (Covering numbers for star-shaped hulls)
	Problem 2 (d/n rate for random design linear regression)
	Problem 3 (Regression with expressive non-parametric classes)
	Problem 4 (Estimation of Bernoulli mean in KL-distance)
	Problem 5 (Hypercontractivity, quadratic forms, and linear regression)


