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Prompts
Bayesian inference is typically performed via approximate posterior sampling. However, there are many situations where
sampling is inefficient, especially if we want to perform high-dimensional inference. Variational inference substitutes
sampling with optimization. Instead of drawing samples from the posterior (or an approximation to the posterior produced
by running an MCMC scheme), variational inference searches for the closest approximation to the target posterior among
all distributions in an (often infinite-dimensional) family of tractable distributions. Please read:

1. Blei, David M., Alp Kucukelbir, and Jon D. McAuliffe. “Variational inference: A review for statisticians.” Journal of the
American statistical Association 112, no. 518 (2017): 859-877. [BKM17]

2. Liu, Qiang, and Dilin Wang. “Stein variational gradient descent: A general purpose Bayesian inference algorithm.” Advances
in neural information processing systems 29 (2016). [LW16]

Then write a 4-5 page essay that summarizes and comments on your reading. It should, at minimum, address the discussion
prompts outlined below. For the second paper it may help to read:

• Papamakarios, George, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lakshminarayanan.
“Normalizing flows for probabilistic modeling and inference.” Journal of Machine Learning Research 22, no. 57 (2021): 1-64.
[PNR+21]

• Wang, Yiwei, Jiuhai Chen, Chun Liu, and Lulu Kang. “Particle-based energetic variational inference.” Statistics and
Computing 31 (2021): 1-17. [WCLK21]

(a) Compare variational inference methods and MCMC procedures. Identify pros and cons for each framework, and
propose at least one example setting where you prefer each over the other.

(b) Variational inference typically adopts the KL divergence between the variational distribution, @, and the target as its
objective, ?⇤. Explain why we adopt⇡KL(@| |?⇤) rather than⇡KL(?⇤| |@). Explain how your interpretation of the objective
would (or would not) change, if you exchanged the order of the distributions inside the KL divergence. What biases
do you expect this to induce in the variational solution?

(c) Clearly summarize the CAVI algorithm for mean-field inference in conditionally conjugate models. In particular, show
that each step in the iterative procedure is a descent step on the KL divergence. Try to relate the procedure to another
method from the course (e.g. coordinate ascent, expectation-maximization).

(d) Discuss the biases induced by the mean-field assumption, and, given these biases, how you would use the variational
distribution produced by optimizing over the mean field class.

(e) Clearly summarize the SVGD algorithm for mean-field inference. Then, answer the following questions:

• What is the variational family that SVGD optimizes over?1

• Give an intuitive description of the particle dynamics specified by the SVGD algorithm. Compare this algorithm
to another ensemble algorithm from the class. What component of the algorithm ensures that the particles spread
out? What is responsible for the variance in samples in related MCMC methods?

• Are you convinced by the “median-trick” for selecting the kernel bandwidth?2 Propose an alternative procedure
for adaptively selecting the bandwidth.

(f) SVGD, like other particle flow based methods, uses a flow map to transport particles drawn from a reference distribution
(often normal). The transport map is chosen so that, after the transformation, the original distribution is as close as
possible to the target. This is implemented by at each step moving a set of reference particles as if they obeyed a time
inhomogeneous ODE. The vector field specifying the ODE is chosen to instantaneously decrease the KL as quickly
as possible. Show that the functional gradient of the KL divergence with respect to a velocity field transporting @(C)
to @(C + 3C) can be calculated using only computationally available quantities (the unnormalized target, log densities,
partial derivatives of log densities).

1This is a tricky question. It may help to start by asking, how would I sample from the distribution produced at the end of SVGD? The variational family
will be all distributions that can be specified by this sampling procedure.

2Be skeptical here.
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Notation
Let z = [I1 , . . . , I<] represent the unknown or “latent” variables of interest. Let x = [G1 , . . . , G=] be the known, observable
variables. Suppose we are given a joint model ?(x, z) such that ?(x, z) = ?(x | z) ?(z) where ?(x | z) represents the likelihood,
and ?(z) represents the prior distribution. Let ?(z | x) = ?̃(z | x)//(x) represent the posterior where ?̃(z | x) = ?(x | z) ?(z)
and /(x) =

Ø
all z ?̃(z | x) dz is the troublesome normalizing constant.

(a) Variational Inference vs. Markov Chain Monte Carlo
A fundamental challenge in Bayesian statistics is approximating, computing, and sampling from challenging distributions.
We begin by discussing two methods for approximating a target distribution, ?⇤(z).

Markov Chain Monte Carlo. In Markov Chain Monte Carlo (MCMC), we approximate the target density ?⇤ by defining
a Markov chain whose stationary distribution is the target. Specifically, we simulate an ergodic3 chain that obeys detailed
balance4 for long enough to approach stationarity. We then approximate the target with an empirical estimate constructed
from (a subset of) the collected samples.

Variational Inference. In variational inference, we approximate the target density ?⇤ by selecting the optimal distribution
@
⇤ from a variational family Q . Specifically, we define a set of densities @(z) 2 Q meant to approximate the target distribution.

The optimal density @⇤ is a member of Q that minimizes the Kullback-Leibler (KL) divergence to the target,
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In contrast with MCMC, we cast our approximation of the target distribution as an optimization problem. Additionally, we
have a proper density @⇤ as an approximation of the target, rather than empirical estimates constructed from samples.

Comparing variational inference and MCMC. Variational inference and MCMC are both powerful techniques for density
approximation. When should a statistician use one or the other? MCMC methods are generally more computationally
expensive as it can take an extremely long time to approach stationarity. With this expense, MCMC is able to provide
guarantees of producing exact samples from the target density (asymptotically). While variational inference does not enjoy
such guarantees, it is generally much faster than MCMC (assuming a reasonable variational family). Therefore, variational
inference is generally better suited for large datasets where speed is a higher priority than accuracy. We may prefer MCMC,
for example, in a medical setting. Here, accuracy (e.g., in the tails) is of utmost importance, and therefore we are willing to
collect many samples over years and years to be confident that our model is capable of making inferences with high accuracy.
On the other hand, we may prefer variational inference if we, for example, are designing a recommendation algorithm at
Netflix. Here, we have access to an enormous dataset and desire a model that is fast and does well in expectation and
therefore are willing to sacrifice a bit of accuracy for speed.

(b) Why use KL(@ | | ?⇤) instead of KL(?⇤ | | @) for variational inference?
A primary reason for utilizing KL(@ | | ?⇤) instead of KL(?⇤ | | @) is that we often only have access to the unnormalized target
density ?̃⇤. In this case, the variational inference objective KL(@ | | ?⇤) is equivalent to minimizing KL(@ | | ?̃⇤) as
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On the other hand, the alternative objective requires an expectation over the target as KL(?⇤ | | @) = Ez⇠?⇤(·)[log(?⇤(z)/@(z))]. To
evaluate this expectation, we would have to calculate the troublesome normalizing constant which is often intractable. We
could approximate the expectation with sampling (i.e., importance sampling) but this makes our optimization problem
stochastic which is undesirable as two runs may result in different solutions.

Understanding the biases induced by both objectives is best seen through example. Suppose our target distribution is a
two-dimensional Gaussian with a non-zero correlation between I1 and I2 (Figure 1). Suppose @1(z) and @2(z) on the left and
right of Figure 1 represent optimal densities under objectives KL(@ | | ?⇤) and KL(?⇤ | | @), respectively. To see why, consider the
green points z� and z⌫ in Figure 1:

3a chain that is both irreducible (it’s possible to get from any state to any other state) and aperiodic (there’s no fixed cycle or period in the transitions
between states; the chain doesn’t get stuck in a repeating pattern)

4
)(z! z0) ?((z) = )(z0 ! z) ?((z0) for all z, z0

1
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• Under variational objective KL(@ | | ?⇤): Notice that z� plays a negligible role in KL(@1 | | ?⇤) as @1(z�) ⇡ 0, whereas z�
plays a significant role in KL(@2 | | ?⇤) as @2(z�) is non-negligible and log(@2(z�)/?⇤(z�)) � 1. Therefore, we select @1(z)
instead of @2(z) under the variational objective.

• Under alternative objective KL(?⇤ | | @): Notice that z⌫ plays a negligible role in KL(?⇤ | | @2) as @2(z⌫) ⇡ ?⇤(z⌫) =)
log(?⇤(z⌫)/@2(z⌫)) ⇡ 0, whereas z⌫ plays a significant role in KL(?⇤ | | @1) as log(?⇤(z⌫)/@1(z⌫)) � 1. Therefore, we select @2(z)
instead of @1(z) under the alternative objective.

F����� 1: Example target two-dimensional Gaussian with a non-zero correlation between I1 and I2. Here, @1(z) on the left
and @2(z) on the right represent optimal densities under objectives KL(@ | | ?⇤) and KL(?⇤ | | @), respectively.

This example highlights a key behavior of each objective. Minimizing KL(@ | | ?⇤) tends to choose @(I) that underestimates un-
certainty whereas minimizing KL(?⇤ | | @)will tend to lead to more conservative approximations that overestimate uncertainty,
potentially becoming broader or heavier-tailed. In this sense, the variational inference objective is primarily focused on the
mode while the alternative objective is focused on coverage. Note that @1(z) and @2(z) are results we would expect when
optimizing over the mean-field variational family (as discussed in (c) and (d)), but our analysis is without loss of generality:
the variational inference objective is biased towards the mode(s) while the alternative objective is biased towards coverage.
Finally, while our example considers a unimodal target both objectives could in theory capture multi-modal distributions.

Variational inference to Bayesian models

From this point onward, we apply variational inference to a Bayesian model and take our target distribution ?⇤ as the
posterior, ?⇤(z) = ?(z | x) / ?(x | z) ?(z). In this setting, the variational inference objective is
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We note that the log evidence log
�
?(x)

�
is constant with respect to @ so we can remove it from the objective in Equation (VI).

It follows that minimizing KL
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Writing the variational inference objective in terms of ELBO
�
@(z)

�
clarifies its meaning. We see that variational inference is

• maximizing the likelihood that explain the observed data in the first term Ez⇠@(·)
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6Note that the nomenclature “evidence lower bound” is literal. By Equations (1) and (ELBO) and the fact that KL divergence is non-negative, we have

KL
⇣
@(z)

����
?(z | x)

⌘
= KL

⇣
@(z)

����
?(z)

⌘
� E

z⇠@(·)

⇥
log

�
?(x | z)

� ⇤
+ log

�
?(x)

�
= log

�
?(x)

�
� ELBO

�
@(z)

�
� 0 =) ELBO

�
@(z)

�
 log

�
?(x)

�

2



(c) Coordinate ascent variational inference (CAVI) algorithm in conditionally conjugate models
Coordinate ascent variational inference (CAVI) algorithm for mean-field inference is a powerful approach for solving
Equation (VI). CAVI optimizes over the mean-field variational family where the latent variables are mutually independent and
each governed by a distinct density. Each member of the family has the form @(z) = Œ

<

9=1 @9(I9). In other words, we ignore
possible correlations between variables and therefore approximate the target with a product of independent variational
factors. CAVI works by updating variational factor @9(I9) while holding all other variational factors constant.

We begin by deriving a single step of the CAVI algorithm. Let I9 and @9(I9) represent the 9-th latent variable and
variational factor, respectively, and let z�9 and @�9(z�9) =

Œ
✓<9 @✓ (I✓ ) represent the remaining latent variables and variational

factors, respectively. At each step, we update @9(I9) while holding @�9(z�9) fixed, and therefore we decompose the KL
divergence in Equation (VI) into
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where ?(I9 | z�9 , x) is the complete conditional, i.e., the density of the 9-th latent variable I9 conditioned on all the other latent
variables z�9 and the observable x. Since we are updating @9(I9) while holding @�9(z�9) constant, we minimize the expression
above by setting the terms within the expectation to zero. We have that
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Since @⇤
9
(I9) zeros the first term the CAVI step is in fact a descent step on the KL divergence. This step is the essence of the

CAVI algorithm. A full description of the CAVI algorithm is provided below and highlights that at each iteration, we loop
through the < variational factors and (i.) calculate the complete conditional (Line 3) and (ii.) use it to update variational
factor @9(I9) (Line 4). We repeat until the ELBO has converged (i.e., ELBO hasn’t changed much between iterations).

Algorithm 1: Coordinate Ascent Variational Inference (CAVI) [BKM17]
Input: Joint model ?(x, z) over latent variable (unknown) z and observable dataset x
Output: A mean-field variational density @(z) = Œ

<

9=1 @9(I9)
Initialize: Variational factors @9(I9)

1 while the ELBO has not converged do
2 for 9 2 {1, . . . ,<} do
3 Calculate complete conditional ?(I9 | z�9 , x)
4 Set @9(I9) / exp
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7 end
8 return @(z)

Complete Conditionals in the Exponential Family

We consider a class of Bayesian models that are well-suited for CAVI: models with complete conditionals ?(I9 | z�9 , x)
belonging to the exponential family where we have

?(I9 | z�9 , x) =
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/(z�9 , x)
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where ⌘(I9) is a base measure, ◆ 9(z�9 , x) is the natural parameter, I9 is its own sufficient statistic, and /(z�9 , x) is the
normalizing constant. When the complete conditional is in the exponential family, the CAVI step is

@
⇤
9
(I9) / exp

�
E

⇥
log ?(I9 | z�9 , x)

⇤ 
= exp

�
E

⇥
log ⌘(I9) + ◆ 9(z�9 , x)>I9 � log/(z�9 , x)

⇤ 
/ ⌘(I9) exp

n
E�9

⇥
◆ 9(z�9 , x)

⇤>
I9

o

The expression above reveals the simplicity of the CAVI update when the complete conditional is in the exponential family:
@9(I9) has the same parametric form as ?(I9 | z�9 , x) and therefore the CAVI step is simply updating its natural parameter to
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Conditional Conjugacy and Bayesian Models

An important case of exponential family models are conditionally conjugate models with local and global variables. Let Æ� 2 R 

be a vector of global latent variables and z be a vector of local latent variables. The global latent variables govern all of the data,
while local latent variables govern the 8-th component of the observable x. Figure 2 depicts the joint model ?(Æ�, z, x):

Æ�⇠?(Æ�) I8⇠?(I8 | Æ�) G8⇠?(G8 | I8 , Æ�)

i.i.d. for 8 = 1, . . . , =

() Æ�⇠?(Æ�) I8 , G8⇠?(I8 , G8 | Æ�)

i.i.d. for 8 = 1, . . . , =

F����� 2: Hierarchical model ?(Æ�, z, x) over global and latent variables Æ�, z and observable x.

Under the model, we define a generic member of the mean-field variational family @(Æ�, z) 2 Q as @(Æ�, z) = @(Æ�)Œ=

8=1 @8(I8)
such that we update @(Æ�) and all @8(I8) at each CAVI step. We do so by calculating their respective complete conditionals.

CAVI step for @(Æ�). Consider the CAVI step for @(Æ�), where we hold local variables z and variational factors
Œ

=
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constant. The CAVI step for @(Æ�) is of the form
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where ?(I8 , G8 | Æ�) belongs to the exponential family such that
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where ⌘(I8 , G8) is a base measure, Æ� is the natural parameter, C(I8 , G8) is the sufficient statistic, and /(Æ�) is the normalizing
constant. We select the conjugate prior for the global latent variables as8
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selecting a conjugate prior, the complete conditional ?(Æ� | z, x) is given by
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implying that the CAVI step for @(Æ�) is given by
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CAVI step for @8(I8). Consider the CAVI step on @8(I8), where we hold all other local variables z�8 and global latent variable
Æ� constant. We note that local latent variables are i.i.d. and independent of all other data such that ?(I8 | z�8 , G8 , x�8 , Æ�) =
?(I8 | G8 , Æ�). Therefore the CAVI step is of the form

@8(I8) / exp
n
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log ?(I8 | G8 , Æ�)
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where ?(I8 | G8 , Æ�) / ?(I8 , G8 | Æ�)

8See bayesian estimation for conjugate distributions with 6 = Æ�1: , ⇡ = �0, �(() = log(/(Æ�1: , �0)), and 5 (6, ⇡) = ⌘(Æ�)
/(Æ�) .
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where we assume ?(I8 | G8 , Æ�) belongs to an exponential family such that9
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where ⌘(I8) is a base measure, ◆8(G8 , Æ�) is the natural parameter, I8 is its own sufficient statistic, and /(◆8(G8 , Æ�)) is the
normalizing constant. Therefore, the CAVI step for @8(I8) is given by
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ELBO for conditionally conjugate models. The final step in CAVI is calculating the evidence lower bound as it defines
our stopping criteria. For conditionally conjugate models, we have that
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(�0 + =) � EÆ�,z⇠@(Æ�,z)

h
log @(Æ�, z)

i
(5)

where

EÆ�,z⇠@(Æ�,z)

h
log @(Æ�, z)

i
= Æ⌫>EÆ�⇠@(Æ�)

h
C(Æ�)

i
� log/(Æ⌫) + !>

8
E
I8⇠@(I8 ) [I8] � log/(!8)

where /(Æ⌫) :=
Ø

all Æ� ⌘(Æ�) exp
n
Æ⌫>C(Æ�)

o
dÆ� and /(!8) :=

Ø
all I8

⌘(I8) exp
�
!>
8
I8

 
dI8 .

We now have all the pieces to implement CAVI for conditionally conjugate models. The CAVI algorithm is provided
below and highlights that at each iteration, we (i.) update the global variational factor @(Æ�) (Line 2) and then (ii.) loop
through the = variational factors and update the local variational factors @8(I8) (Line 3). We repeat until the ELBO has
converged (i.e., ELBO hasn’t changed much between iterations).

Algorithm 2: Coordinate Ascent Variational Inference (CAVI) in Conditionally Conjugate Bayesian Models [BKM17]

Input: Joint model ?(Æ�, x, z) over global and latent variables Æ�, z and observable x (Figure 2)
Output: A mean-field variational density @(Æ�, z) = @(Æ�)Œ=

8=1 @8(I8)
Initialize: Variational factors @(Æ�) and @8(I8)

1 while the ELBO has not converged do
2 Update global variational factor @(Æ�) by setting its natural parameters to

⇥
Æ�1: +Õ

=

8=1 E@8 [C(G8 , I8)] , �0 + =
⇤

via (3)
for 8 2 {1, . . . , =} do

3 Update local variational factor @8(I8) by setting its natural parameters to E
@(Æ�)

h
◆8(G8 , Æ�)

i
via (4)

4 end
5 Calculate ELBO

�
@(Æ�, z)

�
via (5)

6 end
7 return @(Æ�, z)

Relation to another algorithm in the class

The primary similarity of CAVI to other algorithms in the class is how it leverages conjugacy. Examples from the class include
coordinate ascent, expectation maximization, and Gibbs sampling. All of these approaches are well suited for situations
where conditioning on subsets of the latent variables may speed the optimization/sampling process. Such settings include
conditionally conjugate models where conditioning a subsets of latent variables (e.g., complete conditional) results in a
simple and fast update (e.g., updating the natural parameters of an exponential family). We argued in class that the speed
ups from simple updates may make up for having to iterate over all of the latent variables. For example, Gibbs sampling is

9Note that by assuming that the local likelihood ?(I8 , G8 | Æ�) belongs to the exponential family, we have that ?(I8 | G8 , Æ�) is in an exponential family as
?(I8 | G8 , Æ�) / ?(I8 , G8 | Æ�)

10KL
⇣
@(Æ�, z)

��
?(Æ�, z | x)

⌘
= E

@(Æ�,z)


log

✓
@(Æ�,z)
?(Æ�,z|x)

◆�
= E

@(Æ�,z)

h
log @(Æ�, z) � log ?(Æ�, z, x) � log ?(x)

i
=) ELBO

�
@(Æ�, z)

�
= �KL

⇣
@(Æ�, z)

��
?(Æ�, z | x)

⌘
� log ?(x)

5



a procedure in which we sample along complete conditionals of the latent, and while we constrained our step to be along
I8 , it may speed mixing times especially in settings when the target distribution is multi-modal and does not have strongly
correlated subsets (e.g., Corr(I8 , I9) < 0.1 for all 8 < 9). Similarly, CAVI is well-suited for targets that do not have strongly
correlated subsets as CAVI optimizes over the mean-field variational family.

(d) Biases induced by the mean-field assumption
To better understand the biases introduced by the mean-field assumption, let us revisit Figure 1 discussed in (b). The optimal
@
⇤(z) = @1(z) on the left is the result of optimizing over the mean-field variational family. We see that the resulting @⇤(z) is

accurate, especially about the mode and marginal densities of the latent variables (i.e., along I1 and I2). However, it cannot
capture correlation between the latents by construction. Thus the variances along the direction I1 + I2 are underestimated.
This is a common theme in variational inference: the variational objective KL(@ | | ?⇤) tends to underestimate the variance of
the target and fails to capture the wide tails of the target distribution.

With this in mind, when is it appropriate to utilize the mean-field approximation given its biases? The mean-field
approximation is most appropriate when the target distribution the latents are independent. In this case, the variational
family is able to capture the mode and marginal densities of the latents with high accuracy. When the target has weak
to moderate correlations between latents (e.g., Corr(I8 , I9) < 0.3 for all 8 < 9), the mean-field approximation can still be
appropriate as long as the analysis is focused on the mode(s) and/or the latent marginals (i.e., along I1 and I2). In the case
of strong correlations, the mean-field approximation is only appropriate for mode capture, and anything beyond that should
be interpreted with caution as variational factors will collapse to a local modes as the correlation goes to 1.

(e) + (f) Stein variational gradient descent (SVGD)
Background. Let z 2 Z ✓ R< and let �(z, z0) : Z ⇥Z ! R be a positive definite kernel. The reproducing kernel Hilbert
space (RKHS) H of �(z, z0) comprises the linear combinations H =

�
5 : 5 (z) = Õ

#

8=1 08�(z, z8), 08 2 R, # 2 N, z8 2 Z
 
,

endowed with an inner product
⌦
5 , 6

↵
H =

Õ
#

8=1
Õ
#

9=1 0819�(z8 , z9). Kernel �(z, · ) inH satisfies the important “reproducing”
property,

5 (z) =
⌦
5 , �( · , z)

↵
H =

⌦
�(z, · ), 5

↵
H and �(z, z0) = h�( · , z), �( · , z0)iH

LetH 3 represent the vector space f = [ 51 , . . . , 53]> with 58 2 H , equipped with inner product hf, giH 3 =
Õ
3

8=1
⌦
58 , 68

↵
H . More

information about RKHS is provided in Appendix A.

Intuitive derivation of SVGD. For Stein variational gradient descent (SVGD), we consider a variational family of trans-
formed random variables. Let z = 6(z0) where 6 : Z0 ! Z represent the mapping from a tractable base distribution (e.g.,
Normal) z0 ⇠ @0(z0) to the target distribution z ⇠ ?⇤(z). We define the flow map as 6(z0) = z0 + 4(z0) where 4 represents the
displacement field (Figure 3). We note that the displacement field 4 is unknown and therefore we consider an infinitesimal
flow zC+3C = 7

C
(zC) = zC + ⌘C8(zC). We view the infinitesimal displacement 8(zC) as an ⌘C-step that maps particle zC to zC+3C .

As result of this motion, the density @C evolves to @C+3C . Therefore, our goal is put the particles into a motion that drives
the approximate density @ towards the target ?⇤. Specifically, we set the infinitesimal displacement 8(zC) such that our
variational density approaches the target as quickly as possible. To illustrate this point, we select a transport map to move
the reference particles as if they obeyed a time inhomogeneous ODE as we have

zC+3C = zC + ⌘C8(zC) =) lim
⌘C!0

⇢
zC+3C � zC

⌘C

�
= 8(zC) =) %z

%C
= v(z, C) = 8(zC)

where we see that the infinitesimal displacement is the instantaneous velocity of the particle v(z, C).
We now deriving the optimal flow 8⇤ under SVGD. While there a several ways to do so (see Appendix A.), an intuitive

method is functional gradient descent on the KL divergence between the approximation distribution @ and the target ?⇤. We
treat KL(@k?⇤) as a functional of the displacement field, �[4], and perform functional gradient descent. Much like canonical
gradient descent where one iteratively calculates the gradient of an objective function to move through a vector space and
ultimately arrive at a minimum of that function, functional gradient descent works by iteratively calculating the gradient of a
functional to move through a function space and ultimately arrive at a minimum of that functional. Here, the function space
is the space of possible velocity fields applied to the particles and given that our functional �[4] is the KL(@k?⇤) under 4, our
procedure will minimize the KL divergence at each step KL(@C+3C | | ?⇤)  KL(@C | | ?⇤). We have that

z(C+1)  z(C)�⌘C
�
r4�[4]

� ���
4=0

=) z(C+1)  z(C) + ⌘C 8⇤(z(C)) (6)

8⇤(·) = E
z⇠@(·)

⇥
A?⇤�(z, ·)

⇤
whereA?⇤ is the Stein operator A?⇤�(z, ·) := �(z, ·) rz log ?⇤(z) + rz�(z, ·) (7)
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@0(z0) ?⇤(z)

Z0 Z

z = 6(z0)

z0 z4 = z � z0 =) z = z0 + 4(z0)

@C(zC) @C+3C(zC+3C)

ZC ZC+3C

zC+3C = 7
C
(zC).

.
. .

.
.

zC zC+3CzC+3C = zC + ⌘C8(zC)

F����� 3: Flow map 6 : Z0 ! Z and infinitesimal flow 7
C

: ZC ! ZC+3C . The dashed gray line indicates the infinitesimal
flow 7

C
at time C.

and ⌘C is the learning rate at C. A full derivation is provided in Appendix B. We note that we are able to calculate the
Stein operator as the � is predefined, and we have access to the unnormalized target ?̃ such that rz log ?⇤(z) = rz log ?̃⇤(z).
We approximate the expectation over @ with sample averages by defining a set of # particles {z8}#

8=1 to approximate the
expectation

8⇤(·) ⇡ 8̂⇤(·) := 1
#

#’
9=1

⇥
�(z9 , ·) rz9 log ?̃⇤(z9) + rz9�(z9 , ·)

⇤
(SVGD)

Therefore, SVGD is a ensemble method that iteratively applies the (estimated) optimal flow 8⇤ to a finite set of particles
{z8}#

8=1. After undergoing ) iterations, we have a set of particles {z())
8

}#
8=1 that approximate the target distribution ?⇤(z).

Algorithm 3 provides a complete summary SVGD:

Algorithm 3: Stein Variational Gradient Descent (SVGD) [LW16]

Input: Target distribution ?⇤(z) over latent variable z and set of # initial particles
�
z(0)
8

 
#

8=1 where z(0)
8

i.i.d.⇠ @0(z)
Output: Set of particles

�
z())
8

 
#

8=1 that approximates the target distribution ?⇤(z)
1 for C 2 {0, 1, . . . ,) � 1} do

2 Take SVGD step z(C+1)
8
 z(C)

8
+ ⌘C 8̂

⇤ �z(C)
8

�
where 8̂⇤(z) := 1

#

#’
9=1


�(z(C)

9
, z) rz(C)

9

log ?̃⇤(z(C)
9
) + rz(C)

9

�(z(C)
9
, z)

�

3 end

Variational family for SVGD. The variational family for SVGD the set of all distributions that can be produced by
pushing an initial particle distribution through a sequence of infinitesimal flows. This provides a rich and expressive set of
distributions, but the procedure can be computationally expensive requiring many iterations to reach a reasonable solution.
SVGD also requires careful selection of the hyperparameters (e.g., kernel bandwidth). After passing the particles through
SVGD, one can sample from the approximate target by drawing one of the # final particles uniformly as particles will be
concentrated near modes and sparse in valleys. Increasing the number of particles leads to smoother empirical estimates
and as # !1, our estimate of the target will be “continuous” in a proper sense [LW16].

Particle dynamics. The (estimated) optimal flow 8̂⇤ describes the how the particles evolve with time. The two terms
in Equation (SVGD) play different roles: The first term �(z9 , z) rz9 log ?̃⇤(z9) exhibits mode-seeking behavior as it draws
particles toward regions of high target probability by following a kernel-smoothed gradient. The second term rz9�(z9 , z) acts
as a repulsion force that spreads out particles and prevents them from collapsing onto the same mode. To highlight this
point, consider the RBF kernel �(z, z0) = exp

�
� 1
⌘
kz � z0k22

�
. The second term simplifies to

Õ
9

2
⌘
(z � z9)�(z9 , z) which pushes

a particle z away from neighboring particles z9 inside its kernel radius.
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Comparison to Teleporting Walkers. Like SVGD, Teleporting Walkers maintains an ensemble of particles, but rather than
using a functional gradient based flow, its evolution uses MCMC [LWZ22]. In addition to allowing for the ensemble to
explore the target distribution, the particles interact with each other such that they can “teleport” to each other. So in
some sense, the teleportation step is an attractive force pushes particles close to each other. The variance of the chains is
otherwise controlled by the proposal distribution as the chains move independently according to an MCMC sampler, e.g.,
Metropolis-Adjusted Langevin (noisy optimization). The Langevin proposal is given by

y = zC + �C
⇣
rz log ?̃⇤(z)

���
z=zC

⌘
+ �
p
�C/ where / ⇠ N(0, �) and � �

p
2

and the candidate y is accepted with the usual Metropolis-Hastings acceptance probability. Similarly to SVGD, the Langevin
proposal has a mode-seeking term that draws particles toward regions of high target probability. However, the second
term is neither a repulsion nor an attraction term, but rather a diffusion term that allows the particles to explore the target
distribution where � controls the variance of the chains. Algorithm 4 in Appendix C describes the Teleporting Walkers
algorithm in detail.

Selecting kernel bandwidth. Liu, et al. [LW16] describe the “median trick” for RBF kernel �(z, z0) = exp
�
� 1
⌘
kz � z0k22

�
,

they take the bandwidth to be ⌘ = med2/log =, where med is the median of the pairwise distance between the current points
{z(C)

8
}#
8=1; this is based on the intuition that

Õ
9
�(z8 , z9) ⇡ = exp

�
� 1
⌘
med2� = 1, so that for each z8 the contribution from its own

gradient and the influence from the other points balance with each other [LW16].
While the median trick is reasonable in lower dimensional spaces, ✓2-norms are known to collapse in higher dimensions.

For example, most of the mass of a multivariate Gaussian is not near the mean, but in an increasingly distant “shell” around
it [Dom12]. In this case, the mode seeking terms would drive particles to the shell and thus the pairwise distances would
grow larger and larger. The kernel term �(z8 , z9) will be either ⇡ 0 (if ⌘ � med2) or ⇡ 1 (if ⌘ ⌧ med2). The median trick is
sensitive to the dimension and to heavy-tailed targets.

Alternatively, we can use a  -nearest neighbors bandwidth set a distinct bandwidth for each particle,

⌘8 =
1
 

’
92N: (8)

kz(C)
8
� z(C)

9
k22 , �8 9 = exp

�
�kz8�z9k22p

⌘8 ⌘9

�
,

where N (8) is the set of  nearest neighbors of z(C)
8

. This will allow the particles to adaptively select the bandwidth based
on the local density of the particles. The  -nearest neighbors bandwidth is less sensitive to the dimension and can be more
robust in high-dimensional spaces.

8

https://epubs.siam.org/doi/abs/10.1137/21M1425062


Appendix

A. Stein’s Identify and Reproducing Kernel Hilbert Spaces
Suppose ?(z) is a continuously differentiable (i.e., smooth) density supported on Z. Let 5(z) = [)1(z), . . . , )3(z)]> be a
smooth vector function that is in the Stein class of ? such that Stein’s identity holds:

Ez⇠?(·)
⇥
A?5(z)

⇤
= 0 whereA? is the Stein operator A?5(z) := 5(z) rz log ?(z)> + rz5(z) (8)

Let @(z) represent a different smooth density also supported onZ. The expectation Ez⇠@(·)
⇥
A?5(z)

⇤
would no longer equal

zero for general 5 and therefore measures how different ? and @ are. Note that Ez⇠@(·)
⇥
A?5(z)

⇤
is a matrix quantity and

ideally would have a scalar metric for measuring how different ? and @ are. We therefore let the trace of this expectation
represent the “violation of Stein’s identity” for a given 5. We then define the Kernelized Stein discrepancy (KSD) S(@ , ?) as
the “maximum violation of Stein’s identity” over the unit ball B(H 3) :=

�
5 2 H 3 :

��5��2
H 3

=
⌦
5,5

↵
H 3
 1

 

S(@ , ?) := max
52B(H 3)

n
Ez⇠@(·)

⇥
Tr

�
A?5(z)

� ⇤2
o

(9)

It has been shown [LLJ16] that the optimal solution of S(@ , ?) in (9) has an analytical form 5(z) = 5⇤
@ ,?

(z)/k5⇤
@ ,?
kH 3 where

5⇤
@ ,?

(·) = argmax
52B(H 3)

n
Ez⇠@(·)

⇥
Tr

�
A?5(z)

� ⇤2
o
= E

z⇠@(·)

⇥
A?�(z, ·)

⇤
for which we have S(@ , ?) = k5⇤

@ ,?
kH 3 . (10)

B. Functional Gradient
For any functional �[4] of 4 2 H 3, its functional gradient r4�[4] is a function in H 3 such that �[4 + ⌘8] = �[4] +
⌘ hr4�[4],8iH 3 + O(⌘2) for any 8 2 H 3 and ⌘ 2 R. We define our functional �[4] = KL

�
@[6](z) | | ?⇤(z)

�
where 6(z0) =

z0 + 4(z0). It follows that

KL
⇣
@[6](z)

����
?⇤(z)

⌘
=

π
@[6](z) log

✓
@[6](z)
?⇤(z)

◆
dz =

π
@(6�1(z))(((((((��det

�
rz6�1(z)

� �� log

 
@(6�1(z))

��det
�
rz6�1(z)

� ��
?⇤(z)

!
�
�
�

✓
dz
dz0

◆
dz0

KL
⇣
@[6](z)

����
?⇤(z)

⌘
=

π
@(z0) log

 
@(z0)

?⇤(6(z0))
��det

�
rz06(z0)

� ��
!

dz0 = KL
⇣
@(z0)

����
?⇤[6�1](z0)

⌘
as %6�1(z)

%z
=

✓
%z
%z0

◆�1
=

1
rz06(z0)

.

Then we have that

�[4 + ⌘8] = KL
⇣
@(z0)

����
?⇤[6�1](z0)

⌘
= E

z0⇠@(·)

⇥
log @(z0) � log ?⇤(z0 + 4(z0) + ⌘8(z0)) � log det

�
� + rz04(z0) + ⌘rz08(z0)

� ⇤

Next we have that

�[4 + ⌘8] � �[4] = ��1 � �2

where

�1 = E@
⇥
log ?⇤(z0 + 4(z0) + ⌘8(z0))

⇤
� E@

⇥
log ?⇤(z0 + 4(z0))

⇤
�2 = E@

⇥
log det

�
� + rz04(z0) + ⌘rz08(z0)

� ⇤
� E@

⇥
log det

�
� + rz04(z0)

� ⇤
For the terms in the above equation, we have

�1 = E@
⇥
log ?⇤(z0 + 4(z0) + ⌘8(z0))

⇤
� E@

⇥
log ?⇤(z0 + 4(z0))

⇤
�1 = ⌘ E@

⇥
rz0 log ?⇤(z0 + 4(z0)) · 8(z0)

⇤
+O(⌘2)

�1 = ⌘ E@
⇥
rz0 log ?⇤(z0 + 4(z0)) · h�(z0 , · ),8iH 3

⇤
+O(⌘2)

�1 = ⌘
⌦
E@

⇥
rz0 log ?⇤(z0 + 4(z0)) · �(z0 , · )

⇤
,8

↵
H 3

+O(⌘2)

and

�2 = E@
⇥
log det

�
� + rz04(z0) + ⌘rz08(z0)

� ⇤
� E@

⇥
log det

�
� + rz04(z0)

� ⇤
�2 = ⌘ E@

⇥
r log det

�
� + rz04(z0)

�
· rz08(z0)

⇤
+O(⌘2)
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�2
(11 )
= ⌘ E@

⇥
[� + rz04(z0)]�1 · rz08(z0)

⇤
+O(⌘2)

�2 = ⌘ E@
⇥
[� + rz04(z0)]�1 ·

⌦
rz0�(z0 , · ),8

↵
H 3

⇤
+O(⌘2)

�2 = ⌘
⌦
E@

⇥
[� + rz04(z0)]�1 · rz0�(z0 , · )

⇤
,8

↵
H 3

+O(⌘2)

Therefore, we have

�[4 + ⌘8] � �[4] = ⌘
⌦
E@

⇥
�(z0 , · ) rz0 log ?⇤(z0 + 4(z0))

⇤
+ E@

⇥
[� + rz04(z0)]�1 rz0�(z0 , · )

⇤
,8

↵
H 3

+O(⌘2)

and since �[4 + ⌘8] � �[4] = ⌘ hr4�[4],8iH 3 +O(⌘2), the functional gradient is given by

r4�[4] = �E@
⇥
�(z0 , · ) rz0 log ?⇤(z0 + 4(z0)) + [� + rz04(z0)]�1 rz0�(z0 , · )

⇤
Setting 4 = 0 gives us the desired result

�
r4�[4]

� ���
4=0

= �E@
⇥
A?⇤�(z0 , · )

⇤
= �E@

⇥
�(z0 , · ) rz0 log ?⇤(z0) + rz0�(z0 , · )

⇤

Therefore, we can take a step and then treat the transformed particles as z0 and repeat until convergence.

C. Ensemble Markov Chain Monte Carlo with Teleporting Walkers

Algorithm 4: Ensemble Markov Chain Monte Carlo with Teleporting Walkers [LWZ22]
Input: �(I) target distribution (possibly unnormalized), ?A proposal distribution, fixed # number of random walkers
Output: A mean-field variational density @(y) = Œ

<

9=1 @9(H9)
Initialize: # random walkers with initial positions z = (I1 , . . . , I# ) 2 Z#

1 for 9 2 {1, . . . ,<} do
2 Sample teleporter’s arrival index 9 2

�
1, 2, . . . ,#

 
uniformly at random and sample H ⇠ ?A(I9 ! H)

3 Sample teleporter’s starting index 8 2
�
1, 2, . . . ,#

 
(possibly equal to 9) according to importance weights

F8(z, H) :=
?A(H ! I8) +

Õ
#

:<8 ?A(I: ! I8)
�(I8)

,
/(z, H) where /(z, H) :=

#’
;=1

?A(H ! I;) +
Õ
#

:<; ?A(I: ! I;)
�(I;)

(11)

4 Construct candidate z0: set z0 = (I01 , . . . , I0# ) z = (I1 , . . . , I# ) and teleport walker by overwriting I0
8
 H

5 Compute acceptance probability and acceptance ratio:

0(z0) = min(A , 1) where A =
⇧(z0) ?A(z0 ! z)
⇧(z) ?A(z! z0) =

/(z, H)
/(z0, I8)

(12)

6 if*  0(z0) where * ⇠ Uniform([0, 1]) then
7 Accept candidate z0, set zC+1 = z0.
8 else
9 Reject candidate z0, set zC+1 = z.

10 end
11 end
12 return @(y)

11rA log det A = A�1 for symmetric positive definite matrix A from Section A.4.1 in Convex Optimization [BV09]. Here, � +rz04(z0) is symmetric positive
definite as � + rz04(z0) = F and � = detrz06 > 0 by conservation of mass.
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