
Abstract

Recent technological advances have led to the increased development of inexpensive un-

manned aerial vehicles (UAVs) for exploration and monitoring in applications such as geo-

physical mapping, route and agricultural surveillance, natural disaster planning and re-

sponse, and environmental data collection has led to the need for the development of coordi-

nated path-planning algorithms. Deep reinforcement learning (RL) is one approach that may

be useful in generating policies that enable robust drone performance in uncertain environ-

ments. In this work, we trained deep RL polices such as Soft Actor-Critic (SAC)

and Deep Deterministic Policy Gradient (DDPG) within a gym environment we

developed.

We consider a model problem in which a swarm of UAVs are tasked with mapping

targets within a domain. Each individual drone is subject to crashing into obstacles, other

drones, the ground, and the boundaries of the domain, which the swarms must learn to

avoid. The basic UAV swarm dynamics are derived from Newton’s laws of motion, where

individual drones are subject to drag forces and are able to emit a constant propulsion

force. The control inputs for each drone include a normalized force vector that determines

the direction of propulsion. In this model problem, we assume that the swarm has full

observability of the environment (domain boundary, drones, targets, and obstacles), and

that the objective/reward function is well defined.

To compare the performance of DDPG and SAC, both were run for 10000 episodes,

each of which had a maximum rollout length of 300 steps. Training began after 10000

transitions were collected into the memory buffer, with 10 gradient update steps run between

each 1000 rollout transitions collected. The learning curves for DDPG and SAC are shown

in the results section of the report, and indicate some initial success in training, as both

actor and critic losses largely trended downward as training continued.

We developed and tested a physics-based drone simulator capable of deploying a

UAV swarm to capture targets while avoiding obstacles. Our experiments suggest that deep

reinforcement learning algorithms, such as DDPG and SAC, can achieve reasonable results

and demonstrate the feasibility of using RL for controlling a drone swarm. However, there

are still areas for improvement and further research.

Github repository: ©

1

https://github.com/bmhowell/drone_swarm_trajectory_optimization_deepRL.git

Exploration and Optimal Path
Planning for UAV Swarms

Trajectory optimization via deep reinforcement learning vs genetic
algorithm

COMPSCI 285 - Deep Reinforcement Learning, Decision Making, and
Control

Maya Horii, Brian Howell, Reece Huff

University of California, Berkeley

December 2022

Github repository: ©

https://github.com/bmhowell/drone_swarm_trajectory_optimization_deepRL.git

1 Introduction

Background

Recent advances in lithium-ion battery, camera, 3D printing, LiDAR, and hyper-spectral

imaging technologies have led to the increased development of inexpensive unmanned aerial

vehicles (UAVs) for a large number of applications. In particular, the use of a large number

of UAVs (or swarms) for exploration and monitoring in applications such as geo-physical

mapping, route and agricultural surveillance, natural disaster planning and response, and

environmental data collection has led to the need for the development of coordinated path-

planning algorithms.

Currently, UAV exploration range still remains an expensive task due potential colli-

sions in uncertain environments and the limited power supply for each drone. The develop-

ment of a digital twin/replica can aid in simulating trajectories of UAVs within a particular

environment many thousands of times faster than in real time due parallelization of fast

numerical models. This framework enables engineers to inexpensively iterate in simulation

a large range of possibilities to ensure robust control mechanisms for operation in the real

world.

Model problem and assumptions

The modeling of UAV swarms may contain varying degrees of fidelity, including incorporation

of the physics of power supply to rotors, the dynamics of linear and angular momentum,

the effects from drag, the interaction between drones, and the coordination to achieve a

collective objective. Optimal trajectories, however, can rapidly be computed by focusing

primarily on effects from drag, interactions and objective, while treating individual drones

as point masses. This enables simulations that can be performed 1000x faster than real

time, while still obtaining reasonable flight trajectories. A visualization of a potential initial

configuration is shown in Figure 1.

We consider a model problem in which a swarm of UAVs are tasked with mapping

targets within a domain. Each individual drone is subject to crashing into obstacles, other

drones, the ground, and the boundaries of the domain, which the swarms must learn to

avoid. The basic UAV swarm dynamics are derived from Newton’s laws of motion, where

individual drones are subject to drag forces and are able to emit a constant propulsion

force. The control inputs for each drone include a normalized force vector the determines

the direction of propulsion. In this model problem, we assume that the swarm has full

observability of the environment (domain boundary, drones, targets, and obstacles), and that

1

Figure 1: Example drone environment obtained from [1]. Agent (blue) seek to tag targets (green)
while avoiding obstacles (red).

objective/reward function is well defined. For this project, we developed a gym environment

that that enables test trajectories provided from a variety of approaches, including deep RL

policies and physics-based models.

Objective of work

Optimal trajectories for the model problem above can be obtained through a variety of meth-

ods. In this project, we will compare and contrast genetic algorithm and deep reinforcement

learning (RL) approaches for obtaining optimal path trajectories, and discuss their strengths

and weaknesses and providing examples of their use in trajectory optimization. For deep RL,

we explore the Soft Actor-Critic (SAC) and Deep Deterministic Policy Gradient (DDPG)

methods for developing policies to control swarm of drones to successfully tag targets within

3D domain while avoiding potential crashes. These results are benchmarked against previ-

ous work using genetic algorithms (GA) that optimize the path planning determined by an

exponential attraction-repulsion model. We also attempt to compare the policies obtained

by SAC, DDPG and physics-based GA under similar environments. These results can be

used to compare these methods to each other in terms of effectiveness and efficiency.

2 Methods

2

Genetic algorithm

Previously, Zohdi [1] proposed a simple physics-based model by approximating a swarm of

UAVs as point masses with Newtonian states position r, velocity v and acceleration a. This

work provided a path-planning algorithm with the objective of mapping a desired domain

by means of modeling drone-target, drone-obstacle, drone-drone interactions throughout the

domain:

n̂tar
i→j = (wt1e

−a1ddtij − wt2e
−a2ddtij)ni→j (1)

n̂obs
i→j = (wo1e

−b1ddoij − wo2e
−b2ddoij)ni→j (2)

n̂drone
i→j = (wd1e

−c1dddij − wd2e
−c2dddij)ni→j (3)

.

Specifically, these equations model the weighted directions from a drone to a desired

target, or away from obstacles or other drones, where dij is the euclidean distance between

an interaction, and the parameters (wt, wo, wd, a, b, c) are parameters learned by a genetic

algorithm with an objective function defined as

min
Λ

w1M
∗ + w2T

∗ + w3L
∗ (4)

where M∗ indicates the percent of unmapped targets, T ∗ indicates the total time, L∗

indicates the percent of crashed drones, and Λ represents a vector of parameters in Equations

1-3 to be learned.

Deep reinforcement learning

In this work, we consider the soft actor-critic (SAC) and deep deterministic policy gradi-

ents (DDPG) methods to accommodate the continuous action space (normalized propulsion

vector). However, given the time constraints of the project, several simplifications and mod-

ifications had to be made. First, the problem was simplified to a 2D domain with a single

target with two agents. This simplification greatly reduced the computational cost enabling

us to more rapidly debug our RL implementations.

The second modification of the original problem was a redefinition of the reward

function. To accommodate a more continuous reward signal, the following reward function

was implemented for both SAC and DDPG methods:

3

r = −
nagents∑
i=1

min
j

(
|ai − tj|

)
+ dmax

(
nmapped − ncrashed

)
(5)

where ai is the i-th agent, tj is the j-th target, dmax represents the maximum possible

distance in the domain between a possible agent and target, nmapped represents the number

of mapped targets, and ncrashed represents the number of crashed UAVs. Intuitively, this

reward function penalizes the UAV swarm by summing every agents distance to its nearest

target, adding reward scaled by the maximum possible distance between an agent and a

target in the specified domain, as well as a negative penalty for every crashed drone also

scaled by the maximum distance between an agent and a target. The latter two terms are

to account for the sudden decrease in reward due to the first term after target is tagged and

no longer considered in the simulation.

The soft actor-critic implementation was based heavily off of [2].

3 Results

To compare the performance of DDPG and SAC, both were run for 10000 episodes,

each of which had a maximum rollout length of 300 steps. Training began after 10000

transitions were collected into the memory buffer, with 10 gradient update steps run between

each 1000 rollout transitions collected. The learning curves for DDPG and SAC are shown

in Figure 2 and 3 respectively, and indicate some initial success in training, as both actor

and critic losses largely trended downward as training continued.

(a) Actor loss (b) Critic loss

Figure 2: Learning curves for DDPG implementation

4

(a) Actor Loss (b) Critic Loss

Figure 3: Learning curves for SAC implementation

To compare the performance of the final policies generated with SAC and DDPG,

both policies were run in the same 100 randomly initialized environments. The average

reward was calculated over time for each episode. The mean and standard deviation of the

average rewards are shown in Figure 4. The resulting performance of SAC and DDPG appear

to be extremely similar, with SAC having a slightly higher mean. Both policies failed to

consistently capture the target – DDPG captured the target once, SAC captured the target

twice (out of 100 episodes). However, a high amount of variability was observed in SAC runs

initialized with different random seeds, and at least one SAC-generated policy was able to

consistently capture the target. An example from this high-performing policy is shown in

Figure 5.

5

Figure 4: Comparison of mean and standard deviation of average episode reward over 100 episodes
between SAC and DDPG

Figure 5: Example of rollout from high-performing policy generated with SAC. Red dots are drones,
green dot is target.

4 Implications

For the simplified 2D problem with two agents and a single target, the reward function

defined in Equation 5 appears to be valid based on the results above. However, generalization

6

to n agents and m targets may require more fine tuning of this reward function. Consider the

case in which two agents approach the same target and one drones tags it. An immediate step

penalty is applied to both drones which is not compensated by the second term in Equation

5. Additionally, the reward function provides no motivation for the swarm to spread out.

To address both of these problems, and addition term can be added to the reward function:

r = −
nagents∑
i=1

min
j

(
|ai − tj|

)
+ dmax

(
nmapped − ncrashed

)
+

nagents∑
i=1

min
j

(
|ai + aj|

)
(6)

where the additional term promotes repulsion term between each of the drones.

5 Conclusion and future work

We developed and tested a physics-based drone simulator capable of deploying a UAV swarm

to capture targets while avoiding obstacles. Our experiments suggest that deep reinforcement

learning algorithms, such as DDPG and SAC, can achieve reasonable results and demonstrate

the feasibility of using RL for controlling a drone swarm. However, there are still areas for

improvement and further research.

One direction for future work is to investigate the use of advanced offline RL algo-

rithms, such as CQL to see if they can improve upon the performance of DDPG and SAC.

Training and testing offline may enable us to fine-tune some of the more challenging as-

pects of our task, such as the reward function and the neural network architecture of the

agent. In addition, DDPG and SAC have many hyperparameters making them difficult to

tune, and therefore we could test simply policy gradient algorithms such as Proximal Policy

Optimization (PPO).

6 Contributions

• Gym environment + genetic algorithm benchmark - Brian Howell

• Implementing + training SAC method - Maya Horii

• Implementing + training DDPG method - Reece Huff

• Report - Equal contribution from all

7

7 References

[1] TI3927120 Zohdi. “The Game of Drones: rapid agent-based machine-learning models

for multi-UAV path planning”. In: Computational Mechanics 65.1 (2020), pp. 217–228.

[2] Pranjal Tandon. “pytorch-soft-actor-critic”. In: Github: https://github.com/pranz24/pytorch-

soft-actor-critic (2021).

8

	Introduction
	Methods
	Results
	Implications
	Conclusion and future work
	Contributions
	References

